

Central Street Bridge Replacement

Basis of Design Memorandum

MassDOT Bridge No. M-02-001, Bin. 8AM

Town of Manchester-by-the-Sea

August 23, 2019

www.tighebond.com

Table of Contents

Table of Contents1
Project Location and Background2
Existing Conditions2
Existing Bridge Structure2
Existing Approach Roadway4
Existing Brook4
Existing Hydraulics5
Existing Utilities6
Environmentally Sensitive Areas7
Cultural Resource Areas7
Existing Hazardous Materials8
Project Parameters and Constraints9
Proposed Roadway Cross Section9
Proposed Traffic Management – Central Street9
Proposed Traffic Management – Elm Street11
Proposed Clearances
Proposed Hydraulics12
Preliminary Geotechnical Data14
Constraints Imposed by Approach Roadway14
Constraints Imposed by Brook14
Constraints Imposed by Utilities16
Constraints Imposed by Environmentally Sensitive Areas
Constraints Imposed by Cultural Resources Areas17
Hazardous Material Disposition17
Adjacent Buildings
Approach Guardrails21
Bridge Rail Alternatives
Southwest Wingwall Façade24
Appropriate Bridge Structure Types26

Appendix A – MassDOT Inspection Report (2016)

Appendix B – 2015 Sawmill Brook Central St Seawall, Tide Gate & Culvert Observations Memorandum

Appendix C – Hydrologic and Hydraulic Report

- Appendix D Geotechnical Report
- Appendix E 25% Design Drawings

Appendix F – Opinion of Probable Construction Cost

- Appendix G Conceptual Arch Frame Calculations
- Appendix H Historic District Commission Support Letter

Project Location and Background

Town: Manchester-by-the-Sea, Massachusetts

District: 4

Bridge Number: M-02-001

Bin: 8AM

Structure Number: M02001-8AM-MUN-BRI

Feature Carried: Central Street (Route 127)

Feature Intersected: Sawmill Brook

Background:

The Town of Manchester by the Sea (Manchester) has requested that Tighe & Bond provide engineering design services for replacement of the Central Street bridge over Sawmill Brook. This document describes alternatives for replacement of the structure based on evaluations previously performed by Tighe & Bond for the bridge, tide gate, and wingwall in 2015 that resulted in the development of a conceptual replacement design for the bridge using a precast concrete arch.

The existing bridge is a masonry block spandrel arch bridge with backfill supporting the highway above. In the past, the tide gate at the site impounded water within the bridge and backfill. This has led to seepage and loss of backfill material when large precipitation events and high tide elevations are concurrent. Multiple scenarios of prior hydrologic assessment of the bridge indicate that it is undersized to pass current design storm events without over-topping with concurrent tail water impacts due to storm surge. With the potential for future sea level rise, it is anticipated this area may flood more frequently.

The tide gate and weir design have been identified by the Massachusetts Division of Marine Fisheries (DMF) as an impediment to fish passage, notably impacting state-listed species including rainbow smelt (*Osmerus mordax*). It is proposed that the gate will be removed as part of this project.

Based on the planning and analytical work that has been completed to increase the profile of the project at the state level, MassDOT has awarded the Town of Manchester a \$500,000 Small Bridge Grant to replace the significantly deteriorated bridge.

To support the basis of our design for the replacement, Tighe & Bond obtained detailed topographic survey, performed a subsurface exploration program and geotechnical evaluation, and expanded our hydrologic and hydraulic analysis for the site. This memorandum summarizes the results of the existing conditions data and describes our previously developed conceptual design for the crossing. Included in the document are refined recommendations based on this data.

Existing Conditions

Tighe & Bond requested available data on the existing structure including reports and plans from MassDOT at the State and District levels as well as the Manchester-By-The-Sea Department of Public Works. Existing plans are not available. However, MassDOT provided an inspection report dated November 9, 2016 that is included in Appendix A. Tighe & Bond also visited the site, met with Town officials on multiple occasions, attended public informational meetings associated with the closely related pond restoration project upstream of the site, obtained survey data, performed hydrologic & hydraulic analysis, obtained borings, and evaluated subsurface conditions to further define existing conditions.

During a site visit on August 13, 2018, existing conditions were observed and survey needs were further defined. The site visit also confirmed the conditions of the structure as described in the 2015 Sawmill Brook Central St Seawall, Tide Gate & Culvert Observations memorandum, included in Appendix B. The observations included water seepage paths, damming conditions caused by the tide gate, separation and settlement of culvert arch stones, and concrete degradation.

Tighe & Bond subcontracted with a licensed and qualified professional surveyor, Doucet Survey Inc., to conduct topographical field survey of the project area. The survey included an approximate 1.9-acre area surrounding the Central Street bridge location to identify features including existing structures, potential geotechnical exploration locations, observable utilities with inverts, channel walls, tide gate, and stream gages. Elevations were taken within the channel from 50 feet downstream to 10 feet upstream, to develop 1-foot contours. Records research was conducted that included review of current deeds from parcels within the survey limits referenced in the town assessors' records. The Existing Conditions Site Plan included in the 25% design is included in Appendix E.

Existing Bridge Structure

The Central Street Bridge spans Sawmill Brook at the mouth of Manchester Harbor on Central Street (Route 127). According to MassDOT records, the original bridge was constructed in 1850 and reconstructed in 1900. The crossing consists of the bridge, a tide gate, and coastal wingwalls. The bridge features a 16-foot span mortared stone masonry circular arch with stone masonry wingwalls and headwalls. The arch has a total opening height of 6.6 feet at the inlet, 10.0 feet at the outlet, and the height from the low chord to the roadway is approximately 4.5 feet. The structure bears directly on exposed bedrock. Timber cribs, functioning as weirs, are imbedded into the bottom of the stream bed. A concrete and iron tide gate abuts the bridge to the south.

The bridge was rebuilt around the mid 1900's and a tide gate was installed to control the Brook flows and created Central Pond just upstream. A stone masonry wingwall abuts the bridge in the southwest quadrant, functioning as a seawall.

The existing curb-to-curb width at the bridge is 34.5-feet with 6-inch granite curbs and 4-to-5-foot hot mix asphalt sidewalks for a total width of approximately 45-feet. The road carries two lanes of traffic, one in each direction, and has enough width to accommodate parking. However, there is no parking on the physical bridge structure as a majority of the span is covered by crosswalk that is generally situated above the channel. The curb cut ramps at the crosswalk are in poor condition and the grades do not meet current ADA requirements. The bridge has a 7-degree skew.

The property in the Northeast quadrant has a private porch structure that bears directly on the headwall of the bridge (see photo above). The tide gate structure abuts the southeast channel wall. Field observations indicate that the tide gate was designed as a standalone structure. However, it is unclear if the wall can function as a freestanding structure given its age.

The bridge is on the National Historic Registry as the site of historic water powered mill dating back to the 1600's and it marks the entrance to downtown Manchester-by-the-Sea. The design team and the DPW staff have been in consultation with the Manchester Historic District Commission (HDC) regarding the project, and expect the coordination efforts to continue during later stages of design development.

As described in MassDOT's inspection report, the bridge is in poor condition with deficiencies that should be addressed as soon as possible, Most notably, the arch is missing granite keystones along the northern portion of the bridge and a majority of the arch has concrete patches throughout. The northern headwall is covered with concrete patching and efflorescence over a majority of its surface. The headwall also has areas of spalling with exposed reinforcement. Chain link fence, which does not meet MassDOT standards for highway railing, exists for pedestrian and vehicular protection. Moderate cracking is evident throughout the roadway surface, which suggests loss of fill material around the structure. Previous site investigations revealed significant water seepage through joints between stones in the adjacent stone wingwall, indicating significant loss of fill material around the bridge and behind the wingwall.

The adjacent channel walls consist of granite masonry. Tighe & Bond excavated a test pit on November 27, 2018 behind the westerly upstream channel wall, approximately 70 feet north of the intersection of Elm Street and Central Street. The test pit revealed that the retaining wall consists entirely of granite blocks ranging from 31-inches wide at the base to 19-inches wide at the top, with longer staggered blocks keyed into the soil. Aside from the top course of blocks being 16-inches deep, the majority of the blocks are 24-inches deep. The test pit was excavated to a depth of 8-feet. Bottom of the wall was not encountered within the excavated depth. However, the bottom of wall is assumed to be at a depth of approximately 9.33-feet.

Existing Approach Roadway

Central Street (Route 127) is a Town-accepted layout in the downtown area of Manchesterby-the-Sea. The roadway is functionally classified as an urban minor arterial with a 25-mph speed limit and a 2016 AADT of 4,900¹. The roadway within the project limits is not on the National Highway System (NHS). The roadway section to the east and west of the bridge is approximately 34.5 feet curb-to-curb with two travel lanes and a parking lane. The parking lane shifts from the south side of the road on the west of the bridge to the north side of the road on the east side of the bridge. Granite curbing and hot mix asphalt sidewalks of varying widths exists on both sides of the roadway.

Immediately west of the bridge site is the intersection of Central Street and Elm Street. Elm Street is a local road providing access to several residential and commercial properties. It is a dead-end road that is approximately 25 feet wide in the project area, with a 3-to-4-foot wide HMA sidewalk. Immediately east of the bridge site is the intersection of Central Street with Church Street. Church Street is a local road that provides access to the Municipal Building (including the Police Department), public parking, a boat launch, and the wastewater treatment plant. Church Street is a one-way with an exit farther east on Central Street, outside of the project area. The horizontal alignment of Central Street has minor deflections to the south and the north, with a tangent section across the bridge. The curb lines are not parallel to the centerline of the road. Overall functionality of the roadway is consistent with many older downtown urban corridors. However, there are opportunities to improve the overall geometry through the project area. The vertical grades are gentle, not exceeding 2% through the project area. There is a low point to the west of the existing bridge with a gentle upgrade through the crossing and continuing to the west.

There is no existing vehicular guardrail or barrier system. Existing concrete curbs and chain link fencing provide fall protection for pedestrians.

Existing Brook

The bridge crosses Sawmill Brook that is channelized between 12-foot-high granite walls with buildings abutting either side. A tide gate is located immediately downstream of the bridge separating the bridge from Manchester Harbor. Tidal flow from Manchester Harbor passes beneath the bridge depending on the setting of the tide gate and tide height. When the tide gate is closed and water is impounded underneath the bridge, the hydrostatic pressure of water forces seepage through the wingwall. The gate and bridge design have been identified as a contributing factor to upstream flooding, due to significant hydraulic restriction when large precipitation events and high tide elevations are concurrent. To minimize additional damage due to water impounding, the tide gate has been left in an open position.

The Massachusetts Division of Fisheries & Wildlife (Mass Wildlife) Division of Marine Fisheries (DMF) has monitored Rainbow Smelt habitat upstream of the bridge and found that the existing tide gate is a barrier to and limits fish passage.

¹ Roadway layout status, classification, speed, and volume data was queried from the MassDOT Roadway Inventory Portal (<u>https://gis.massdot.state.ma.us/roadinventory/</u>) on May 7. 2019.

Central Pond is approximately 150-feet upstream of the bridge and will be undergoing rehabilitation that is being coordinated with this bridge replacement project.

The channel walls that abut the bridge in two of the four bridge quadrants function as foundations for adjacent buildings. The channel is approximately 21-feet wide upstream of the bridge and approximately 45-feet wide immediately downstream of the bridge where the channel opens to Manchester Harbor. No marine traffic passage is currently feasible through the tide gate and culvert.

Existing Hydraulics

Tighe & Bond performed a hydraulic analysis for existing conditions using HEC-RAS, a 1-dimensional hydraulic modeling program available from the Army Corps of Engineers. HEC-RAS was used by Tighe & Bond to develop a model as part of the 2018 Sawmill Brook Feasibility Study², and was further refined as part of the current project design. The hydraulic performance under existing conditions was evaluated for the 2-, 10-, 25-, 50-, 100-, and 500-year return frequency storm events. The MassDOT Bridge Manual (2013) indicates that the hydraulic design flood return frequency for an Urban Minor Arterial or Rural Major Collector is the 25-year return frequency storm event with a recommended 2-feet of freeboard.

The hydraulic analysis presented herein is based on hydrologic analysis of the watershed of Sawmill Brook upstream of Central Street Bridge as part of 2016 Sawmill Brook and Green Infrastructure Analysis³ that included the 25-, 50-, and 100-year frequency storm events using the U.S. Army Corps of Engineers HEC-HMS software. The 2-, 10-, and 500-year return frequency discharge peak flows were added to the existing HEC-HMS model. The 2016 Sawmill Brook and Green Infrastructure Analysis included climate change projections that predict stream flows in 2100 for the 25-, 50-, and 100-year frequency storm events. These projected values are not required as part of the MassDOT Chapter 85 guidelines but were considered as part of the design process. The drainage area upstream of the Central Street Bridge was determined to be approximately five square miles.

The hydraulic model was developed using the surveyed topographic data and LiDAR elevation data available from MassGIS. The hydraulic model was performed for Mean Higher High Water (MHHW) downstream tidal condition of 4.77 feet NAVD88 based on the NOAA Long Term Tide Water Level Monitoring Station ID: 8443970. MHHW is the technical term used by NOAA to describe the average of the higher high water height of each tidal day observed over the National Tidal Datum Epoch (19 year tidal cycle). The 25-year frequency storm event was also evaluated for Mean Sea Level (MSL) conditions and MHHW conditions in 2100 using the 0.012 feet/year increase recommended in the LFRD Bridge Manual to incorporate SLR. The existing conditions model results are presented in Table 1.

² Tighe & Bond, 2018, "Task 2: Hydrologic Monitoring and Flushing Studies – Sawmill Brook Flood Mitigation and Restoration Projection".

³ Tighe & Bond, 2016, Sawmill Brook Culvert and Green Infrastructure Analysis Task 4 Final Report: Evaluation of Locations for Flood Mitigation

A copy of the Hydrologic and Hydraulic Analysis Report is included in Appendix C. The analysis includes additional scenarios to incorporate future climate change conditions as well as storm surge.

Table 1

Hydrologic and Hydraulic Results Upstream of Existing Central Street Bridge (assuming tide gate is closed)

Storm Return Frequency ¹	Peak Discharge (Cubic Feet Per Second)	Upstream Peak Water Surface Elevation (feet, NAVD88)	Freeboard (feet) ²	Distance to Top of Road (feet)	Average Velocity Inside Culvert (feet per second)
2-Year	254	6.4	-0.4	4.2	4.0
10-Year	924	11.2	-5.2	-0.6	12.1
25-Year	1,363	11.8	-5.8	-1.2	12.2
25-Year MHHW MassDOT SLR	1,363	11.9	-5.9	-1.3	12.3
25-year MSL MassDOT SLR	1,363	11.8	-5.8	-1.2	12.2
50-Year	1,772	12.4	-6.4	-1.8	8.5
100-Year	2,267	12.5	-6.5	-1.9	9.9
500-Year	3,078	12.6	-6.6	-2.0	9.5

¹ Tidal boundary condition is MHHW (Mean Higher High Water) unless stated otherwise. SLR = Sea Level Rise, MSL = Mean Sea Level.

² Freeboard measured as the vertical difference between the crown of the arch (low chord) and the Upstream Peak Water Surface Elevation.

The existing tide gate crest elevation is at 4.6 feet, which is below MHHW. The 2018 Sawmill Brook Feasibility Study found, through modeling and field measurements, that the tide gate increased water surface elevations upstream of Central Street during storm events, and water levels in the pond were found to exceed the tide levels during extreme high tides. As noted earlier, the tide gate will be removed due to hydraulic and fish passage considerations. Scour has not been observed at the Central Street Bridge for existing conditions.

Existing Utilities

There are numerous subgrade utilities beneath Central Street including sanitary sewer, storm drain, potable water, natural gas, electric, telephone, and cable. Tighe & Bond's survey subconsultant identified existing utilities in their existing conditions plan. The plan was developed based on the location of surface features, measure-downs in accessible manhole structures, record drawings, and utility locator data. Tighe & Bond developed a proposed utility plan for review and input by the Town and the various utility companies.

The following utilities are known to be present on site:

Utility	Company
Gas (unknown size)	National Grid
Electric (unknown size)	National Grid
Telephone (unknown size)	Verizon
Cable (unknown size)	Comcast
Sewer (8-inch main)	Department of Public Works
Storm Drain (12-inch main)	Department of Public Works
Water (12-inch main)	Department of Public Works

The top of the sanitary sewer has been observed in the bottom of the existing culvert structure. The vertical location of the sewer is fixed by the up- and downstream manhole inverts, but effort will be made as part of the next design submittal to adjust the pitch of the sewer to completely bury the pipe beneath the channel bed. The storm drain system is located on the west side of the bridge and does not cross the channel. The vertical profile of the road carries roadway runoff from east to west across the bridge to the drainage structures.

The water, gas, electric, and telecom utilities are presumed to cross above the bridge structure. The gas line is beneath the northerly sidewalk. Due to the uncertainty regarding vertical location of several existing utilities, test pits will be called out on the construction drawings. There is also an aerial power cable feeding power to one light pole across the bridge. We have assumed that the potable water and sanitary sewer will require temporary bypass during certain phases of construction. Tighe & Bond will continue to work with the DPW and individual utility companies regarding the appropriate handling of the various utilities both during construction and for their final configuration.

Refer to the Utility Plan included in Appendix E.

Wetland Resource Areas

Since the channel walls define the limits of the resource area, we have not conducted a separate wetland delineation for the project.

Cultural Resource Areas

The bridge is on the National Historic Registry as the site of historic water powered mills dating back to the 1600's and marks the entrance to the Downtown area of Manchester-by-the-Sea.

The DPW has preliminarily presented the general scope of the project and its aesthetic features to the Manchester Historic District Commission (HCD) and has obtained a letter of support from them (See Appendix H). The project team intends to continue working with the HDC during later stages of design development and permitting to address their design comments to the extent practicable.

Existing Hazardous Materials

While a Hazardous Building Material Assessment was not completed for the site, the Massachusetts Department of Environmental Protection database was reviewed and there are no known waste and reportable release sites identified within the project limits. Additionally, the Town does not have any knowledge of hazardous materials at the site.

Project Parameters and Constraints

Proposed Roadway Cross Section

This project is an isolated bridge replacement project and not part of larger corridor improvement project. Every effort was made to minimize the overall footprint. The existing horizontal and vertical alignments were matched to the extent practicable, roadway function was matched, and drainage patterns were preserved. Minor improvements were made to curb line geometry though to improve overall operation.

The following design parameters are proposed for the roadway approaches to the bridge:

- Curb-to-curb Roadway Width: 24-feet
- No. of Lanes:
 2 @ 11-feet

 Parking Lanes:
 1 @ 7-feet
- Shoulders: 2@ 1-foot
 Sidewalks: 2@ 5-feet minimum

The following design parameters are proposed for the bridge:

	Curb-to-curb Roadway Width: No. of Lanes:	24-feet 2 @ 11-feet
\triangleright	Parking Lanes:	none
\succ	Shoulders:	2@ 1-foot
۶	Sidewalks:	1@ 5.5-feet and 1 @11.5 feet

Proposed Traffic Management – Central Street

During conceptual design, numerous methods of maintaining Central Street traffic have been considered, including a traffic detour, phased construction, a temporary bridge over the site, and a temporary bridge off-site. A description of each method is provided below.

Tighe & Bond met with the Town in December 2018 and discussed the pros and cons of the various methods, understanding that their desired method would influence our structural recommendations. The Town indicated they preferred the least-costly solution and would allow a full road closure of limited duration. It was discussed with the Town that a one-month closure would be challenging and is an aggressive schedule. To achieve this schedule, accelerated construction techniques would likely be required. Risks that could impact the construction schedule include unknown subsurface conditions that cannot be observed until demolition of the existing bridge and inclement weather at the site (in particular during the period of closure which is anticipated to be in late fall/ early winter).

If a one-month closure is utilized, a significant amount of preparation work will be required during the months leading up to the closure. All utilities and buried obstructions over the existing bridge would need to be removed or relocated in advance of the shutdown. Preparation work would require frequent lane shifts and lane closures restricted to a single-lane of traffic, leading up to the one-month full closure of the site for bridge demolition and replacement.

The one-month road closure would likely be scheduled for late fall or early winter to avoid impacts to tourism during the summer months and environmental restrictions during the spring. During the late fall and early winter, inclement weather such as snowfall, coastal storms ("Noreasters"), or tropical storms/hurricanes is more likely to occur and impact the

schedule. Additionally, accelerated bridge construction techniques would require larger crews and work shifts outside of traditional hours, with potential for noise and vibration overnight, which may affect nearby residential areas.

Note: As an alternate approach to address the risks and challenges associated with a onemonth closure restriction, the Town may consider evaluation of a structural design using precast concrete planks on concrete abutments. This type of structure can be constructed in phases and carry one-lane of traffic sooner than a buried arch can, and it can be constructed with reduced schedule and construction risks associated with weather, sequencing, or unanticipated site conditions.

Traffic Detour

A full bridge closure with a traffic detour is the preferred approach. This approach overall is considered to have lowest direct construction costs. A roadway closure will also provide for a safer work zone.

The shortest detour route would involve diversion of traffic from Central Street along Pine Street, Pleasant Street, and School Street. The full loop is approximately two miles long, which will take approximately five minutes to traverse in non-congested traffic conditions. Central Street, between Pine Street and School Street, would remain open to local traffic during detour periods. Regional traffic is likely to avoid Central street altogether and use Route 128 (Yankee Division Highway) to bypass the work zone. It is anticipated that detour signage would be installed in the detour loop supplemented by variable message signs posted in advance of the project prior to the start of construction.

Other staging approaches that have been considered but are not recommended, are described below.

Phased Construction

Phased construction would involve using half of the existing structure to maintain traffic while half of the new structure is constructed. Then, traffic would be shifted to the newly constructed half-structure while the remainder is constructed.

Since the existing structure consists of a spandrel wall arch, a temporary intermediate headwall would be required to retain the roadway fill over the usable-portion of the structure. Additionally, due to its poor condition, the existing structure would require substantial upgrades to maintain structural integrity. A detailed investigation of the bridge would be required to design such structural upgrades that would include removing portions of pavement and roadway fill to obtain structural information pertaining to the buried arch.

If the replacement structure is also a buried arch, a temporary intermediate headwall would also be required on the new structure to implement phase two of the phasing scheme. This approach would be non-standard and would require rework of placing roadway fill over the arch in order to remove the temporary intermediate headwall. Abandoning the intermediate headwall in place would be undesirable from the perspective of differential settlement and long-term performance of the roadway over the arch. Alternatively, if the new bridge structure consists of a traditional plank bridge (i.e. concrete abutments with concrete beams), phase two of this alternative would be simple as utilizing half the structure is commonly performed for non-buried structures.

Using phased construction will require a longer construction duration and invoke higher construction costs compared to a full road closure. The phased construction approach will likely reduce the bridge to an alternating one-way traffic pattern that would require a

temporary signal to be installed for the duration of construction. Temporary signals can be costly depending on the duration they are deployed and the overall complexity of the system. A temporary signal for Central Street would likely need to include phasing for Elm Street, which would increase cost and decrease level of service through the work zone. Also, with the traveling public immediately adjacent to the active construction, the contractor will need to exercise additional safety precautions. A full road closure with a detour would still be required for short-period durations throughout the project. This option was therefore eliminated from further consideration.

Temporary Bridge over Project Site

A temporary bridge over the project site would be one of the most expensive methods to maintain traffic during construction. Temporary abutments would be installed to support the temporary bridge after utilities are relocated. However, due to the proximity of bedrock, temporary abutments would have similar difficulty as installing permanent abutments. The temporary abutments would likely need to be placed behind a complex earth retaining wall braced with structs, tiebacks, keeper blocks, or socketed into ledge.

It is anticipated the temporary bridge would be used in two phases. The first phase would have the temporary bridge placed over the northern half of the bridge, allowing the southern half of the bridge and southwestern wingwall be constructed. The second phase would involve moving the temporary bridge over the southern half of the road so the northern half of the new bridge could be completed.

This alternative will require a longer construction duration and will cost more to construct compared to a full road closure. The contractor will also need to exercise safety precautions to maintain traffic through an active heavy construction site. This option was therefore eliminated from further consideration.

Temporary Bridge Off-Site

A temporary bridge located off-site would span over Central Pond or Sawmill Brook and traffic would be detoured away from the bridge. Temporary approach roads and Right-of-Way acquisition would be required. This alternative would result in significantly more traffic on local roads/accessways that normally would experience a handful of vehicles per day. One possible site includes a crossing from Elm Street to the Manchester Fire Department lot. This alternative would result in minimal traffic modifications required at the Central Street Bridge, therefore decreasing the duration of traffic impacts and improving safety at the site compared to other options. However, this would be one of the most expensive methods to implement. Furthermore, this option requires construction outside the project existing bridge footprint, and thus would require substantial additional permitting, as well as right-of-way impacts and takings, with related potential impacts to project advertisement. Also, this option requires routing of substantial traffic down Elm Street, which may not be suitable for this use. The Town dismissed this as a potential option for the above reasons, and it was therefore eliminated from further consideration.

Proposed Traffic Management – Elm Street

Elm Street must be considered in the traffic management strategy based on its proximity to the bridge. Elm Street is a dead-end street running along the Sawmill Brook Seawall. The proposed bridge and wall repair work will require closure of a least half of Elm Street. To maintain traffic during construction, a temporary road will need to be constructed immediately to the west of the current location. The temporary road site is on private property however, and an easement would be required to complete the work.

If property rights cannot be secured, a costlier option is to construct a temporary retaining wall beyond the limits of construction and reduce Elm Street to an alternating one-way road. The retaining wall will likely consist of modular blocks placed on compacted soil, which will require protection against erosion. A full closure of Elm Street would be required for approximately 24-hours to construct the temporary wall. An alternating one-way road would also require temporary signalization to ensure smooth traffic operations at the work site.

Impacts to Elm Street and potential mitigation alternatives are currently being further reviewed in consultation with the DPW. Future design submittals will reflect further refined solutions to handle access to Elm Street.

Proposed Clearances

The proposed span of the replacement bridge is 20 feet. The opening height is proposed to match the existing bridge, 6.6 feet at the inlet and 10.0 feet at the outlet.

Proposed Hydraulics

Tighe & Bond performed a hydraulic analysis for proposed conditions by updating the existing conditions HEC-RAS hydraulic model. A description of the methodology for the hydraulic and hydrologic models are described under the "Existing Hydraulics" section above. The tide gate will be removed during replacement of the Central Street Bridge.

The hydraulic performance under proposed conditions was evaluated for the 2-, 10-, 25-, 50-, 100-, and 500-year return frequency storm events. The MassDOT Bridge Manual (2013) indicates that the hydraulic design flood return frequency for an Urban Minor Arterial or Rural Major Collector is the 25-year return frequency storm event with a recommended two feet of freeboard. Based on prior coordination with Manchester-by-the-Sea, Tighe & Bond's hydraulic design exceeds MassDOT minimum requirements and was based on not overtopping Central Street during the 50-year return frequency storm event while incorporating projections for potential future sea level rise in flow and sea level rise.

Similar to existing conditions, the proposed conditions hydraulic modeling was performed for Mean Higher High Water (MHHW) downstream tidal condition of 4.77 feet NAVD88 based on the NOAA Long Term Tide Water Level Monitoring Station ID: 8443970. MHHW is the technical term used by NOAA to describe the average of the higher high-water height of each tidal day observed over the National Tidal Datum Epoch (19 year tidal cycle). The 25-year frequency storm event was also evaluated for Mean Sea Level (MSL) conditions and MHHW conditions in 2100 using the 0.012 feet/year increase recommended in the LFRD Bridge Manual to incorporate SLR. The proposed conditions assumed a low chord elevation of 6.0 feet and an arch with a clear span of 20 feet with an opening of 185 square feet. The upstream end of the culvert will be partially filled with stream bed material and/or limited by bedrock resulting in an effective opening of approximately 94 square feet. The model results are presented in Table 2.

Table 2

Hydrologic and Hydraulic Results Upstream of Proposed 20-foot Span Arch Bridge

Storm Return Frequency ¹	Peak Discharge (Cubic Feet Per Second)	Upstream Peak Water Surface Elevation (feet, NAVD88)	Freeboard (feet) ²	Distance to Top of Road (feet)	Average Velocity Inside Culvert (feet per second)
2-Year	254	4.7	1.3	5.9	1.5
10-Year	924	4.8	1.2	5.8	5.4
25-Year	1,363	5.6	0.4	5.0	8.0
25-Year MHHW MassDOT SLR	1,363	5.7	0.3	4.9	7.5
25-year MSL MassDOT SLR	1,363	1.8	4.2	8.8	12.4
50-Year	1,772	6.6	-0.6	4.0	10.5
100-Year	2,267	7.7	-1.7	2.9	13.5
500-Year	3,078	10.9	-4.9	-0.3	16.9

¹ Tidal boundary condition is MHHW (Mean Higher High Water) unless stated otherwise. SLR = Sea Level Rise, MSL = Mean Sea Level.

² Freeboard measured as the vertical difference between the crown of the arch (low chord) and the Upstream Peak Water Surface Elevation.

Due to the elevation of the existing road and site constraints, the proposed low chord elevation of the replacement bridge is at 6.0 feet NAVD88. The MHHW tidal elevation is currently 4.77 feet NAVD88, so two feet of freeboard would not be feasible during MHHW design conditions. Using the MassDOT recommendation for potential sea level rise, it is anticipated that 0.3 feet of freeboard would be provided if the peak of the design 25-year frequency storm event in 2100 occurred during MHHW tidal conditions, and 4.2 feet of freeboard would be provided if the design 25-year frequency storm event occurred during MSL conditions.

A copy of the hydrologic and hydraulic analysis report is included in Appendix C. The analysis includes additional scenarios to incorporate future climate change conditions as well as storm surge.

Scour at the Central Street Bridge was evaluated in a manner consistent with the general guidelines set forth in the FHWA Hydraulic Engineering Circular Nos. 18 (HEC-18), HEC-20, and the MassDOT LRFD Bridge Manual section 1.3.3.4 Scour/Stability Analysis. The streambed material consists of mostly medium to fine grain sands underlain by sound bedrock with an average depth of 0 to 2 feet below the channel bottom. The bedrock was found to be very hard to hard granite and is therefore not anticipated to be susceptible to scour.

The computed scour depth extends beyond the sound bedrock depth. Therefore, concrete abutments are anticipated for design that will be cast-in place directly on bedrock. It is anticipated that the streambed will naturally fluctuate in depth ranging from the bedrock elevation to the culvert invert depending on storm frequency and tide cycles.

Open railings are recommended along Central Street Bridge to allow overtopping flow to travel over the roadway during low probability storm events (e.g., the 500-year frequency storm event). Closed parapets would likely cause overtopping flows to travel against adjacent buildings instead of the roadway. Storm events causing the roadway to overtop are significantly larger than the design storm.

Preliminary Geotechnical Data

Tighe & Bond subcontracted with New England Boring Contractors to obtain borings behind the proposed abutment and retaining wall locations. However, given the vast number of buried utilities within the roadway and the inability to close the road, and multiple attempts to find suitable boring locations, only one boring was obtained in the southwest quadrant of the bridge as shown in the Existing Conditions Site Plan, included in Appendix E. The boring was performed to a depth of 20.5-feet below the roadway surface. Bedrock was encountered at a depth of 9.9-feet and a rock core sample was obtained and analyzed in the lab. Blow counts and samples were obtained for the soils over the bedrock stratum. The soils comprised primarily of medium dense to very dense gravels and the bedrock consisted of very hard to hard, moderately to very slightly weathered, slightly fractured to sound, very coarse to coarse-grained granite.

Exposed bedrock elevations were determined from the survey data and used in combination with the boring data to create an assumed subsurface bedrock profile throughout the site. The exposed bedrock elevation range between -4.7 to +0.3 along the springlines of the existing bridge and -4.3 to +1.0 feet along the existing southwest wingwall location. Refer to the bedrock profiles provided in the geotechnical report (Appendix D).

Based on the proximity of sound bedrock, cast-in-place concrete footings bearing on bedrock are recommended. It is recommended that the footings be pinned to bedrock using galvanized or fiberglass dowels. The nominal bearing resistance of the bedrock was calculated as 200-ksf.

Tighe & Bond observed a test pit behind the existing channel wall located in the Northwest quadrant of the bridge, as shown in the Existing Conditions Site Plan included in Appendix E.

A copy of the geotechnical evaluation report, including boring log data and the subsurface profile, is included in Appendix D.

Constraints Imposed by Approach Roadway

Central Street is a downtown urban roadway on a coastal route with seasonal demand peaking during the summer months. The road carries a significant amount of traffic while simultaneously providing access to local businesses, residential areas, and municipal services, and the coast. Impacts to the roadway and the traffic patterns will have an adverse effect on the project abutters and the traveling public. The work site is further complicated by the intersection of Central Street and Elm Street. The intersection is immediately west of the bridge site and will be impacted by the proposed work. Elm Street is a dead-end street with both residential and commercial properties. To the east of the bridge site is the intersection with Church Street, which provides a one-way loop access to several public amenities. Church Street should not be directly impacted by the work limits.

Constraints Imposed by Brook

Since the stream is tidally-influenced, control of water during construction will impact the cost of construction as well as the schedule. Additionally, the preferred method of water control would likely influence our structural recommendations. Tighe & Bond evaluated the use of cofferdams for high tide conditions and limiting work during low tide only.

Based on discussions with the Town in an effort to minimize costs, allowing work during low tide only is preferred. It is possible that by constructing water control for low tide conditions,

the construction schedule and quality may be impacted by high tide conditions and storm/ floods.

Working During Low Tide Only

This method involves the contractor working during low tide only. Cofferdams would still be required to allow the contractor to work out of the water during low tide and would likely consist of a combination of anchored wooden forms, concrete barriers, and sandbags. However, the cofferdam would need to be robust and capable of resisting flooding, as the work site would be inundated twice per day during high tide or more during storm events. The bottom of the cofferdam would need to be modified to account for the uneven bedrock bearing surface and the area with the cofferdam would need to be drained/pumped prior to the contractor working during low tide. Additionally, design modifications will be required for concrete and reinforcements to be exposed to salt water in such a manner that, for example, the concrete footings will need to be designed such that they can cure underwater. A nonstandard mix-design may be required which could impact MassDOT Chapter 85 review. The contractor would be limited to a small window of working hours, which would vary on a daily basis, and a portion of each work session would be dedicated to preparing the site such so work can begin. Additionally, this method will still require shoring or erosion protection for open-cut excavation. It should be noted that inclement weather could cause formwork or the concrete placement to become susceptible to washout, which risks the ability to meet the one-month road closure restriction.

Cofferdams for High Tide

This method involves a full cofferdam that will allow site access for construction during low and hide tide. The cofferdam would cross the channel upstream and downstream of the bridge, and a large pipe would be constructed through the site such that streamflow would not be blocked. The cofferdam would be designed to flood in the event of a high-elevation storm event to avoid flooding in the downtown area. This type of cofferdam will be difficult to construct given the high bedrock elevation and would likely consist of braced sheet piles with tiebacks and walers. Installing a large cofferdam will have a high cost but will allow the contractor to work with minimal tidal shutdowns. This type of cofferdam could also function as the excavation shoring system assuming it extends the perimeter of the abutments.

An example of cofferdams for a small replacement bridge in Plymouth, MA is shown below. The site is adjacent to Cape Cod Bay in a stream that experiences tidal flow back and forth to the upstream pond. The cofferdams were designed by the contractor to remain dry during high tide, but not for flood conditions. The contractor's design assumed that in the case of infrequent flood conditions, the cofferdams would be "topped out" and after flood conditions receded, the base would be pumped out by the dewatering system. BASIS OF DESIGN MEMORANDUM

Constraints Imposed by Utilities

As previously discussed, there are numerous utilities on the site. The design assumes that all utilities will require maintenance during construction. Potable water and sanitary sewer will likely require bypass systems for a portion of the work. Gas, electric, and telecom will require phased relocation and/or temporary servicing from alternate locations. Also, the sanitary sewer line is located vertically at the channel elevation. The proposed sanitary sewer will be in a similar vertical location and will require accommodation during structure and footing design.

The conceptual design is based on an assumed construction staging in which all utilities are relocated to a temporary utility bridge prior to demolition of the existing structure and installation of footings and the precast concrete arch. The temporary bridge may impose schedule and procedural limitations for demolition and bridge reconstruction. After installation of the precast arch, utilities will be relocated across the new bridge. The design team will continue to work closely to identify and refine methods to maintain service during construction, etc. that will work with both schedule and cost considerations.

Constraints Imposed by Wetland Resource Areas

The proposed bridge replacement will involve work in local, state, and federal jurisdictional resource areas. All replacement alternatives described above will require authorization under a number of regulatory programs. We understand that proposed work will occur within federally-regulated tidal waters, as well as within state and locally-regulated areas including Land Subject to Coastal Storm Flowage (LSCSF), Coastal Bank, Riverfront Area, and Land Under Waterbodies and Waterways (LUWW). Review and or approvals will be required from the Manchester-by-the-Sea Conservation Commission (MBTSCC), MassDEP, the Army Corps, and the Massachusetts Environmental Policy Act (MEPA) Office with the Executive Office of Energy and Environmental Affairs (EEA).

The MEPA review process provides for coordinated state agency and public review of projects that meet certain review thresholds defined at 301 CMR 11.03 and that require a state agency action (e.g., permit, financial assistance, or a land transfer). Through the MEPA process, relevant state agencies are required to identify any aspects of the proposed project that require additional analysis or mitigation prior to completion of the agency action. Single and complete projects must be considered for MEPA review; division of a project into elements for separate MEPA review is defined as segmentation and is not allowable.

The bridge replacement requires state approval (i.e., Agency Action), which, in this case, would be a Chapter 91 Waterways License for the bridge replacement with tide gate removal. Additionally, the project received state funding (i.e., Financial Assistance). Accordingly, MEPA jurisdiction will be broad and will review all portions of the project. We anticipate the proposed project will trigger one or more review thresholds related to wetlands, including impacts to coastal bank and new fill or structure in a regulatory floodway.

These triggers are review thresholds for an Environmental Notification Form (ENF) and other MEPA review if the Secretary so requires. Based on our current assumptions related to the combined project impacts (i.e., Central Street bridge replacement, tide gate removal and Central Pond restoration), the project does not trigger a mandatory Environmental Impact Report (EIR). The ENF will describe the project, its alternatives, and proposed mitigation. It will also describe how the project will comply with the performance standards of any required state permits. The ENF will also discuss compliance with the Office of Coastal Zone Management's (CZM) Federal Consistency Standards.

The proposed project likely meets the eligibility criteria to be permitted under an Ecological Restoration Notice of Intent (NOI) with the MBTSCC and MassDEP, as a result of the proposed tide gate removal. An NOI will be required for the proposed bridge replacement and tide gate removal within jurisdictional resource areas in accordance with the Massachusetts Wetlands Protection Act (WPA) M.G.L. Chapter 131 Section 40 and implementing regulations (310 CMR 10.00), along with the Manchester-by-the-Sea Wetlands Bylaw and regulations (Article 17). Work associated with the project is expected to occur within Land Under Water, Coastal Bank, Riverfront Area, Land Subject to Coastal Storm Flowage, and the 100-foot Buffer Zone, at a minimum.

The proposed project is subject to jurisdiction under Section 404 of the Clean Water Act and Section 10 of the Rivers and Harbors Act due to work within tidal waters of the United States. Work within tidal waters generally do not meet Self-Verification review thresholds, and are subject to review under a Pre-Construction Notification (PCN) under the Massachusetts General Permit (MA GP).

Based upon a review of jurisdictional Tidelands provided by MassGIS, the project area is mapped as a jurisdictional contemporary high water. Replacement of the bridge at Central Street and removal of the tide gate will require authorization in the form of a Chapter 91 License.

Constraints Imposed by Cultural Resources Areas

As noted earlier, the bridge is on the National Historic Registry as the site of historic water powered mills dating back to the 1600's and marks the entrance to the Downtown Manchester-by-the-Sea.

The DPW has preliminarily presented the general scope of the project and its aesthetic features to the Manchester Historic District Commission (HCD) and has obtained a letter of support from them (See Appendix H). The project team intends to continue working with the HDC during later stages of design development and permitting to address their design

comments to the extent practicable. MHC review (Section 106 Historic Review) will be coordinated as part of the MEPA ENF process.

Hazardous Material Disposition

There are no known hazardous building construction materials, waste sites, or reportable release sites identified within the project limits. This will be verified prior to construction by conducting a pre-demolition hazardous building materials assessment (HBMA) by licensed personnel.

In accordance with the United States Environmental Protection Agency (EPA) National Emissions Standard for Hazardous Air Pollutants (NESHAP) regulations (Title 40 CFR, Part 61, Subpart M); Massachusetts Department of Environmental Protection (MassDEP) regulations (310 CMR 7.15); and the Massachusetts Department of Labor Standards (MassDLS) regulations (453 CMR 6.00), any building or structure scheduled for renovation and/or demolition activities must undergo a thorough investigation to determine the presence or absence of asbestos in construction materials that may be impacted by the renovation / demolition activities. Further, the assessment should include an investigation of any other potential hazardous building materials or components which have potential to be disturbed.

Based on our site knowledge, understanding of construction and materials, and input from the Town, Tighe & Bond is not aware of suspect asbestos-containing construction materials (ACM), lead containing materials, polychlorinated biphenyls (PCBs) and/or any other potential hazardous sources potentially contained in the construction materials that may be impacted during the proposed bridge demolition. As the project design is advanced, if suspect hazardous materials are identified, Tighe & Bond will recommend to the Town that additional investigations be performed to identify/quantify the materials to reduce risk during construction and manage the materials. As part of the final design, Tighe & Bond will include the appropriate requirements in the Contract Documents to address any hazardous material handling in accordance with the applicable regulations.

Examples of suspect hazardous sources associated with a bridge demolition project are:

Suspect ACMs: waterproofing applications; gaskets; underlying roadway asphalt layers; mortar; mastics /coatings on steel; caulking; paint applications and utilities serving in and around the bridge which may be insulated or are constructed with transite (asbestos cement/conduit)

Suspect Lead Sources: paint applications; soldered joints

Suspect PCB sources: roadway marker paints; caulking; mastics; waterproofing applications

Suspect hazardous materials sources: oils within enclosed utilities and mercury sources such as switches or "Mercoid switches" around electrical / utility equipment

Personnel licensed by the Commonwealth, will be required to visit the site and investigate for these and any other suspect sources and sample as appropriate; quantify; assess condition and identify any specific needs which a contractor may use to access and abate the sources. Once laboratory data is assessed, and if determined to be necessary, the results of the field data will be incorporated into technical specification sections and designed for management, abatement and lawful disposal as part of the bridge demolition project. We often prepare inventory tables containing the site findings in a spreadsheet format and append these to our technical specification sections.

Often, the same individuals who perform the assessment and are familiar with the project will also be retained during the construction phase to observe contractor abatement methodologies for compliance with applicable Massachusetts regulations and the project specifications. The level of construction phase observation is measured by project complexity; actual site findings and the awarding contractors experience and history. At the end of the project a remediation closeout report shall be prepared that includes waste shipment records, notifications, permits, air sample results, observation records and any other pertinent data generated during the project.

Adjacent Buildings

<u>Northeast Quadrant – 21 Central Street</u>

21 Central Street is occupied by Coldwell Banker Residential Brokerage. Determining access requirements from the building owner is recommended to coordinate demolition techniques for the bridge. The porch, which serves as an entryway to the building, currently bears directly on the existing bridge and upstream channel wall. Modifications will be needed to allow for bridge demolition without impacting the building and its access.

Excavation for the bridge is anticipated along the front of this property, which will likely expose the building foundation and could lead to undermining of the building and foundation in the absence of protective measures. Therefore, an advanced shoring system will likely be needed between the property and the proposed structure location, and structural monitoring of the building foundation will be required throughout construction. The construction documents will need to include requirements for supplemental action in case monitoring determines that excavation is resulting in impacts above pre-determined thresholds. Specifics of these preconstruction preparation activities will be coordinated with the Town as the design advances.

<u> Southwest Quadrant – 26 Central Street</u>

26 Central Street is currently occupied by Cuddlefish Gift Shop. The Southwest wingwall terminates at the corner of the building and the building foundation potentially bears directly on the channel wall.

Excavation for the wingwall is anticipated along the front of this property, which will likely expose the building foundation and could lead to undermining failures without protective measures. Therefore, it is assumed that an advanced shoring system will be constructed, and structural monitoring of the building foundation will be required throughout construction. Specifics of these pre-construction preparation activities will be coordinated with the Town as the design advances.

Southeast Quadrant – 14 Church Street

14 Church Street currently serves the Seaside No. 1 Museum. The building foundation appears to be offset behind the channel walls, but a walkway is retained at the top of the channel wall. Based on discussions with the Town, it is desired that if the existing walkway needs to be replaced, that it not be replaced in-kind but with an upgraded system that meets ADA requirements.

Excavation for the bridge is anticipated along the front of this property, which may expose the building foundation and potentially cause undermining failures in the absence of protective measures. Therefore, it is assumed that an advanced shoring system will be constructed between the property and the proposed structure location and structural monitoring of the building foundation will be required throughout construction. BASIS OF DESIGN MEMORANDUM

Approach Guardrails

At this stage of the design, we are evaluating the available options for bridge rail types and configurations that will meet the Town Historic Commission's aesthetic needs while adhering to AASHTO Roadside Design Guide and the MassDOT Bridge Manual and highway standards. We are also evaluating the need for approach guardrails, given the low speed and heavily constrained environment of downtown Manchester.

Northwest Quadrant

Based on the results of the test pit, the Northwest channel wall does not have adequate capacity to support an anchored guardrail. As such, replacement of the channel wall would be required to support an anchored rail. If railing needs to be extended along Elm Street, additional borings are recommended to determine anticipated subsurface conditions.

We considered the possibility of upgrading the wall with post-tensioning anchors drilled vertically through the wall and socketed into ledge to increase its strength, but the test pit revealed this approach is not practicable for the granite blocks.

A moment-slab could be designed to carry anchored approach rail. However, there are many buried utilities below Elm Street that would conflict with this construction. Additionally, a moment slab may prevent future access to maintain these utilities.

An approach guardrail could be installed between the sidewalk and the roadway along Elm Street. However, the rail would require anchorage to a moment slab, deep anchored foundations, or a new wall.

Northeast Quadrant

Options to completely eliminate the approach guardrail may need to be considered in this quadrant due to the constrained location and low travel speeds on the roadway, similar to other locations where such a solution was adopted in MassDOT District 4.

Southeast Quadrant

Elimination of approach guardrail may need to be considered in this quadrant due to the constrained location and low travel speeds on the roadway, similar to other locations where such a solution was adopted in MassDOT District 4.

Alternatively, the rail can wrap around the corner, along the top of the channel wall, and terminate at the entrance ramp to the building. However, similar to the Northwest Quadrant, wall upgrades may be required if this is desired.

Southwest Quadrant

Anchored rail can be installed along the top of the new wingwall and terminated at the corner of the building.

Overall, we propose to continue to work with MassDOT during the design review process to identify an appropriate treatment given the low speed constrained environment of the bridge location.

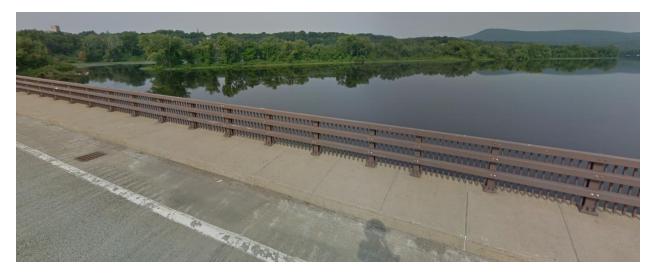
Bridge Rail Alternatives

Bridge rail should be an approved, crash-tested rail. The MassDOT Bridge Manual provides several details that satisfy this requirement. The details have been independently tested for crash-worthiness. In general, the details include sufficient reinforcement to resist impact in the rail, and sufficient reinforcement to for anchorage to a bridge deck. In lieu of a bridge deck, anchorage can be provided by anchoring to a moment slab, or anchoring to a structural wall.

If a detail is proposed to be used that is not on the approved MassDOT list, it may be possible to submit calculations and other data showing that the proposed detail is suitable. In addition to requiring time and resources for evaluation, this approach may impact the schedule for MassDOT approval via the Chapter 85 review process.

Bridge Rail Alternative 1 – CT-TL2 Barrier

This alternative is a MassDOT standard rail type and can be used with pedestrians. It should be noted that the base of this concrete parapet would impound water in the event of a flood. As such, weep holes may be necessary which will require ongoing maintenance to prevent them from clogging with debris.


Tighe&Bond

BASIS OF DESIGN MEMORANDUM

Bridge Rail Alternative 2 – S3-TL4 Steel Rail

This alternative is a MassDOT standard rail type and can be used with pedestrians. The steel may require occasional repainting to maintain its appearance given the salt environment of the bridge.

Bridge Rail Alternative 4 – BR-2 Bridge Rail (separated curb line & pedestrian rails)

The alternative of use of an approved curb line rail allows for use of a non-crash tested pedestrian rail on the edge of the sidewalk. This type of rail is more expensive than other alternatives since multiple rails would be provided. One drawback to providing this type of rail does not allow access to the sidewalk from the street. The Town has indicated that they would not be supportive of this type of a treatment.

Southwest Wingwall Façade

Based on discussions with the Town regarding their preference of surface treatment, and structural needs, one treatment alternative for the southwest wingwall involves the use of new large granite blocks integral with a concrete gravity retaining wall. By locating the new granite blocks on a concrete levelling slab in front of the existing wall, the new blocks could serve as a front-form and the existing wall could be abandoned in place and used as a rear form. As a result of this approach, the amount of excavation and associated shoring would be minimized.

Figure 1 – Rendering of Granite Façade using Large Stones

However, if the wall is replaced in its current location, it would be less expensive to use concrete formliners than large granite blocks. Formliners are available in a wide variety of patterns with different sizes, and are relatively simple since contractors need to construct forms anyways.

Figure 2 - Sample Concrete Formliner Appearance

Alternative to concrete formliners, small stone facing could be used if the wall is replaced in its current location. The facade would be supported by the concrete wall and would not contribute to the overall structural strength of the wall while providing a stone like finished look. It should be noted that small stone facing would be the least robust alternative as it would be more susceptible to being washed away given the harsh environment of the project site.

Figure 3 - Sample Stacked Stone Façade (Granite)

Appropriate Bridge Structure Types

In 2015, a 20-foot span precast concrete arch bridge was identified as a viable solution based on the MassDOT LRFD Bridge manual's recommendations for structure types by span range.

Given the various project parameters discussed in this report and based on additional site data obtained under the current phase of this project, Tighe & Bond has refined the arch design to better suit the site conditions. Alternative bridge types were also briefly considered previously, but were not pursued further at that time due to aesthetics, utility accommodations, and cost.

Refined Precast Concrete Arch Design

A precast concrete arch would be supported by cast-in-place concrete foundations to match the variable profile of the ledge. It is anticipated that minimal bedrock removal would be required to reach sound bedrock suitable of supporting foundations as well as areas with potentially high outcrops. Each footing would be constructed with a pedestal stem, where the top of the stem will create a uniform finished elevation to support the precast arch units and the footing portion would match the ledge profile. Thus, the stems would vary in height, which would provide the contractor flexibility to create a uniform top surface given the variable ledge profile.

Since the top of the foundation will be uniform, the concrete arch can be precast off-site and set on the foundation using a crane. Using precast components where possible will reduce the construction schedule on-site by avoiding lengthy set up and cure times. Precast concrete also provides a superior quality control compared to cast-in-place concrete since it is fabricated in a facility with regulated climate and ideal casting conditions. The joints between arch segments would be mechanically connected, grouted on site, and membraned. Headwalls would be placed to contain fill material, utilities would be relocated within the fill, and the road would be paved. The headwalls would also support anchored bridge rail, so the connections and supporting arch structure would require a non-standard design.

Due to the nature of the arch requiring confined backfill, half of the structure could not easily be used to phase a single lane of traffic. A one-month road shutdown will be difficult to achieve given the various work restrictions and a contractor would carry significant risk in attempting to do so. Supplementary weekend and overnight work shifts would likely be required to satisfy the project restrictions. Additionally, precast arch units traditionally come in square sections. However, non-standard end-units would be required to accommodate the skew of the road relative to the stream. As such, a precast concrete arch may not be the most-economical type of structure for the site given the project constraints.

The Engineer's Opinion of Probable Construction Costs is \$3,700,000, not including ancillary costs such as shoring of buildings around the site, potential allowance to complete certain elements of the project during low tide conditions only and within a one-month road closure, ROW acquisition, etc.

Alternative Bridge Types

In addition to refining the precast concrete arch design, alternate structure types are briefly described below.

Structural plate pipes are not appropriate for the site given their limitations for structures less than 20' in span. Additionally, the material would not be durable in harsh salt environment. Lastly, plate pipes with bottoms would be difficult to place on an uneven bedrock surface.

A four-sided box culvert would have a bottom slab, which would be difficult to place as precast on an uneven bedrock surface. Additionally, the bottom slab would be ineffective compared to an open bottom structure pinned to ledge.

A precast concrete rigid frame could more-economically provide additional hydraulic capacity compared to an arch, however it would not resemble the historical aesthetics of the existing arch. Additionally, approach slabs would be required, further complicating utility installation and future access to utilities.

Steel beams on traditional concrete abutments would not be as durable or obtain as long of a service life compared to a concrete structure given the harsh salt water environment. Similar to a precast concrete rigid frame, this type of structure also would not resemble the historical aesthetics of the existing arch.

Precast planks on concrete abutments could potentially be a viable alternative compared to a precast concrete arch. The bottom of the abutments could be cast-in-place to match the ledge profile, and the upper portion could be precast to expedite construction in the field. The advantage that concrete planks provide over a precast concrete arch is that half of the structure could be constructed and used to phase one-lane of traffic. Non-structural aesthetic fascia arches could be constructed to mimic the historic arch appearance. Additionally, precast planks would allow for easier installation of bridge rail using standard MassDOT details compared to an arch structure.

Precast planks were not previously selected during previous conceptual phases of the project based on cost, aesthetics, and required utility accommodations. However, precast concrete planks may be more economical for the site given the current project restrictions and available site data.

^{\\}nas-wfo\Data\Projects\M\M1476 Manchester MA Hydro Study\011-Central Street Bridge\QA-QC\MBTS Central Street - Basis of Design Memorandum-VK 07-31-19.docx

Appendix A MassDOT Inspection Report (2016)

2-D	IST	B.I.N.	STRU	CTUF	RES INSPE	ECTION	FIEI	DI	REP	OR 1	ΓΓ	I	BR. D	EPT.
C)4	8AM			OTHER I	NSPECT	ION						M-0	2-00
СП	Y/TOWN			8	-STRUCTURE NO.		11-Kilo, PO	INT	90-ROU	TINE INSI	P. DATE	INSPE	CTION	DATE
MA	ANCH	IESTER			M02001-8AM-	MUN-BRI	000.0	00	0	0/00/0	0	- 1	lov	9, 2
		CARRIED			MEMORIAL NAMI	E/LOCAL NAME	=		350	106-YR RI 19 1	00	*YR F	REHAD O	8'D (NO
		SAW MILL	BROOK		26-FUNCTIONAL C		DIST. BR	IDGE IN	ISPECTIC	DN ENGIN	IEER	T. G. V	Veil	i,
		RETYPE asonry Arch	- Deck	×11	22-OWNER Town Agency	21-MAINTAINER Town Agend		EADER \$	S. Shaw					
	DECK T	applicable	-	2	WEATHER CLOUDY	TEMP. (air) 13°C	TEAM M J. RO		S					
Ac Re	tual Po	ended Posting	H 3 N N N N	Oplicable 3S2 Single N N N N Nate: 00/0	X Signs in I (Y=Yes,N NR=Not R Legibility 0/0000	Place =No, Required)	t bridge W		Advance E	W	PLA (V.C TAP	.R.)	(Y/N (Y/N	
		port (Y/N): N nspection data at			REAS	uest for Rating		ng (171	N): N	<u> </u>	IGH ()	MEDI) LO
1 58	3: -	59: - 160: -	162: -	Date :0	D/00/0000		_							
_	3: - 1 E <i>mbe</i>		162: -	Dale : U	0/00/0000				×					
_	EMBE		CRACK (Y/N):	WELD'S		ROSION, SECTION GE, STRESS CONC	LOSS (%), CR ENTRATION,	ACKS, ETC.	CONDI PREVIOUS (0-9)	PRESENT FI	IV. RATIN ROM RAT			
MI	EMBE I	R(S):	CRACK	WELD'S CONDITION		ROSION, SECTION GE, STRESS CONC	LOSS (%), CR ENTRATION,	ACKS, ETC.	PREVIOUS	PRESENT	ROM RAT	ING AN	ALYSI	
M	EMBE Approx pavem	R(S): MEMBER aches a - Appr.	CRACK (Y/N):	WELD'S CONDITION (0-9)		ROSION, SECTION GE, STRESS CONC	LOSS (%), CR ENTRATION,	ETC.	PREVIOUS	(0-9) F	HOM RAT	ING AN	ALYSI: 352	
MI A B	EMBE Approa pavem Approa Roadw	R(S): MEMBER aches a - Appr. ent condition aches b - Appr.	CRACK (Y/N): N	WELD'S CONDITION (0-9) N		ROSION, SECTION GE, STRESS CONC	LOSS (%), CR ENTRATION,	ETC.	PREVIOUS	(0-9) t	ROM RAT	3 O	ALYSIS 352 0	
MI A B C D	EMBE Approx pavem Approx Roadw Approx Sidewa Item Wear	R(S): MEMBER aches a - Appr. ent condition aches b - Appr. vay Settlement aches c - Appr. elk Settlement 58.1 - ring surface	CRACK (Y/N): N N	WELD'S CONDITION (0-9) N N		GE, STRESS CONC	ENTRATION,	ETC.	PREVIOUS	(0-9) t 7 7	ROM RAT 1-20 0	3 0 0	0 0	S Dei
MI A B C D	EMBE Approa pavem Approa Roadw Sidewa Item Wear Item	R(S): MEMBER aches a - Appr. ent condition aches b - Appr. vay Settlement aches c - Appr. alk Settlement 58.1 -	CRACK (Y/N): N N N	WELD'S CONDITION (0-9) N N N	LOCATION OF CORF	GE, STRESS CONC	ENTRATION,	ETC.	PREVIOUS	(0-9) b 7 7 7 7 7 6 7	ROM RAT 4-20 0 0 0 0 0	3 3 0 0 0 0 0 0 0 0 0 0	ALYSI 352 0 0 0 0 0	
MI A B C D E	EMBE Approd pavem Approd Roadw Sidewa Item Wear Item Span	R(S): MEMBER aches a - Appr. ent condition aches b - Appr. yay Settlement aches c - Appr. alk Settlement 58.1 - ring surface 58.3 -	CRACK (Y/N): N N N N N	WELD'S CONDITION (0-9) N N N N	LOCATION OF CORF	GE, STRESS CONC	ENTRATION,	ETC.	PREVIOUS	(0-9) E 7 7 7 7 6 7 1-58	ROM RAT 4-20 0 0 0 0 0 0 1-59	3 0 0 0 0 0 0 1-(ALYSIS 352 0 0 0 0 0 0 0	S Det
MI A B C D E	EMBE Approd pavem Approd Roadw Sidewa Item Wear Item Span	R(S): MEMBER aches a - Appr. ent condition aches b - Appr. vay Settlement aches c - Appr. alk Settlement 58.1 - ring surface 58.3 - adrel Fill	CRACK (Y/N): N N N N N	WELD'S CONDITION (0-9) N N N N	LOCATION OF CORF	in comme	ENTRATION,	ETC.	PAEVIOUS (0-9)	(0-9) b 7 7 7 7 7 6 7 1-58	ROM RAT 4-20 0 0 0 0 0	3 0 0 0 0 0 0 1-(ALYSI 352 0 0 0 0 0	5 Def
MI A B C D E	EMBE Approd pavem Approd Roadw Sidewa Item Wear Item Span	R(S): MEMBER aches a - Appr. ent condition aches b - Appr. vay Settlement aches c - Appr. alk Settlement 58.1 - ring surface 58.3 - adrel Fill	CRACK (Y/N): N N N N N	WELD'S CONDITION (0-9) N N N N	LOCATION OF CORF	in comme	nts sec	ETC.	ndition,	(0-9) b 7 7 7 7 7 6 7 1-58	ROM RAT 4-20 0 0 0 0 0 0 1-59	3 0 0 0 0 0 0 1-(ALYSIS 352 0 0 0 0 0 0 0 0 0 0 0 7	S Def
MI A B C D E Lis CA S= C-5	EMBE Approprior pavem Approprior Roadw Approprior Sidewa Item Weat Item Span Span Stof fie FICIEN TEGOI = Minor Severe/ S= Criti	R(S): MEMBER aches a - Appr. eent condition aches b - Appr. yay Settlement aches c - Appr. ak Settlement 58.1 - ring surface 58.3 - adrel Fill Id tests performation RIES OF DEFICIE Deficiency - Deficiency	CRACK (Y/N): N N N N N N N R Classification Consoling of a structure that of Consoling of a structure that of consoling of	equires corrected as the projection of the bridge	LOCATION OF CORF COLLISION DAMAC	in comme (Ove (Ove Integrity of the bridge a tanning and effort to reporting or undermining. More seas an extreme unsafe opposes an extreme tazare	ents sect erali Previo erali Currer nd could easily bu air Examples incl ferate to extensiv condition due to th d or unsafe conditi	tion. tion. tion. tion. tous Con to Conce to Con	ndition, dition)	(0-9) b reassarr r r r r r r r r r r r r	ROM RAT 4-20 1 0 0 0 0 0 0 0 0 0	ING ANN 3 0 0 0 0 0 0 0 0 0 0 0 0 0	ALYSIS 3S2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S Def

PAGE 2 OF 6

	Y/TOWN		B.I.N.	1	8STRUCTURE NO						ON DATE
MA	NCHESTER		8AN	M-02-001	M02001-8AM-N	IUN-I	BRI			NOV	9, 2016
M	EMBER(S):				•						
		CRACK	WELD'S			COND	ITION	INV. BAT	ING OF	MEMBER	_
	MEMBER	(Y/N):	CONDITION	LOCATION AND DESCRIPTION OF DAMAGE			PREVIOUS PRESENT		ATING A	NALYSIS	Deficiencie
	58.4. Curbs		(0-9)			(0-9)	(0-9)	H-20	3	352	
F		N	N				7	0	0	0	, _
G	58.6. Sidewalks	N	N				7	0	0	0	-
H	58.8. Railing	N	N	See remarks in co	mments section.		6	0	0	0	M-P
	59.1. Arch/Arch Ring	Ν	N	See remarks in co	mments section.		4	0	0	0	S-A
J	59.2. Keystone Area	N	N	See remarks in co	mments section.		4	0	0	0	S-A
	59.5. Spandrel Walls	N	N	See remarks in co	omments section.		6	0	0	0	M-P
L	59.6. Spring Lines	N	N				7	0	0	0	-
W	Joints	N	N				7	0	0	0	-
N	59.13. Deformation/Flattening	N	N				8	0	0	0	-
U	60.1. Abutments	N	N				7	0	0	0	-
P	60.1. Abutments d.Breastwalls	N	N				7	0	0	0	-
Q	60.1. Abutments e.Wingwalls	N	N				7	0	0	0	_ ¹
R	60.1. Abutments g.Pointing	N	N				7	0	0	0	-
S	60.1. Abutments h.Footings	N	N				Η	0	0	0	-
1	60.1. Abutments i.Piles	N	N				Н	0	0	0	-
U	60.1. Abutments j.Scour	N	N				7	0	0	0	-
V	60.1. Abutments k.Settlement	N	N	6	-		8	0	0	0	-
W	61.1. Channel Scour	N	N				7	0	0	0	-
x	TRA.a. Bridge Railing	N	N	See remarks in co	mments section.		5	0	0	0	M-P
_											
-											

AANCHESTER	B.I.N. 8AM	BR. DEPT. NO. M-02-001	8STRUCTURE NO. M02001-8AM-MUN-BRI	INSPECTION DATE NOV 9, 2016
		REMA	ARKS	
BRIDGE ORIENTATION				
Single span granite arch	with north and	south elevations	s, east and west approaches. Sa	aw Mill Brook is tidal.
GENERAL REMARKS			and the second second second	
The arch has an adjacent	concrete slat	o section on the s	south elevation, supporting the s	outh sidewalk.
TEM 58 - DECK				
tem 58.1 - Wearing surf	ace			
Moderate sealed and uns	ealed cracking		nor potholes patched with aspha	alt in the eastbound
ravel lane, adjacent to ca	itch basin drai	in and east pedes	strian crossing. (See Photo 1)	
tem 58.8 - Railing				
Moderately corroded tend	e rails and po	ists on doth the h	orth and south rails. (See Phote	0 2)
TEM 59 - SUPERSTRUC	TURE			
tem 59.1 - Arch/Arch Ri	na			
Aissing keystones - See I		stone Area.		
The majority of the arch in	nterior has co	ncrete patches ar	nd/or gunite applied throughout.	
tem 59.2 - Keystone Are Vissing granite stones fro		rea, from inside t	the north ring to to mid-length.	Gunite and other
concrete patching has be	en applied ove	er much of the int	terior of the arch. (See photos	3-5)
tem 59.5 - Spandrel Wa	lls			
		red with gunite. 1	There is minor vertical cracking v	with efflorescence
hroughout the north face.				
There is spalling of the guing the guing at the guing at the guing at the second ending at the guing at the g			begining from the bottom of the	relief pipe on the
vest side and ending at ti	ie aren spring	, inte.		
RAFFIC SAFETY				
<u>tem 36a - Bridge Railing</u>	1			
See Item 58.8 Railing.				
Chain link fence with stee	l posts and ra	ils. Granite rail b	ase.	
Photo Log				
	acking through rth rail and fer		f wearing surface.	
HOLD Z. CONDUCUTIO			arch ring	
Photo 3 : Keystone are				
Photo 4 : Keystone are	a with missing	g stones at north		



Photo 1: Moderate cracking throughout both lanes of wearing surface.

Photo 2: Corroded north rail and fence posts.

CITY/TOWN MANCHESTER	B.I.N. 8AM	BR. DEPT. NO. M-02-001	8STRUCTURE NO. M02001-8AM-MUN-BRI	INSPECTION DATE NOV 9, 2016
		РНО	TOS	
ALC: N	. 41.	राष्ट्र :		2000
1	The state	The with	and the second second	
	15%	10 March		
100		To st .		
	the second	E I	S and s	e
-	and the state			150
	La last		and a second	A A
				6-2
			de la	the state of the s
			a construction	-
	Der	- Aller		
		the second second		
	and the second			

PAGE

5 OF 6

Photo 3: Keystone area with missing stones at north arch ring.

Photo 4:

Keystone area with missing stones at north end.

				PAGE OF
CITY/TOWN MANCHESTER	B.I.N. 8AM	BR. DEPT. NO. M-02-001	8STRUCTURE NO. M02001-8AM-MUN-BRI	INSPECTION DATE NOV 9, 2016
		РНО	TOS	6 6
1 Contraction		ALC: NO		
- 100		AT LET		
	- Martine C			
		and and		
31.10				
			INTERNATIONAL CONTRACT	
				and a
				100
· · · · · · · · · · · · · · · · · · ·				And the second second

Photo 5: Missing keystone near mid-length with shotcrete patching, looking south.

Appendix B

2015 Sawmill Brook Central St Seawall, Tide Gate & Culvert Observations Memorandum

Sawmill Brook Central St Seawall, Tide Gate & Culvert Observations

To: Mary Reilly, Grants Administrator

FROM: Duncan Mellor, PE, Tighe & Bond

COPY: Dave Murphy, PE, Tighe & Bond

DATE: June 23, 2015

The Sawmill Brook culvert under Central Street was observed on June 11, 2015 as part of an in-water walk-through to view existing conditions of the seawall, tide gate structure, culvert and stream bed/weirs. Discussions with the Massachusetts Division of Marine Fisheries just prior to the walk-through had indicated a preference to remove or modify the tide gate structure and perhaps the culvert weirs, to increase the times when Rainbow Smelt might have favorable tide conditions to pass these stream obstructions. The observations will be used to inform alternative designs that consider improvements to fish passage, stormwater drainage, and protection from storm surge. Based on a review of documents available from the Town, our understanding is that the tide gate was originally installed in the early 1900's for the purpose of creating a skating pond in the downtown area.

Observations

Fish coming from the harbor at low tide will encounter rock riffles and bedrock below the tide gate structure (Photo 1). As the tide rises these natural impediments will become submerged and no longer hinder fish passage at a water level about 2 feet above Mean Low Water (MLW), (CLE, 2000. Existing Conditions and Proposed Repairs to Tide Gate and Seawall).

Photo 1 Looking upstream (low tide) toward tide gate and Central St culvert

The tide gate structure is comprised of two orthogonal concrete walls approximately 9 feet high, a bottom opening gate of cast iron or cast steel (gate and tracks), and an overhead actuator motor/controller galvanized steel platform (Photo 1). There is some corrosion/erosion metal loss at the bottom of the gate tracks, including the bottom seating wedge guides (Photo 2). The tide gate is operational and was opened to drain the impoundment for the culvert observation. The tide gate opening is 5.9 feet and the open height of the gate at the time of observations was 2.75 feet, with the invert 10 inches to 18 inches above the stream bed.

Photo 2 Corrosion/erosion of low tide gate tracks

The concrete walls of the tide gate structure appear to be gravity walls with indications of prior concrete repair and overlays, including the repairs circa 2000 (Photo3).

Photo 3 View of tide gate from inside culvert

During the walk-through it was noted that there is significant water seepage (flow) coming from the stone culvert side wall supporting the south side of Central Street when the tide gate is closed and ponding water in the culvert (Photo 4). This seepage flow in a dam structure is not desirable and can cause loss of soils under the street. Previously, a shotcrete surfacing (pneumatically applied concrete, previously referred to as "Gunite") was applied to this stone wall and the culvert; however it has failed, particularly in the tidal zone. The circa 2000 repairs indicated this wall was to be repointed with non-shrink grout. The shotcrete and repointing have not stopped the seepage problems and are not recommended here for seepage control.

Photo 4 Water seepage (flow) coming from the stone culvert side wall

The downstream end of the stone arch culvert is about 5 feet upstream from the south edge of the sidewalk. At this point there is a weir 2.7 feet high rising from the bedrock stream bed (Photo 5). This weir has a concrete face, but it appears to be just an overlay on rock filled timber cribs behind. The east side seawall from the harbor to the culvert has had a concrete overlay repair that restricts the culvert opening by about 2 feet on the eastern side at this weir, but it does not continue inside the arch culvert more than 2 to 3 feet. The typical base width of the stone arch culvert is about 16 feet.

Photo 5 Downstream culvert weir looking upstream

Proceeding upstream inside the culvert from the south weir is several feet of boulder rock riffles with horizontal transverse timbers that may be rock filled timber cribs (Photo 6). It is not known if these cribs support the arch culvert, or if they are inside the culvert from an earlier dam, or perhaps stream bed scour protection.

Photo 6 Apparent rock filled timber cribs forming stream bed at south end of arch culvert

At about half distance inside the arch culvert is a second weir with apparent bedrock outcrop at the western side of the culvert (Photo 7). This weir has a total height of about 4 feet (pool below) causing about a 17 inch rise in water level at the weir. The weir has a broad partially sloping crest of concrete (6.1 feet down from top of arch), which might be armor over a buried water and/or sewer main.

Photo 7 Mid length weir inside culvert, bedrock left

The upstream end of the arch culvert has a gate open pool depth of about 11 inches over a cobble, gravel with sand bed. The culvert height from stream bed is about 6.8 feet.

The stone arch culvert was observed to have two transverse open stone joints. The straight transverse joint about 6 feet inside from the south end appears to be a culvert extension, perhaps associated with a past road widening. The transverse joint 4 feet inside from the north end is not completely straight and appears to have been caused by movement of the outer 4 feet of culvert stonework resulting in separations between adjacent stones (Photo 8). The northwestern corner of the stone arch culvert is missing foundation support, likely caused by stream scour, and the stones above appear to be settling and separating.

Safety concerns related to the stone arch culvert were summarized in a separate memo to the Town dated June 18th, 2015 and located in Appendix E.

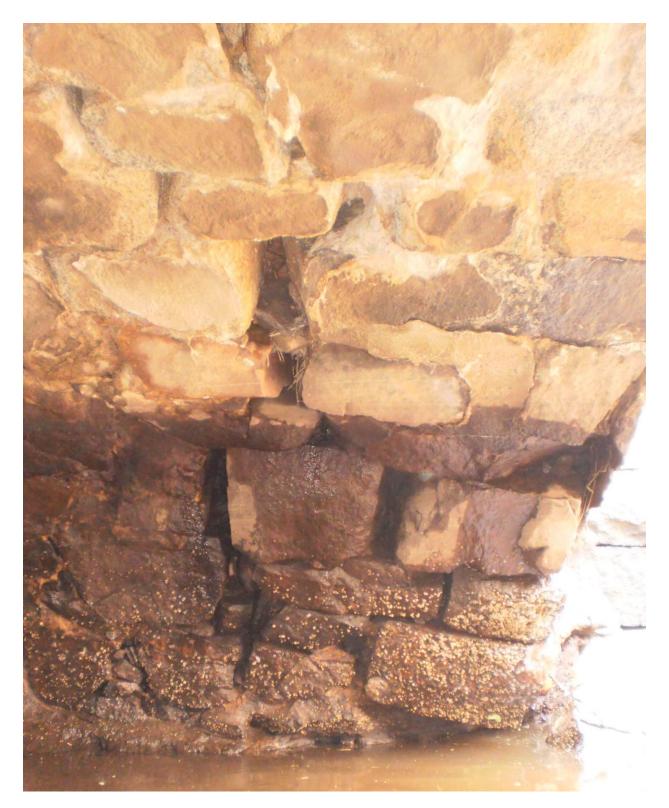


Photo 8 Separation and settlement of culvert arch stones, upstream, northwestern corner

Photo 9 Stream channel upstream from culvert looking south with dark staining on walls indicating normal gate closed high water level

Assessments

The existing tide gate structure has a top of wall elevation just above mean higher high water level, making this a significant obstruction to Rainbow Smelt passage on many high tides. Tidal water levels will rise over these walls on spring high tides (full moon or new moon) and during higher than predicted tides associated with atmospheric low pressure or wind setup, and such conditions will periodically allow smelt to swim over the walls when the tide gate is closed. This tide gate wall overtopping on spring high tides and storm surge tides does indicate that the tide gate is not effective in preventing seawater flooding. Recent preliminary topographic survey indicates Central Street at this location is within about 1 foot of tidal flooding, based on recorded high tides from the storm of 1978 (NOAA Boston tide record at 93% height correction for Manchester). The frequency of tidal flooding of the roadway will be increasing based on the current mean sea level rise relative to land (including land subsidence) of 0.92 feet per 100 years recorded in Boston (NOAA), and also based on forecast predictions of an increasing rate of relative sea level rise (IPCC).

This tide gate is a bottom opening gate, which is not suitable to partial opening for smelt passage due to the head pressure and high flow velocities associated with a limited the gate opening trying to maintain the impoundment pond. Full opening of the gate during smelt migration is feasible, though velocities during rainfall events would need to be checked relative to smelt swimming speeds.

Even with the tide gate open to allow for fish passage, there are two more weirs inside the stone arch culvert. Since the smelt are not able to jump up weirs, the tide will need to rise to at least 2/3 of mean high tide to allow smelt to swim upstream past these weirs.

As noted by the Massachusetts Division of Marine Fisheries experts, the bottom opening tide gate and culvert weirs are obstructions to smelt passage for most of the tide range, and delays in fish passage waiting for a rising tide makes them susceptible to predation. Fish passage can be improved if the tide gate and culvert weirs are removed, perhaps with a substitution using rock riffles in this area. The existing stone arch culvert does have some structural deterioration and the use of the roadway as a dam when the tide gate is closed also results in undesirable seepage. There are opportunities at this tide gate and culvert to improve fish passage while also addressing culvert deterioration and dam seepage. The stone filled timber cribs inside the culvert form a "natural" bottom to the culvert, which is desirable for fish and aquatic life, but they may also be hydraulically connected to the seepage from the dam face wall. Grouting of the crib voids would be one approach to reducing dam seepage, however this may not be desirable for habitat. Removal of the tide gate and the impoundment reduces dam hydrostatic surcharge and seepage as observed during the field investigation, so tide gate removal can offer fish passage improvements and resolution of dam seepage problems.

Next steps to define site constrains and opportunities

- Complete upstream culvert data collection and HECRAS stream modeling
- Obtain new survey elevation data
- Obtain FEMA 100-year flood revisions
- Consider further evaluation of dam hydrostatic surcharge and seepage issues

J:\M\M1476 Manchester MA Hydro Study\Task 2-Stream Crossing Survey\Task 2 deliverables\Appendix E\Sawmill Brook Central Tide Gate Evaluation Memo_Final.doc

Appendix C Hydrologic and Hydraulic Report

Central Street Bridge Replacement Hydrologic and Hydraulic Analysis

То:	Massachusetts Department of Transportation (MassDOT)
FROM:	David Azinheira, PE (Tighe & Bond)
COPY:	Vinod Kalikiri, PE, PTOE; David Loring, PE, LEED AP (Tighe & Bond)
DATE:	August 22, 2019

A hydrologic and hydraulic (H&H) analysis was performed by Tighe & Bond as part of the engineering design and permitting for the Central Street Bridge Reconstruction Project located on Sawmill Brook at the mouth of Manchester Harbor in Manchester-by-the-Sea. The primary reasons for performing the H&H analysis were to:

- Evaluate the hydraulics (e.g., capacity, freeboard, and velocities) for the existing culvert.
- Develop alternative design concepts for culvert.
- Provide recommendations based on the H&H analysis as to the preferred alternative replacement design approach.

The H&H analysis and subsequent recommendations are summarized in this report and builds on the "Task 2: Hydrologic Monitoring and Flushing Studies Sawmill Brook Flood Mitigation and Restoration Project" prepared for Manchester-by-the-Sea by Tighe & Bond in June 2018.

Based on the analysis we recommend the installation of a 20-foot span open bottom concrete arch culvert to meet the Massachusetts Department of Transportation (MassDOT) Municipal Bridge Projects MGL Chapter 85 Section 35 review requirements for the 25-year flood frequency hydraulic design. Note that the MassDOT Bridge Manual (2013) indicates that the hydraulic design flood return frequency for an Urban Minor Arterial or Rural Major Collector is the 25-year return frequency storm event. The proposed culvert has capacity to pass the 25-year frequency storm event with 0.4 feet of freeboard for MHHW conditions (compared to the low chord), and 4.2 of freeboard feet for MSL condition. Both of these scenarios assume MassDOT recommended increases in sea level due to climate change although the MHHW value is approximately the same with and without adding the MassDOT sea level rise. This alternative would also pass the 25-year flood frequency storm event during an annual storm surge with the water level 1.8 feet below the top of road at Central Street.

A Scour analysis for the preferred design alternative shows potential for scour up to existing bedrock located approximately 0 to 2 feet below the channel bottom upstream of Central Street Bridge. During the geotechnical boring investigation, the bedrock was found to be very hard to hard granite, and is therefore not anticipated to scour. Due to the tidal nature of Manchester Harbor and Central Pond it is anticipated that in general sediment aggradation will be anticipated when storms occur during higher tides (due to backwater) while sediment degradation will be anticipated when storms occur during lower tides.

Attachment A contains figures depicting an aerial overview of Central Street Bridge (Figure 1), a topographic map of the drainage-area (Figure 2), and the geometry used to define the cross-sections in the HEC-RAS model (Figure 3). Attachment B contains the 2016 Report with a description of the HEC-HMS model. Attachment C contains the HEC-RAS model

output for the existing and proposed alterative conditions. Attachment D contains the scour analysis calculations.

A summary of the proposed geometry is provided below, with elevations referencing the North American Vertical Datum of 1988 (NAVD88):

Item	Description
Bridge Size and Type	20-foot wide open bottom Arch
Low Chord Elevation	6.0 feet NAVD88
Top of Road Elevation	10.6 feet NAVD88 (+/-)
Upstream Stream Bed Elevation	-0.2 feet NAVD88
Downstream Stream Bed Elevation	-5.3 feet NAVD88 (culvert invert at -4.0 feet NAVD88)
Skew	12 degrees*
Design Scour Elevation	-2 feet NAVD88 (+/-)

*The culvert will be installed at a 12-degree angle; however, since it will be a culvert and not a bridge the full width of the culvert will be available for flow. For traditional bridges the upstream and downstream cross sections control flow under a bridge deck so the skew must be incorporated; however, for an open bottom arch culvert tied into to the walls of an existing channel the geometry of the culvert limits flow and not the upstream cross section. A skew angle was therefore excluded from hydraulic modeling.

1 Project Site Description

The Central Street Bridge spans the Sawmill Brook at the mouth of Manchester Harbor on Central Street (Route 127). The Town-owned crossing is constructed of three integrated parts, a bridge, tide gate and coastal wingwall. The bridge consists of a 13-foot span mortared stone masonry circular arch tidal bridge with stone masonry wingwalls and headwalls. Timber cribs functioning as weirs are imbedded into the bottom of the stream bed. A concrete and iron tide gate abuts the bridge to the south. The bridge was rebuilt around the mid 1900's and a tide gate was installed to control the Brook and create Central Pond just upstream. A stone and masonry wingwall abuts the bridge in the southwest quadrant, functioning as a seawall. The passage under the bridge discharges flow from Sawmill Brook via a narrow, channelized reach, with 12-foot- high granite walls and buildings abutting either side. Tidal flow from Manchester Harbor passes under the bridge, depending on the setting of the tide gate and tide height. When the tide gate is closed and water is impounded underneath the bridge, the hydrostatic pressure of water forces seepage through the wingwall. The gate and bridge design have been identified as contributing factor to upstream flooding, due to significant hydraulic restriction when large precipitation events and high tide elevations are concurrent.

The tide gate and weir design have been identified by the Massachusetts Division of Marine Fisheries (DMF) as an impediment to fish passage, notably impacting state-listed species, rainbow smelt (Osmerus mordax). The Town plans to remove the tide gate during the reconstruction of the Central Street Bridge.

2 Methodology

Tighe & Bond updated existing a hydrologic and hydraulic (H&H) models of the Central Street (Route 127) bridge watershed along Sawmill Brook as part of the bridge replacement alternatives analysis. The H&H model was developed by updating existing HEC-HMS (version 5.2.1) and HEC-RAS (version 5.0.3) models, both available from the U.S. Army Corps of Engineers. The hydrologic analysis was performed using HEC-HMS (version 5.2.1). The HEC-HMS model output was subsequently used to develop a steady-state HEC-RAS model to evaluate the hydraulic conditions for the existing and proposed structures. The methods used to develop both the hydrologic and hydraulic analysis are documented in the following sections.

2.1 Hydrologic Analysis

A detailed hydrologic analysis was performed using HEC-HMS as part of the February 2016 "Sawmill Brook Culvert and Green Infrastructure Analysis Task 4 Final Report: Evaluation of Locations for Flood Mitigation" prepared by Tighe & Bond. The 2016 study included 25-, 50-, and 100-year flow estimates for the present, 2025, 2050, and 2100 while incorporating multiple energy use climate change projections for rainfall, as well as sea level rise, and storm surge. The 2016 HEC-HMS model was developed using the runoff curve number and time of concentration methodologies outlined in the United States Department of Agriculture's (USDA) Technical Release 55 (TR-55)¹. The drainage area upstream of Central Street (Route 127) was computed to be approximately 5 square miles, and was modeled using 23 sub-drainage areas. The computed runoff curve numbers ranged from 60 to 75, and the lag times (defined as 0.6 times the time of concentration) ranged from approximately 20 minutes to 70 minutes. The 2016 model developed inflow hydrographs using the 24-hour rainfall depths from the Northeast Regional Climate Center (NRCC) at Cornell University. Five storage areas were also included in the HEC-HMS model at culverts. The 2016 study is included as Attachment B of this memorandum.

Tighe & Bond updated the 2016 HEC-HMS model to include the 2-, 10-, and 500-year frequency storm event as recommended by the MassDOT LFRD Bridge Manual². The 24-hour precipitation for the 2-, 10-, 25-, 50-, 100-, and 500-year frequency storms were estimated using the National Oceanic and Atmospheric Administration (NOAA) Atlas 14 point precipitation frequency tool. Table 2-1 provides the precipitation amounts from NOAA Atlas 14, as well as the NRCC precipitation amounts used as part of the 2016 study. The NOAA Atlas 14 and NRCC values are approximately the same for the 25-year frequency storm event (the depths are within less than 1-percent), whereas the NRCC 24-hour rainfall depths are 4-percent and 10-percent larger than the NOAA Atlas 14 depths for the 50-year and 100-year frequency storm events, respectively. NOAA Atlas 14 was published after the 2016 study was performed and is more current than the NRCC values; however, the NRCC rainfall depths will be used at this time for the 25-, 50-, and 100-year frequency storm events for consistency with the previous recent hydrologic and hydraulic studies performed and because the NRCC depths are either similar to or more conservative than the NOAA Atlas 14 rainfall depths.

¹ Cronshey, R. G., R. T. Roberts, and N. Miller. "Urban hydrology for small watersheds (TR-55 Rev.)." *Hydraulics and Hydrology in the Small Computer Age*. ASCE, 1985.

² MassDOT (Massachusetts Dept. of Transportation. "LRFD bridge manual. Part I." (2013).

TABLE 2-1

24-hr Precipitation Values from the National Oceanic and Atmospheric Administration NOAA Atlas 14 and the Northeast Regional Climate Center (NRCC)

Storm Return Frequency	Precipitation Values from NOAA Atlas 14 (inches)	Precipitation Values from NRCC Used for Previous Modeling (inches)
2-year	3.20	
10-year	5.04	
25-year	6.20	6.16 ¹
50-year	7.08	7.34 ¹
100-year	7.97	8.77 ¹
500-year	11.1	

¹The NRCC rainfall depths will be used for the 25-, 50-, and 100-year frequency storm events for consistency with the previous recent hydrologic and hydraulic studies performed and because the NRCC depths are either similar to or more conservative than the NOAA Atlas 14 rainfall depths

Peak flows were also calculated through regression analysis using the Zarriello 2017³ approach available in the USGS Streamstats program⁴. These flow estimates were used as a basis for comparison with the computed design storm flow rates.

2.2 Hydraulic Analysis

A hydraulic analysis of Sawmill Brook was prepared using HEC-RAS, a hydraulic modeling program available from the U.S. Army Corps of Engineers. This model updates the previous planning level modeling performed as part of the "Sawmill Brook Culvert and Green Infrastructure Analysis Task 4 Final Report: Evaluation of Locations for Flood Mitigation" prepared by Tighe & Bond in February 2016, with updates based on the November 2017 survey by Doucet Survey Inc., and surface water level monitoring. The updated model includes Sawmill Brook from approximately 50 feet upstream of Norwood Avenue to approximately 100 feet downstream of Central Street.

To update the model, Tighe & Bond first created a Triangular Irregular Network (TIN) elevation surface using the 2017 survey and MassGIS LiDAR topographic data for overbank areas beyond the extent of the surveyed cross sections. A geometric representation of the channel, banks, and cross-sections was created using the HEC-GeoRAS tool to extract cross sections from the TIN. Sawmill Brook was modeled using 30 cross sections, culverts at Norwood Avenue, School Street, and Central Street, as well as the existing tide gate structure immediately downstream of Central Street. The Manning's roughness coefficients were estimated to be 0.04 in the upstream area of the reach and 0.03 toward the downstream area based on the survey and orthographic imagery. The overbank area Manning's n varied from 0.035 (commercial/industrial land use) to 0.1 (forest cover). The overbank Manning's n varied horizontally along the cross sections and were calculated using the MassGIS 2015 land use dataset.

³ Zarriello, P.J.,2017, Magnitude of flood flows at selected annual exceedance probabilities for streams in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2016–5156, 99 p.

⁴ U.S. Geological Survey, 2016, The StreamStats program, online at http://streamstats.usgs.gov, accessed August 21, 2018.

Model geometry scenarios were developed for:

- 1. Existing Conditions with the Tide Gate Open/Closed
- 2. Proposed Alternatives

The downstream boundary conditions for the design storm hydraulic modeling were the Mean Higher High Water (MHHW) and the annual storm surge elevation. The modeled MHHW elevation was 4.77 feet NAVD88 based on the NOAA Long Term Tide Water Level Monitoring Station ID: 8443970. The annual storm surge elevation was provided in the February 2016 study as approximately 8.2 feet NAVD88. The 2016 study estimated that the annual storm surge elevation in 2100 would overtop Central Street so future storm surge scenarios were not modeled. For reference, the Mean Sea Level (MSL) is -0.3 feet NAVD88 at the NOAA Long Term Tide Water Level Monitoring Station ID: 8443970.

The sea level rise increase in 2100 used for this study is 2 feet. This value falls within the 66% probability range provided in the Northeast Climate Science Center (NECSC) sea level rise projections for the Boston area for the two emissions scenarios evaluated⁵. The MHHW elevation accounting for sea level rise was therefore 6.77 feet NAVD88. This sea level rise increase is more conservative than the 0.012 feet/year increase recommended in the LFRD Bridge Manual that corresponds with a 0.98-foot increase by 2100. This would correspond with a sea level rise MHHW of 5.75 feet NAVD88, and a MSL of 0.68 feet NAVD88.

Following the development of the geometric parameterization of the cross-sections along Sawmill Brook, flows from the updated HEC-HMS model were assigned by cross-section for both the existing and proposed condition. Water surface elevations and channel velocities were evaluated for the 2-, 10-, 25-, 50-, 100-, and 500-year storms.

MassDOT classifies Central Street (Route 127) as an Urban Minor Arterial or Rural Major Collector. The LRFD Bridge Manual suggests a hydraulic design storm as a 25-year frequency storm event, the scour design storm as the 50-year frequency storm event, and the scour design check storm as the 100-year frequency storm event. Freeboard is defined as the distance from the peak water surface elevation upstream of the culvert to the top of the culvert opening, which was evaluated across the range of storms.

2.3 Alternative Design Analysis

Three alternative designs were evaluated to replace the existing Central Street Bridge. All of the alternative designs included removing the existing tide gate. The first alternative (Alternative 1) was designed to pass the 50-year frequency storm event for predicted climate change rainfall and sea level rise conditions exceeding MassDOT requirements. The minimum hydraulic capacity structure was determined to be an open-bottomed concrete arch-culvert structure with a clear span width of 20-feet and a continuous low chord elevation at 6 feet NAVD88. The second alternative (Alternative 2) was sized to provide a span that could pass the 25-year frequency storm event with the MassDOT recommended sea level rise for 2100 using the tidal MHHW boundary condition, which was determined to be a structure with the geometry of Alternative 1 but with a span width of 12 feet. The third alternative (Alternative 3) is an in-kind replacement of the existing culvert.

- 1. Proposed Alternative 1 with 20-foot wide arch culvert with Tide Gate Removed
- 2. Proposed Alternative 2 with 12-foot wide arch culvert with Tide Gate Removed

⁵ Northeast Climate Science Center (NECSC) "Massachusetts Climate Change Projections - Statewide and for Major River Basins" for the Massachusetts Executive Office of Energy and Environmental Affairs, January 2018. Available from <u>http://www.massclimatechange.org/</u>.

3. Proposed Alternative 3 with Culvert Replaced in-kind with Tide Gate Removed

2.4 Scour Analysis

Scour at the Central Street Bridge was evaluated in a manner consistent with the general guidelines set forth in the FHWA Hydraulic Engineering Circular Nos. 18 (HEC-18), HEC-20, and the MassDOT LRFD Bridge Manual section 1.3.3.4 Scour/Stability Analysis. The HEC-RAS model was used to estimate the hydraulic parameters required to compute the total scour potential. The scour design and scour check flood return frequencies were the 50-year and 100-year frequency storm event, based on Table 1.3.4-1 in the LRFD Bridge Manual for an Urban Minor Arterial or Rural Major Collector.

Total scour consists of the summation of contraction scour, abutment scour, pier scour, and long-term aggregation and degradation. Contraction scour is calculated using the Modified Laursen's equation (1960) and the Laursen's equation (1963) as outlined in HEC-18. Abutment scour was calculated using the National Cooperative Highway Research Program (NCHRP) methodology as outlined in HEC-18 that provides a peaking factor to contraction scour to estimate the sum scour anticipated from contraction and abutment scour. Scour was also calculated using the Clear-Water Scour Equation for Open-Bottom Culverts that incorporate both contraction and abutment scour. There are no piers proposed, so pier scour was not evaluated. Long-term aggregation and degradation were evaluated based on qualitative approaches outlined in HEC-20. Scour calculations did not include any potential scour countermeasures. The sediment transport analysis performed in "Task 3: Sediment Characterization and Flushing Studies - Sawmill Brook Flood Mitigation and Restoration Project" completed in June 2018 by Tighe & Bond was also reviewed as part of the scour analysis.

3 Analysis Results and Alternatives Discussion

The H&H model was evaluated for the existing and proposed alternatives using the above described methodology. The model results for existing and proposed conditions are presented in the following sections.

3.1 Hydrologic Analysis

Table 3-1 shows the peak flow results from the HEC-HMS model as well as the prediction interval from the regression analysis.

Design Storm Peak Flow Rates from HEC-HMS Hydrologic Model with associated Downstream Boundary Condition for HEC-RAS hydraulic model.

Model Scenario	Downstream Boundary Condition ¹	Flow to Norwood Avenue (ft ³ /s)	Flow to Central Pond (ft ³ /s)	Regression Analysis Prediction Interval at Central Pond ² (ft ³ /s)
Present (2018) 2-Year	MHHW	232	254	63 to 242
Present (2018) 10-Year	MHHW	845	924	129 to 535
Present (2018) 25-Year	MHHW	1,228	1,363	167 to 739
Present (2018) 50-year	MHHW	1,565	1,772	195 to 920
Present (2018) 100-year	MHHW	2,000	2,267	223 to 1,120
Present (2018) 500-year	MHHW	2,671	3,078	303 to 1,610
Present (2018) 25-year with MassDOT recommended SLR	MHHW + MassDOT SLR	1,228	1,363	167 to 739
Present (2018) 25-year MSL with MassDOT MSL + SLR recommended SLR		1,228	1,363	167 to 739
Future (2100) 25-Year	MHHW + SLR	1,706	1,930	N/A
Future (2100) 50-Year	MHHW + SLR	1,717	1,946	N/A
Future (2100) 100-Year	MHHW + SLR	2,562	2,943	N/A
Present (2018) 25-Year with Storm Surge	Annual Storm Surge	1,228	1,363	N/A
Present (2018) 50-year with Storm Surge	Annual Storm Surge	1,565	1,772	N/A

¹ MHHW = Mean Higher High Water, SLR = Sea Level Rise, MSL = Mean Sea Level

² Regression analysis completed using Magnitude of flood flows at selected annual exceedance probabilities for streams in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2016–5156 (Zarriello 2017)

In general, the peak flows estimated using HEC-HMS are larger than the values predicted by the regression analysis though within the same order of magnitude. Based on this comparison, the HEC-HMS model was considered to provide reasonable conservative estimate for the storms of interest at the Central Street (Route 127) culvert and the values from this model were used as the peak inflow values for the steady-state HEC-RAS hydraulic model.

3.2 Hydraulic Analysis

Peak flows evaluated in the hydrologic analysis were subsequently used as input to the HEC-RAS model to evaluate hydraulics at Central Street Bridge for existing and proposed alternative conditions. Results from this analysis, which include peak water surface elevations, distance from the peak water surface elevation to the top of the road, freeboard to low chord, and velocities within the structure are included in Tables 3-2 through 3-5. HEC-RAS model output for the existing and proposed alterative conditions are provided in Attachment C.

HEC-RAS Results for Existing Conditions at Central Street Bridge (assuming tide gate closed)

Model Scenario	Peak Water Surface Elevation (NAVD88)	Freeboard (feet)	Distance to Top of Road (feet)	Average Velocity Upstream Inside Culvert (ft/s)	Average Velocity Downstream Inside Culvert (ft/s)
Present (2018) 2-Year	6.4	-0.4	4.2	4.0	4.0
Present (2018) 10- Year	11.2	-5.2	-0.6	12.1	12.1
Present (2018) 25-Year	11.8	-5.8	-1.2	12.2	12.2
Present (2018) 50-year	12.4	-6.4	-1.8	8.5	8.5
Present (2018) 100-year	12.5	-6.5	-1.9	9.9	9.9
Present (2018) 500-year	12.6	-6.6	-2.0	9.5	9.5
Present (2018) 25- year with MassDOT recommended SLR	11.9	-5.9	-1.3	12.3	12.3
Present (2018) 25- year MSL with MassDOT recommended SLR	11.8	-5.8	-1.2	12.2	12.2
Future (2100) 25-Year	12.2	-6.2	-1.6	12.9	12.9
Future (2100) 50-Year	12.1	-6.1	-1.5	12.9	12.9
Future (2100) 100-Year	12.6	-6.6	-2.0	9.5	9.5
Present (2018) 25-Year with Storm Surge	11.9	-5.9	-1.3	12.2	12.2
Present (2018) 50-year with Storm Surge	12.4	-6.4	-1.8	8.5	8.5

HEC-RAS Results for Alternative 1 at Central Street Bridge (replace culvert with 20-foot wide open-bottom arch culvert)

Model Scenario	Peak Water Surface Elevation (NAVD88)	Freeboard (feet)	Distance to Top of Road (feet)	Average Velocity Upstream Inside Culvert (ft/s)	Average Velocity Downstream Inside Culvert (ft/s)
Present (2018) 2-Year	4.7	1.3	5.9	1.5	1.5
Present (2018) 10-Year	4.8	1.2	5.8	5.4	5.4
Present (2018) 25-Year	5.6	0.4	5.0	8.0	8.0
Present (2018) 50-year	6.6	-0.6	4.0	10.4	10.5
Present (2018) 100-year	7.7	-1.7	2.9	13.4	13.6
Present (2018) 500-year	10.9	-4.9	-0.3	16.9	16.9
Present (2018) 25-year with MassDOT recommended SLR	5.7	0.3	4.94	7.4	7.5
Present (2018) 25-year MSL with MassDOT recommended SLR	1.8	4.2	8.8	11.7	13.0
Future (2100) 25-Year	6.9	-0.9	3.7	10.5	10.5
Future (2100) 50-Year	7.0	-1.0	3.6	10.5	10.5
Future (2100) 100-Year	10.6	-4.6	-0.01	13.8	13.8
Present (2018) 25-Year with Storm Surge	8.8	-2.8	1.8	7.4	7.4
Present (2018) 50-year with Storm Surge	10.6	-4.6	-0.01	9.6	9.6

HEC-RAS Results for Alternative 2 at Central Street Bridge (replace culvert with 12-foot wide open-bottom arch culvert

Model Scenario	Peak Water Surface Elevation (NAVD88)	Freeboard (feet)	Distance to Top of Road (feet)	Average Velocity Upstream Inside Culvert (ft/s)	Average Velocity Downstream Inside Culvert (ft/s)
Present (2018) 2-Year	4.8	1.2	5.8	2.4	2.4
Present (2018) 10-Year	6.0	0.0	4.6	8.8	8.9
Present (2018) 25-Year	8.6	-2.6	2.0	12.9	13.2
Present (2018) 50-year	10.6	-4.6	-0.01	15.0	15.8
Present (2018) 100-year	10.6	-4.6	-0.03	15.7	16.9
Present (2018) 500-year	10.9	-4.9	-0.3	16.2	17.5
Present (2018) 25-year with MassDOT recommended SLR	9.0	-3.0	1.6	12.1	12.1
Present (2018) 25-year MSL with MassDOT recommended SLR	8.7	-2.7	1.9	14.0	15.4
Future (2100) 25-Year	10.9	-4.9	-0.3	13.5	13.5
Future (2100) 50-Year	10.9	-4.9	-0.3	13.5	13.5
Future (2100) 100-Year	10.6	-4.6	-0.01	14.8	14.8
Present (2018) 25-Year with Storm Surge	10.9	-4.9	-0.3	10.6	10.6
Present (2018) 50-year with Storm Surge	11.3	-5.3	-0.7	11.6	11.6

HEC-RAS Results for Alternative 3 at Central Street Bridge (replace culvert in-kind)

Model Scenario	Peak Water Surface Elevation (NAVD88)	Freeboard (feet)	Distance to Top of Road (feet)	Average Velocity Upstream Inside Culvert (ft/s)	Average Velocity Downstream Inside Culvert (ft/s)
Present (2018) 2-Year	5.3	0.7	5.3	4.5	4.4
Present (2018) 10-Year	10.9	-4.9	-0.3	14.7	14.9
Present (2018) 25-Year	11.6	-5.6	-1.0	14.3	18.3
Present (2018) 50-year	11.9	-5.9	-1.4	14.7	18.8
Present (2018) 100-year	12.1	-6.1	-1.5	15.0	19.2
Present (2018) 500-year	11.9	-5.9	-1.3	15.5	19.7
Present (2018) 25-year with MassDOT recommended SLR	11.6	-5.6	-1.0	14.3	18.3
Present (2018) 25-year MSL with MassDOT recommended SLR	11.6	-5.6	-1.0	14.3	18.3
Future (2100) 25-Year	12.1	-6.1	-1.5	14.3	14.3
Future (2100) 50-Year	12.1	-6.1	-1.5	14.3	14.3
Future (2100) 100-Year	12.1	-6.1	-1.5	15.3	15.3
Present (2018) 25-Year with Storm Surge	11.9	-5.9	-1.3	11.7	11.7
Present (2018) 50-year with Storm Surge	12.1	-6.1	-1.5	12.3	12.3

3.3 Alternative Design Evaluation

Three alternative designs were evaluated to replace the existing culvert at Central Street. All alternatives are expected to result in increase hydraulic capacity compared to existing conditions with the tide gate in place. Alterative 1 and Alternative 2 would results in a more natural river alignment under the road by reducing the hydraulic restriction that currently exists. Also, all alternatives were limited in height by the existing road grade, which was assumed to remain the same from existing to proposed. The span width was also limited to 20 feet due to the upstream channel.

3.3.1 Preferred Alternative

Alternative 1 exceeds MassDOT hydraulic requirements by passing the 50-year frequency storm event for predicted climate change conditions without overtopping the road. This alternative also passes the 25-year frequency storm event with 0.4 feet of freeboard for MHHW conditions (compared to the low chord), and 4.2 of freeboard feet for MSL condition. Both of these scenarios assume MassDOT recommended increases in sea level due to climate change. Note that MHHW elevation is 5.75 NAVD88 when assuming MassDOT tidal increases due to sea level rise (0.25 feet lower than the maximum low chord based on site constraints). This alternative can also pass the 25-year frequency storm event during the annual storm surge without overtopping the road. While Alternative 2 met the MassDOT minimum hydraulic constraints for culvert design, it is not anticipated to meet predicted climate change conditions in 2100 for the 50-year frequency storm event. Alterative 3 does not meet the recommended MassDOT minimum hydraulic requirements, although it does offer an improvement to existing conditions due to removal of the tide gate. Alternative 1 was considered the preferred alternative.

3.4 Scour Analysis

Abutment, contraction, and long-term aggregation and degradation scour processes were evaluated in detail for the preferred alternative. Attachment D contains the calculations for this analysis.

Abutment scour was calculated for the 50-year scour design storm, and is anticipated to extend to the granite bedrock located approximately 0 to 2 feet below the channel bottom. If the bedrock had not been observed scour would be anticipated to a depth of 3.7 feet at the center of the channel and up to 10.8 feet toward the left and right abutment. Under the 100-year scour design check storm, scour is also anticipated to extend to the granite bedrock located approximately 0 to 2 feet below the channel bottom. If the bedrock had not been observed the scour would be anticipated to a depth of 4.1 feet at the center of the channel and up to 6.8 feet toward the left and right abutment. A contraction scour analysis shows that live-bed scour conditions are likely to dominate with sediment transport limiting the contraction scour depth rather than the size of the bed material.

The natural bed material of this stream is mostly comprised of medium to fine grain sands and silt, with average D50 and D85 values of approximately 0.011 inches and 0.05 inches, respectively. An incipient diameter analysis was performed and results indicate that the hydraulic forces are adequate to transport bed material up to 1 foot for a 50-year storm, which is greater than the average D85.

Based on this comparison between the incipient diameter particle size for the 50-year storm and the streambed material, it is anticipated that sediment will be mobilized from the upstream reach following the installation of an open-bottom culvert. The granite bedrock located 0 to 2 feet below the channel bottom will provide a vertical control for scour.

3.5 Stream-Crossing Standards

The preferred alternative of a 20-foot span open-bottom arch culvert was not designed to meet Stream-Crossing standards due to site constraints and coastal influence but does meet some of the recommendations. For replacement projects, stream simulation design approaches typically result in greater hydraulic capacity for passing flood flows than the existing bridge or culvert. This is true in this case, as the existing structure is an approximately 13 feet wide semi-circular arch culvert, which is proposed to be replaced with an open-bottom culvert with a clear span of 20 feet.

The proposed culvert is approximately the same width as the concrete wall lined channel located upstream of the bridge, so the opening width is not anticipated to limit flow. The concrete channel contains the 10-year frequency storm event, and is therefore anticipated to exceed the bankfull flow event (typically between the 1.5-, and 2-year frequency storm events).

The predicted opening area of the preferred replacement culvert is approximately 100 square feet. With a total length of approximately 45 feet, the openness ratio is approximately 2.2 feet, which exceeds the recommended openness ratio of 0.82 feet and approaches the recommended optimum standard. The height of the opening of the structure at this location is limited by the cover from the existing road grade, and a maximum low chord elevation of 6 feet NAVD88 is proposed for the preferred alternative.

3.6 Hydraulic Design Table

The H&H analysis is summarized in the design drawings in a hydraulic design data table. Table 3-6 provides the hydraulic design data table for Central Street Bridge.

TABLE 3-6

Hydraulic Design Data Table Included in Design Drawings for Central Street Bridge for a 20-foot span open-bottom arch culvert with low chord at 6 feet NAVD88.

HYDRAULIC DATA	
DRAINAGE AREA	5.0 SQ. MILES
WATER CONTROL FLOOD DISCHARGE (2 YR)	254 CFS
DESIGN FLOOD DISCHARGE (25 YR)	1,363 CFS
DESIGN FLOOD ANNUAL CHANCE (RETURN FREQUENCY)	4% (25-YEARS)
DESIGN FLOOD VELOCITY (25 YR)	7.5 FPS
DESIGN FLOOD ELEVATION (25 YR)	5.7 FEET
BASE 100-YR FLOOD DATA	
BASE FLOOD DISCHARGE (100 YR)	2,267 CFS
BASE FLOOD ELEVATION (100 YR)	7.7 FEET
DESIGN AND CHECK SCOUR DATA	
SCOUR DESIGN FLOOD ANNUAL CHANCE (RETURN FREQUENCY)	2% (50-YEARS)
DESIGN FLOOD ABUTMENT SCOUR DEPTH	LEFT: 2 FT RIGHT: 2 FT
SCOUR CHECK FLOOD ANNUAL CHANCE (RETURN FREQUENCY)	1% (100-YEARS)
CHECK FLOOD ABUTMENT SCOUR DEPTH	LEFT: 2 FT RIGHT: 2 FT
FLOOD OF RECORD	
DISCHARGE	UNKNOWN
FREQUENCY (IF KNOWN)	N/A
MAXIMUM ELEVATION	N/A
DATE	N/A
HISTORY OF ICE FLOWS	UNKNOWN
EVIDENCE OF SCOUR AND EROSION	NO

4 Summary

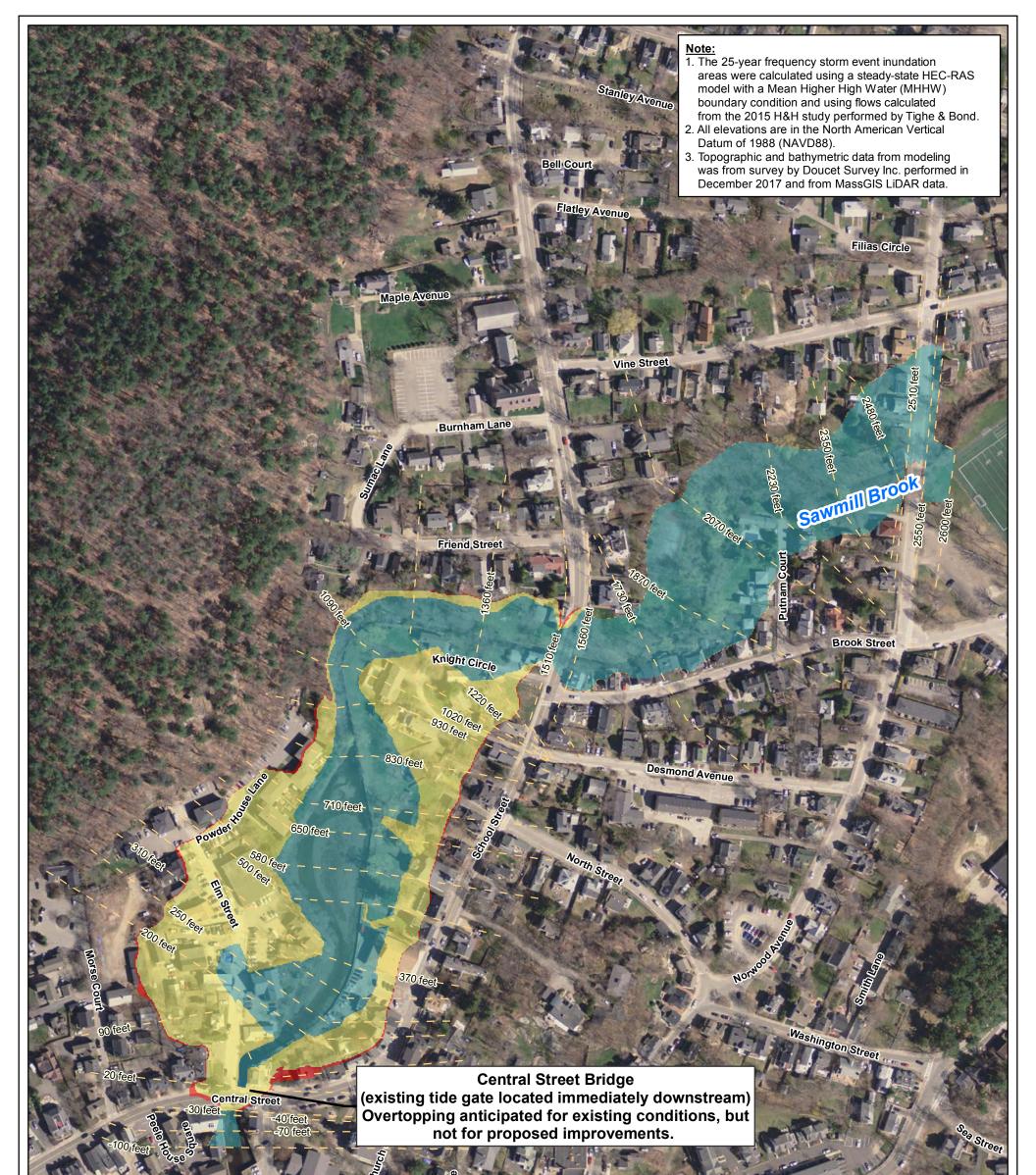
The H&H analysis methodology and results described above will be used as the basis of design of the Central Street Bridge along the Sawmill Brook in the Town of Manchester-by-the-Sea. The analysis confirms that the preferred alternative will provide both adequate hydraulic capacity for the design storm as well as will meet predicted future conditions due to climate change. Furthermore, scour is not anticipated to extend beyond the granite bedrock located between 0 to 2 feet below the channel bottom for the scour design storm (50-year storm) nor the scour check storm (100-year storm).

J:\M\M1476 Manchester MA Hydro Study\011-Central Street Bridge\Report_Evaluation\Hydrologic and Hydraulic Analysis Report\H&H Memo Central Street Bridge Replacement MBTS.doc

ATTACHMENT A Figures

FIGURE 1 SITE AERIAL OVERVIEW

Central Street Bridge Reconstruction Manchester-by-the-Sea, Massachusetts


August 2018

J:\M\M1476 Manchester MA Hydro Study\011-Central Street Bridge\Drawings_Figures\GIS\MXD\01_Central Street MBTS Overview.mxd

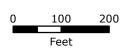
J:\M\M1476 Manchester MA Hydro Study\011-Central Street Bridge\Drawings_Figures\GIS\MXD\02_Central Street MBTS Drainage ARea.mx

S-18

Ń

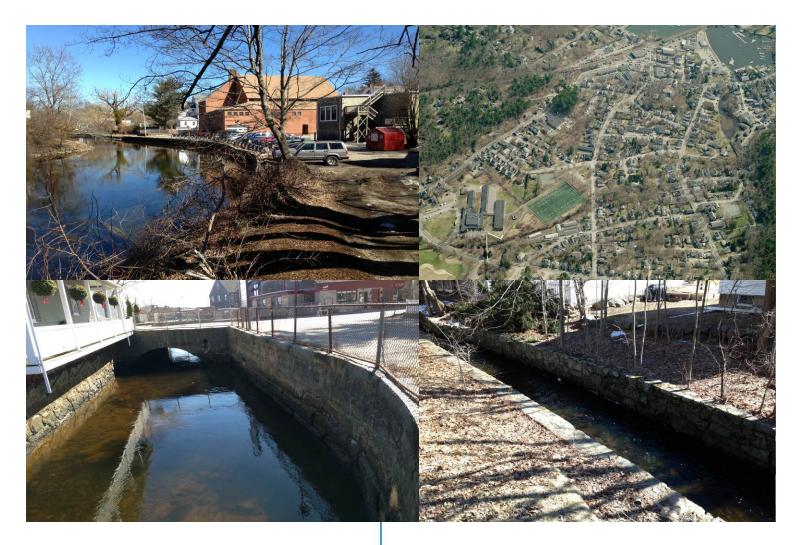
LEGEND

- Model Cross Section (label indicates feet upstream of Central Street)
 - Proposed Conditions 25-year Storm Flow (Larger Culvert, and tidegate removed) Inundation Area
 - Existing Conditions Tide Gate Open 25-year Storm Flow Inundation Area
 - Existing Conditions Tide Gate Closed 25-year Storm Flow Inundation Area



Based on MassGIS Color Orthophotography (2013).

FIGURE 3 25-YEAR FREQUENCY STORM EVENT INUNDATION AREA


Manchester-by-the-Sea Sawmill Brook Feasibility Study

October 2018

V:\Projects\M\m1476\SawmillBrook_InundationFigures\SawmillBrook_MA_25Yr_StormEvent_Inundation.mxd

ATTACHMENT B "Sawmill Brook Culvert and Green Infrastructure Analysis Task 4 Final Report: Evaluation of Locations for Flood Mitigation" (Tighe & Bond, 2016)

H&H Memo Attachment B

NOTE: The hydraulic modeling and sea level rise estimates have been updated since this study was performed and were not included in this Appendix.

Tighe&Bond

SELECTION FROM

Sawmill Brook Culvert and Green Infrastructure Analysis Task 4 Final Report: Evaluation of Locations for Flood Mitigation

Prepared For:

Town of Manchester-by-the-Sea Manchester-by-the-Sea, Massachusetts

February 2016

Table of Contents

Section 1	Introduction1-1
1.1	Purpose of Study1-1
1.2	Project Methodology Overview1-1
1.3	Sawmill Brook Watershed1-2
Section 2	Modeling Existing Conditions 2-1
2.1	Overview2-1
2.2	Model Inputs2-1
	2.2.1 Watershed Conditions2-1
	2.2.1 Watershed Storage2-2
	2.2.2 Precipitation2-3
	2.2.3 Surge and Tidal Influence2-3
2.3	Modeling Approach2-4
	2.3.1 Hydrologic Modeling2-4
	2.3.1 Hydraulic Modeling2-5
2.4	Model Calibration2-5
2.5	Model Output2-6
Section 3	Modeling Future Conditions
3.1	Overview
3.2	Inputs for Future Conditions Model
	3.2.1 Precipitation3-1
	3.2.2 Coastai Climate Change Modei
	- 3.2.3 Sea Level Rise
	3.2.4 Storm Surge Influence
3.3	Future Conditions Modeling Approach3-6
	3.3.1 Hydrology3-6
	3.3.2 Future Conditions Hydraulics
3.4	Impact on Existing Infrastructure
Section 4	Modeling Improvements for Flood Mitigation
4.1	Central Street Culvert and Tide Gate4-1
4.2	Increasing Flood Storage4-5
	4.2.1 Upstream of Old School Street4-5
	4.2.2 Golf Course4-6
4.3	Culvert Rightsizing4-7
	4.3.1 Culvert Improvements at School Street4-7
	4.3.2 Culvert Improvements at Norwood Avenue4-8
	4.3.3 Culvert Improvements at Lincoln Street

4.4	Green Infrastructure			
	4.4.1 Recommended Project - Porous Asphalt Project for Coach Field			
4 5	Playground			
4.5	Storm Surge Barrier			
4.6	Evaluation of Combined Projects4-13			
Section 5 Project Summary & Recommendations				
5.1	Summary			
5.2	Recommendations			
References				
Appendices				
Appendix A	Watershed Information			
	A-1 NRC Web Soil Survey Report			
	A-2 Subwatershed CalculationsA-3 Culvert Inventory			
	A-4 Stage-Storage-Discharge Tables			
Appendix B	Hydrologic Analysis			
	B-1 Extreme Precipitation Data			
	B-2 HEC-HMS Output			
	B-3 HEC-HMS Output Future Conditions			
Appendix C	Calibration Data			
Appendix C	C-1 Historic Weather Logs Appendix D and E			
Appendix C				
Appendix C	C-1 Historic Weather Logs C-2 Antecedent Moisture Condition Adjustments Appendix D and E			
Appendix D	C-1Historic Weather LogsAppendix D and EC-2Antecedent Moisture Condition AdjustmentsExcluded.C-3Future Precipitation AnalysisExcluded.Hydraulie Modeling ResultsExisting and Future Conditions			
Appendix D	 C-1 Historic Weather Logs C-2 Antecedent Moisture Condition Adjustments C-3 Future Precipitation Analysis 			
Appendix D	C-1Historic Weather LogsAppendix D and EC-2Antecedent Moisture Condition AdjustmentsExcluded.C-3Future Precipitation AnalysisExcluded.Hydraulie Modeling ResultsExisting and Future Conditions			
Appendix D	C-1Historic Weather LogsAppendix D and EC-2Antecedent Moisture Condition AdjustmentsExcluded.C-3Future Precipitation AnalysisExcluded.Hydraulie Modeling ResultsExisting and Future Conditions			
Appendix D Appendix E Figures Figure 1 Figure 2	C-1 Historic Weather Logs Appendix D and E C-2 Antecedent Moisture Condition Adjustments Excluded. C-3 Future Precipitation Analysis Excluded. Hydraulic Modeling Results Existing and Future Conditions Evaluation of Flood Mitigation Projects Watershed Boundaries Watershed Topography Modeling Results Evaluation of Flood Mitigation Projects			
Appendix D Appendix E Figures Figure 1 Figure 2 Figure 3	C-1 Historic Weather Logs Appendix D and E C-2 Antecedent Moisture Condition Adjustments Excluded. C-3 Future Precipitation Analysis Excluded. Hydraulic Modeling Results Existing and Future Conditions Evaluation of Flood Mitigation Projects Watershed Boundaries Watershed Boundaries Evaluation of Flood Mitigation Projects Modeling Iterations			
Appendix D Appendix E Figures Figure 1 Figure 2 Figure 3 Figure 4	 C-1 Historic Weather Logs C-2 Antecedent Moisture Condition Adjustments C-3 Future Precipitation Analysis Hydraulic Modeling Results Existing and Future Conditions Evaluation of Flood Mitigation Projects Modeling Iterations Watershed Boundaries Watershed Topography Watershed Soils Watershed Land Uses 			
Appendix D Appendix E Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5	C-1 Historic Weather Logs Appendix D and E C-2 Antecedent Moisture Condition Adjustments Excluded. C-3 Future Precipitation Analysis Excluded. Hydraulie Modeling Results Existing and Future Conditions Excluded. Evaluation of Flood Mitigation Projects Modeling Iterations Matershed Boundaries Watershed Boundaries Watershed Topography Watershed Soils Watershed Land Uses Subwatersheds Subwatersheds			
Appendix D Appendix E Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6	 C-1 Historic Weather Logs C-2 Antecedent Moisture Condition Adjustments C-3 Future Precipitation Analysis Hydraulie Modeling Results Existing and Future Conditions Evaluation of Flood Mitigation Projects Modeling Iterations Watershed Boundaries Watershed Topography Watershed Land Uses Subwatersheds Sawmill Brook Culvert Locations 			
Appendix D Appendix E Figures Figure 1 Figure 2 Figure 3 Figure 3 Figure 5 Figure 5 Figure 6 Figure 7	 C-1 Historic Weather Logs C-2 Antecedent Moisture Condition Adjustments C-3 Future Precipitation Analysis Hydraulic Modeling Results Existing and Future Conditions Evaluation of Flood Mitigation Projects Modeling Iterations Watershed Boundaries Watershed Topography Watershed Soils Watershed Land Uses Subwatersheds Sawmill Brook Culvert Locations 2015 Storm Frequency Causing Overtopping- Existing Conditions Model 			
Appendix D Appendix E Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6	 C-1 Historic Weather Logs C-2 Antecedent Moisture Condition Adjustments C-3 Future Precipitation Analysis Hydraulie Modeling Results Existing and Future Conditions Evaluation of Flood Mitigation Projects Modeling Iterations Watershed Boundaries Watershed Topography Watershed Land Uses Subwatersheds Sawmill Brook Culvert Locations 			
Appendix D Appendix E Figures Figure 1 Figure 2 Figure 3 Figure 3 Figure 5 Figure 5 Figure 6 Figure 7	 C-1 Historic Weather Logs C-2 Antecedent Moisture Condition Adjustments C-3 Future Precipitation Analysis Hydraulie Modeling Results Existing and Future Conditions Evaluation of Flood Mitigation Projects Modeling Iterations Watershed Boundaries Watershed Topography Watershed Soils Watershed Land Uses Subwatersheds Sawmill Brook Culvert Locations 2015 Storm Frequency Causing Overtopping- Existing Conditions Model 2025 Storm Frequency Culvert Overtopping, Balanced Energy Use, Annual Storm 			
Appendix D Appendix E Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8A	C-1 Historic Weather Logs Appendix D and E C-2 Antecedent Moisture Condition Adjustments Excluded. C-3 Future Precipitation Analysis Excluded. Hydraulic Modeling Results Existing and Future Conditions Excluded. Evaluation of Flood Mitigation Projects Modeling Iterations Matershed Soils Watershed Boundaries Watershed Topography Watershed Soils Watershed Land Uses Subwatersheds Sawmill Brook Culvert Locations 2015 Storm Frequency Causing Overtopping- Existing Conditions Model 2025 Storm Frequency Culvert Overtopping, Balanced Energy Use, Annual Storm Surge or Sea Level Rise 2050 Storm Frequency Culvert Overtopping, Balanced Energy Use, Annual Storm Surge or Sea Level Rise 2100 Storm Frequency Culvert Overtopping, Balanced Energy Use, Annual Storm			
Appendix D Appendix E Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8A Figure 8B	C-1 Historic Weather Logs Appendix D and E C-2 Antecedent Moisture Condition Adjustments Excluded. C-3 Future Precipitation Analysis Excluded. Hydraulic Modeling Results Existing and Future Conditions Excluded. Evaluation of Flood Mitigation Projects Modeling Iterations Matershed Boundaries Watershed Boundaries Watershed Topography Watershed Soils Watershed Land Uses Subwatersheds Sawmill Brook Culvert Locations 2015 Storm Frequency Causing Overtopping- Existing Conditions Model 2025 Storm Frequency Culvert Overtopping, Balanced Energy Use, Annual Storm Surge or Sea Level Rise 2050 Storm Frequency Culvert Overtopping, Balanced Energy Use, Annual Storm Surge or Sea Level Rise			

H&H Memo Attachment B

- Figure 9B 2050 Storm Frequency Culvert Overtopping, Fossil Intensive Energy Use, Annual Storm Surge or Sea Level Rise
- Figure 9C 2100 Storm Frequency Culvert Overtopping, Fossil Intensive Energy Use, Annual Storm Surge or Sea Level Rise

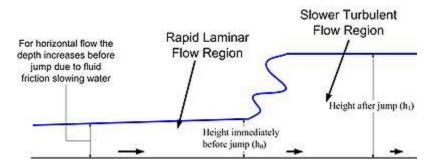

Tables

Table 2-1	2015 Rainfall Depths for the Sawmill Brook Watershed (24 hr storm)	2-4
Table 2-2	2015 Stillwater Elevations at Central Street	2-4
Table 2-3	May 2006 Rainfall Event Recorded at Beverly Municipal Airport	2-5
Table 2-4	May 2006 Flood Observations Compared to HEC-RAS Model Output	2-6
Table 2-5	Hydraulic Structure Locations in HEC-RAS Model	2-7
Table 3-1a	Balanced Energy Use Rainfall Depths	3-2
Table 3-1b	Fossil Intensive Energy Use Rainfall Depths	3-2
Table 3-2	IRM Model Outputs, descriptions and data sources	3-4
Table 3-3	IRM Mean High High Water (Sea Level Rise) Tailwater Conditions	3-6
Table 3-4	IRM Storm Surge Tailwater Conditions	3-6
Table 3-5	Summary of Flow Rates at Central Street	3-7
Table 3-6	Storm Frequency at which Hydraulic Structures Overtop	3-7
Table 4-1	Sawmill Brook Central Street Design Concept Alternatives	4-2
Table 4-2	Sawmill Brook Stream Restoration and Flood Stage Alternatives	4-2
Table 4-3	Culvert Overtopping at Central Street with	4-4
	Tide Gate Removed and Culvert widened,	
	Balanced Energy Use with Storm Surge	
Table 4-4	Culvert Overtopping at Central Street with	4-4
	Tide Gate Removed and Culvert widened,	
	Balanced Energy Use with Sea Level Rise	
Table 4-5	Summary Table of Combined Flood Mitigation Projects	4-12

Definitions

GIS: acronym for Geographic Information Systems; a system designed to store, analyze, manage, and present all types of geographical data

Hydraulic Jump is a phenomenon in the science of hydraulics which is frequently observed in open channel flow such as rivers and spillways. When water at high velocity discharges into a zone of lower velocity water, a rather abrupt rise occurs in the water surface. The rapidly flowing water is abruptly slowed and increases in height, converting some of the flow's initial kinetic energy into an increase in potential energy, with some energy irreversibly lost through turbulence to heat. In open channel flow, this manifests as the fast flow rapidly slowing and piling up on top of itself similar to how a shockwave forms. The following figure illustrates the behavior in a hydraulic jump.

A hydraulic jump is a region of rapidly varied flow and is formed in a channel when a **supercritical flow** transitions into a **subcritical flow**. In general, supercritical flows are shallow and fast and subcritical flows are deep and slow.¹

Hydrologic Soil Group is a designation by the Natural Resource Conservation Service (NRCS). The NRCS publishes a soil survey for most counties in the United States that classifies the soils into one of four hydrologic soil groups based upon how quickly the soil drains. Soils classified as "A" are the fastest draining (and have the smallest runoff potential) and soils classified as "D" are the slowest draining (and have the greatest runoff potential).

Hydrograph is a graph that shows the relationship of flow vs. time for a particular location within the watershed.

Hyetograph: A plot of cumulative rainfall or rainfall intensity versus time for a particular precipitation event

Inundation: to be covered with water

Lag time is the time between when the peak of a precipitation event occurs, and when that runoff makes it to the outlet of the watershed.

¹ Source: Wikipedia.org

LiDAR: Light Detection and Ranging, is a remote sensing technology that measures distance by illuminating a target with a laser and analyzing the reflected light. It is a state-of-the-art method for collecting accurate elevation information for large areas.

NAVD88: North American Vertical Datum of 1988 is the vertical control datum established in 1991 for vertical control surveying. NAVD88 consists of a leveling network on the North American Continent, affixed to a single origin point. NAVD88 replaced NGVD29 as the official vertical datum.

Return Frequency: likelihood, or probability that a rainfall event (specific to the magnitude and duration) will be equaled or exceeded in any given year.

Riverine: Associated with a river

Sea Level Rise: An increase in sea level caused by a change in the volume of the world's oceans due to temperature increase, deglaciation (uncovering of glaciated land because of melting of the glacier), and ice melt (Source: NOAA).

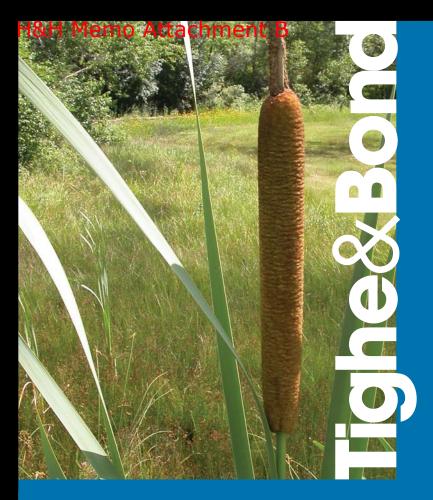
Stage Storage Discharge Curves: define the relationship between the depth of water and the discharge or outflow for the flood storage areas behind a culvert or impoundment.

Stillwater Elevation: The projected elevation of floodwaters in the absence of waves resulting from wind or seismic effects. In coastal areas, stillwater elevations are determined when modeling coastal storm surge: the results of overland wave modeling are used in conjunction with the stillwater elevations to develop Base Flood Elevations (Source: FEMA).

Storm Surge: Storm surge is the water, combined with normal tides that push toward the shore by strong winds during a storm. This rise in water level can cause severe flooding in coastal areas, particularly when the storm coincides with the normal high tides. The height of the storm surge is affected by many variables, including storm intensity, storm track and speed, the presence of waves, offshore depths, and shoreline configuration (Source: FEMA).

Tributary: a stream or channel that joins with a larger stream

Tailwater: The elevation of the water surface downstream from a dam or culvert. In coastal areas, such as Manchester-by-the-Sea, the tailwater elevation downstream of a dam is affected by tides, storm surge and sea level rise.


Time of Travel: The time interval required for water to travel from one point to another through a part (reach) of a watershed

Weighted Runoff Curve Number (CN): is a parameter used for predicting direct runoff or infiltration. The CN characterizes the runoff properties for each particular soil and groundcover in modeling applications. The CN method was developed by the USDA Natural Resource Conservation Services, formerly the Soil Conservation Service or SCS.

10-year Storm: A storm event having a 10% probability of occurring in any given year

25-year Storm: A storm event having a 4% probability of occurring in any given year

50-year Storm: A storm event having a 2% probability of occurring in any given year**100-year Storm:** A storm event having a 1% probability of occurring in any given year

Section 1 Introduction

1.1 Purpose of Study

This report describes the Sawmill Brook watershed modeling that was completed as part of the Coastal Zone Management Grant, **Manchester-by-the-Sea Sawmill Brook Culvert and Green Infrastructure Analysis**: Task 4 "Evaluation of Locations for Flood Mitigation". As part of the study existing conditions within the Sawmill Brook watershed were modeled and flooding impacts due to climate change, including increased levels of precipitation in combination with corresponding projections for sea level rise, were evaluated.

The modeling provides the data needed to evaluate adequacy of culvert sizing within the Sawmill Brook Watershed under climate change conditions and the mitigation value of proposed stormwater best management practices at specific locations, including green stormwater infrastructure, conveyance projects and flood storage. Additionally, the model will help determine projected flooding impacts upon important community assets identified as part of the Hazard Mitigation Plan enhancement under a Federal Emergency Management Agency (FEMA) Pre-disaster Mitigation Grant.

1.2 Project Methodology Overview

Tighe & Bond evaluated the existing hydrology and hydraulics within the study area under varying climatic events.

- Existing watershed conditions were modeled with HydroCAD and HEC-HMS (US Army Corps of Engineers, 2015) using information about soils, topography, ground cover (impervious cover and land uses), existing wetlands and waterbodies, water travel times, and existing structures that control discharges (e.g. Central Street tide gate, culverts, etc.). Existing conditions considered rainfall depths developed by the Cornell University Northeast Regional Climate Center and tidal influences using data from Flood Insurance Study for Essex County (July 2014). The existing conditions model was calibrated against the May 2006 storm (Mother's Day storm) that represent 25-year single day and 100-year consecutive day storm conditions.
- Building off the existing conditions model, **future watershed conditions** were predicted considering anticipated impacts from climate change and sea level rise in 2025, 2050, and 2100. For this model, precipitation estimates in the existing conditions scenario were replaced with estimates of future rainfall depths for 2025, 2050, and 2100 from the Oyster River Culvert Analysis project completed in Durham, New Hampshire (UNH, 2010). In addition, sea level rise and storm surge was incorporated into the model using data from the Inundation Risk Model (IRM) outputs developed by Keil Schmid (Geoscience, 2015).
- Using the future conditions model, the **potential impacts on existing infrastructure** (e.g. tide gate at Central Street, culverts, crossings) from storm surge, sea level rise, and future precipitation conditions in 2025, 2050, and 2100 were identified. The future condition model was also used to evaluate culvert sizes and needed upgrades, and the mitigation value of proposed stormwater

best management practices including green stormwater infrastructure, conveyance projects, and flood storage.

Tighe & Bond partnered with organizations to obtain data necessary to complete the evaluation. Tighe & Bond walked the river on May 30, 2015, along with the Town's Stream Team and other volunteers, to become familiar with the river and identify critical locations for survey cross Measurements sections. and inventories of culverts were taken during this visit.

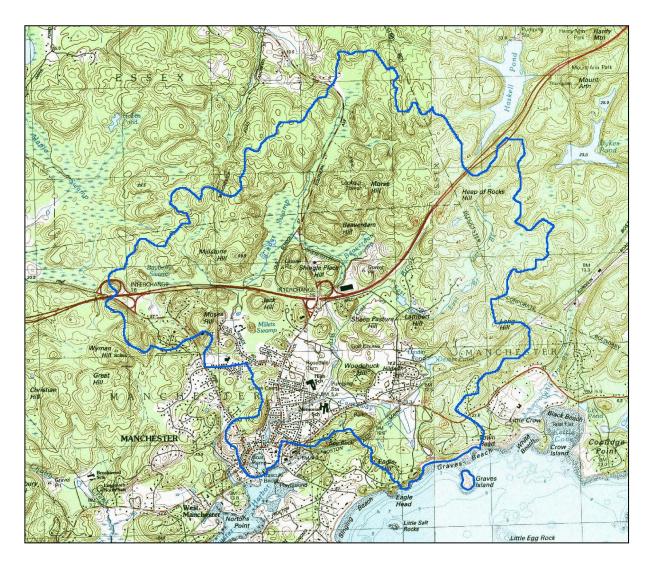
Tighe & Bond coordinated with Keil Schmidt of Geoscience to obtain elevations from the Inundation Risk Model (IRM) outputs for sea level rise and storm surge for incorporation into our modeling.

Town Staff and Volunteers making observations at the Lincoln Street Culvert

Tighe & Bond subcontracted with Doucet Survey of Newmarket, New Hampshire to survey the upstream and downstream ends of critical culvert locations. Tighe & Bond also utilized MassGIS LiDAR topographic data for overbank areas beyond the extent of the surveyed cross sections. LiDAR, which stands for Light Detection and Ranging, is a remote sensing technology that measures distance by illuminating a target with a laser and analyzing the reflected light. It is commonly used to make high-resolution contour mapping of large areas.

1.3 Sawmill Brook Watershed

Sawmill Brook is the longest watercourse that flows through Manchester-by-the-Sea, and drains a majority of the Town. Please refer to Figure 1 for the watershed's approximate The watershed boundaries. comprises a total of 4.8 square miles, most of which lies within Manchester-by-the-Sea, although portions of the watershed extend into Essex and Gloucester.


Main Stem of Sawmill Brook

The main stem of Sawmill Brook drains a circuitous route, beginning in the residential area just south of Interchange 16 of Route 128 (Pine Street). The watercourse passes

Sawmill Brook upstream of School Street, near its interchange with Route 128.

north, beneath Route 128, discharging into Bayberry Swamp, where the brook receives runoff from the undeveloped, forested hills to the north of the swamp, which are characterized by a large number of rock outcroppings.

Main Stem of Sawmill Brook

The main stem of Sawmill Brook drains a circuitous route, beginning in the residential area just south of Exit 16 of Route 128 (Pine Street). The watercourse passes north, beneath Route 128, discharging into Bayberry Swamp, where the brook receives runoff from the undeveloped, forested hills to the north of the swamp, which are characterized by a large number of rock outcroppings.

The brook flows easterly through the swamp, roughly paralleling the north side of Route 128, accepting runoff from a small tributary that drains the valley located west of Milestone Hill. The brook then meets another small watercourse carrying the discharge from Millet's Swamp, and then turns northeasterly, draining through Cedar Swamp. The area contributing to Cedar Swamp is forested and largely undeveloped, with steep slopes and a number of outcroppings.

The brook flows northeasterly for approximately 2,400 feet, before turning abruptly eastward, passing beneath Old School Street and School Street into Beaverdam Swamp. The brook then curves southeasterly, then southwesterly around the eastern side of Shingle Place Hill. The surrounding contributory area is largely steep, undeveloped forested hills.

Sawmill Brook then passes beneath Route 128 again, flowing southerly where it meets with Cat Brook at river left, approximately 1,300 feet downstream of Route 128.

Immediately downstream of the confluence with Cat Brook, Sawmill Brook passes through land of the Essex County Club golf course, where the overbanks are grassed to the edge of the watercourse, and also include small man-made impoundments. The brook gently begins an arc to the southwest where it passes Manchester-Essex Regional Middle-High School on river right, and property of the golf course on the left before passing beneath Lincoln Street.

Almost immediately below Lincoln Street, Sawmill Brook is joined by Causeway Brook, and enters an area of significantly increased residential development density, passing between the backyards of numerous residences. Sawmill Brook continues to flow along a gentle arc before flowing westerly at School Street, immediately north of Brook Street. Before this crossing, the river left side of the watercourse is channelized with a stone masonry wall with the adjacent residential structures located near the wall.

Downstream of School Street, both sides of the brook are channelized by stone masonry walls. Approximately 425 feet downstream of School Street, the watercourse makes a sharp turn to the left, emptying into Central

Sawmill Brook just upstream of its crossing of School Street near Brook Street.

Pond, which is regulated by the existing tide gate and dam structure at Central Street. Once the flow passes through the structure, it discharges into Manchester Harbor.

Millet Swamp Brook

The area roughly bounded by Old Essex Road, School Street, and Route 128 drains toward Millet Swamp, which is located between these roadways. The edges of the development area include steep forested hills that drop down to residential development along the roadways to the low lying area where the swamp is located.

The stream has a number of crossings at residential roadways, including Blue Heron Lane, The Plains, Millet Lane, and Old Essex Road.

The stream in this area generally has flat topography and is slow-moving due to its low gradient. The swamp outlets to the north, where it joins Sawmill Brook just upstream of Route 128.

Cat Brook

The source of Cat Brook are the undeveloped and forested hills lying south and east of Route 128, extending into Gloucester. Cat Brook begins as two separate watercourses that converge east of Mill Street. The western branch runs generally parallel with Route 128, while the eastern branch flows southwesterly then northeasterly before joining the western branch 700 feet upstream of Mill Street.

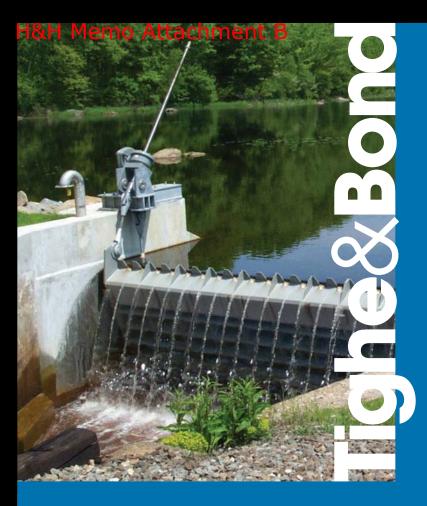
Downstream of Mill Street, Cat Brook passes along property of the Essex County Club along river left before discharging into Sawmill Brook.

Causeway Brook

Causeway Brook begins as two watercourses separate that discharge from ponds on the eastern portion of the watershed, one of which is Dexter Pond. The two branches converge south of the MBTA railroad line, flowing westerly through a residential area along Summer Street, where it is briefly channelized, and passing through property of the Essex County Club before discharging beneath Lincoln Street. Causeway Brook discharges into Sawmill Brook just below Lincoln Street.

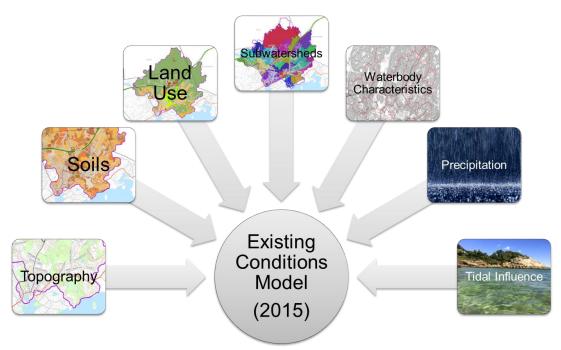
Culvert at Central Street

Causeway Brook downstream of Summer Street, showing the narrow channelized streambed


The Sawmill Brook culvert under Central Street consists of a seawall, tide gate structure, culvert and stream bed/weirs. Based on a review of documents available from the Town, it appears the tide gate was originally installed in the early 1900's for the purpose of creating a skating pond in the downtown area. This structure provides control for flooding caused by tides and maintains the elevation in Central Pond. The structure currently overtops during extreme storm events. Additionally, the tide gate design obstructs fish passage to upstream segments of Sawmill Brook that are known spawning habitat for Rainbow Smelt.

View of Tide Gate Structure from Harbor

View of Central Street tide gate towards the Harbor



Section 2 Modeling Existing Conditions

2.1 Overview

As part of the project, Tighe & Bond modeled existing conditions within the Sawmill Brook Watershed. The model considers information about soils, topography, ground cover (impervious cover and land uses), existing wetlands and waterbodies, water travel times, and existing structures that control discharges (e.g. Central Street tide gate, culverts, bridges, etc.). Existing conditions were based on rainfall depths developed by the Cornell University Northeast Regional Climate Center² and tidal influences using data from the Flood Insurance Study for Essex County (July 2014). The existing conditions model was calibrated against the largest storm in recent history, the May 2006 (aka "Mother's Day") storm.

2.2 Model Inputs

2.2.1 Watershed Conditions

The watershed contains steep topography in its upper reaches, which flattens out toward the main stem of the watershed as shown in **Figure 2.** Contours were developed using the LiDAR terrain and Digital Elevation Model (DEM) data available on the Massachusetts Geographic Information Systems (GIS) website.

² http://precip.eas.cornell.edu/

Soils within the watershed are classified by their Natural Resources Conservation Service (NRCS) Hydrologic Soil Group. Most of the soils within the swampy and steep areas of the watershed are slow draining, while the balance of the soils within the developed portion of the watershed are moderate to moderately well-drained. Please refer to **Figure 3** for the NRCS Hydrologic Soil Group (HSG) classifications of the watershed soils. **Appendix A-1** includes an NRCS Web Soil Survey report that provides further detail on the classifications.

Land uses within the watershed primarily consist of wetlands, forest, open space, and residential areas, along with small areas of industrial and commercial uses. Please refer to **Figure 4** for the distribution of land uses within the watershed and table describing the aggregation of categories from the MassGIS Land Use data for input into the model.

To facilitate the analysis of the stream, Tighe & Bond divided the watershed into 24 subwatershed areas to obtain a better understanding of the timing relationships between the numerous tributaries within the watershed. Please refer to **Figure 5** for the subwatershed mapping. Within each subwatershed, the land cover and underlying hydrologic soils group were evaluated and a lag time was developed in order to estimate the contribution of each subwatershed to Sawmill Brook.

In a complex watershed with a number of tributaries, such as Sawmill Brook, the time it takes various tributaries in the watershed to have peak flow can vary greatly from tributary to tributary depending on a number of factors, such as topography, impervious coverage, soil types and storage areas (reservoirs). Therefore, the timing of the peak flow from the tributaries could be different enough that they do not impact the receiving river simultaneously.

Tighe & Bond utilized available GIS mapping and data to develop the data inputs for the hydrologic analysis. Using the Soil Conservation Service (SCS) methodology in the HydroCAD software package, each subwatershed was routed through downstream subwatersheds and combined as necessary to develop a hydrograph of the main channel flow. The hydrographs were routed through the riverine network all the way to Manchester Harbor.

The weighted runoff curve number (CN) values for each of the subwatersheds were calculated based upon the land uses and hydrologic soil groups within the watershed. The lag time was computed based upon land cover, flow regime and basin topography. Please refer to **Appendix A-2** for the computation worksheets for both the weighted CN value and the lag time for each subwatershed.

2.2.1 Watershed Storage

The hydrologic model accounts for areas of flood storage within the watershed. Typically, these areas of storage can be found behind dams or behind culverts. As part of the hydrologic analysis, Tighe & bond developed stage-storage-discharge curves using Autodesk's Hydraflow for Hydrographs software program. The curves define the relationship between the depth of water and the discharge or outflow for the flood storage areas behind the existing culverts.

Appendix A-3 provides a summary table of the culverts within the watershed. More detail on these culverts can be found in the Tighe & Bond report titled "Manchester-by-the-Sea, Massachusetts, Stream Crossing Evaluation, Sawmill Brook Watershed" dated July 30, 2015. Please refer to **Figure 6** for the culvert locations.

In addition, the following locations in the watershed were modeled as storage areas:

- Pine Street (Pond 1)
- School Street north of Route 128 (Pond 2)
- Atwater Avenue (Pond 3)
- Mill Street (Cat Brook) (Pond 4)
- Lincoln Street (Causeway Brook) (Pond 5)

Please refer to **Appendix A-4** for the stage-storage-discharge computations for the storage areas.

2.2.2 Precipitation

The hydrologic model uses rainfall totals from the Northeast Regional Climate Center (NRCC) at Cornell University to develop the hydrographs. In the recent past, many flood studies historically used the climatic data published by the U.S. Weather Bureau in Publication TP-40, issued in 1961. The NRCC data is a more current data set and incorporates the increase in annual precipitation and storm intensity that has been documented by a number of studies since the 1961 publication of TP-40. **Table 2-1** lists the rainfall depths from a 24-hour duration storm that were used in the model.

Table 2-12015 Rainfall Depths for the Sawmill Brook Watershed (24 hour storm)

Frequency Storm	Annual Probability	Rainfall Depth (inches)
25-year	4%	6.16
50-year	2%	7.36
100-year	1%	8.76

This report refers to storm events by their return frequency, such as a 25-year storm, 50-year storm, and 100-year storm. The return frequency is the likelihood, or probability, that a rainfall event (specific to the magnitude and duration) will be equaled or exceeded in any given year. The reference will help the general public better understand the typical probability associated with a storm event. However, it is possible to have multiple 100-year storms in consecutive years, and it is also possible to have 50 years pass without a 25-year storm. Notable storm events for Manchester-by the Sea measured at the Town's Wastewater Treatment Facility include a near 100-year storm event of 8.27 inches recorded on October 20, 1996, and a 25-year storm.

Please refer to the Extreme Precipitation Tables in **Appendix B-1** for the completed data set for Manchester-by-the-Sea.

2.2.3 Surge and Tidal Influence

There is a tide gate structure that regulates the mouth of Sawmill Brook at Central Street. The structure normally limits the tidal influence of Manchester Harbor on the Sawmill Brook. Based on the current effective Flood Insurance Study (FIS) for Essex County, Massachusetts, dated July 16, 2014, the tidal stillwater surface elevations (that include storm surge) at the mouth of Sawmill Brook just downstream (ocean side) of Central Street are outlined in **Table 2-2** for existing conditions. Values presented in Table 2-2 are elevations associated with an annual probability (e.g. for the 1% annual probability, there is a 1% annual chance of the high tide influenced by storm surge to reach an elevation of 9.90 feet NAVD88 at the mouth of Sawmill Brook) shown in the

FIS.³ The Base Flood elevation at this location is 10.6 ft NAVD 88, which includes the stillwater elevation and the effects of wave setup.

Frequency Storm	Annual Probability	Elevation (NAVD88) (feet)
25-year	4%	9.15
50-year	2%	9.40
100-year	1%	9.90

Table 2-22015 Stillwater Elevations at Central Street

The values in Table 2-2 were used as starting water surface elevations in the hydraulic (HEC-RAS) model to account for tidal influence and storm surge on Sawmill Brook. Based on the Inundation Risk Model (IRM) outputs for 2015, Sawmill Brook is tidally influenced to the School Street culvert under existing conditions. See Section 3.2.2 for additional detail on the IRM model.

The town is currently in the process of requesting a revision of the July 16, 2014 FEMA FIS based on an August evaluation by the Woods Hole Group. A Letter of Map Revision has been submitted by the Town. The revised 100-year still water level is 9.00 ft NAVD, and the Revised Flood Zone and Base Flood Elevation for the Central Street location is AE 10, one foot lower than the current effective FIRM. As the planning progresses, this information should be taken into consideration.

2.3 Modeling Approach

2.3.1 Hydrologic Modeling

Hydrologic analysis of existing and post-development conditions was carried out by generating a computer model using the HEC-HMS Computer Program developed by the U.S. Army Corps of Engineers at the Hydrologic Engineering Center in Davis, California.

The hydrologic equations used in the computer model are described in the U.S. Army Corps of Engineering publication "Hydrologic Modeling System, HEC-HMS User's Manual, Version 3.5", dated August 2010. The data requirements for the HEC-HMS computer model include the following categories:

- 1. Soil Cover
- 2. Ground Cover
- 3. Ground Slopes
- 4. Degree, Density and Type of Development
- 5. Location and extent of wetlands, including swamps and ponds
- 6. Time of concentration, travel time, lag time
- 7. Controlled discharge structures, pipes and channel

³ See Table 11 – Transect Data. Transect 38 was used to represent Manchester Harbor.

The results of the HEC-HMS for existing conditions are included in **Appendix B-2.**

2.3.1 Hydraulic Modeling

Once hydrographs had been developed for the various watersheds, the next step was to build a model using the U.S. Army Corps of Engineers Hydraulic Engineering Center's HEC-RAS software to analyze the resultant water surface elevations. The HEC-RAS model evaluates stream gradient, cross section, and land cover within the channel and overbanks. It also accounts for energy losses through friction, and expansion and contraction at hydraulic structures, such as bridges and culverts.

The geometry of the HEC-RAS model was based upon a digital terrain model extracted from MassGIS LiDAR data, and then extrapolated cross sections from that data. The LiDAR data was supplemented by survey from third-party culvert surveys.

2.4 Model Calibration

Table 2-3

In developing the existing conditions model, past storm events were examined to confirm if channel geometries, land use coverages and lag times used in the model can duplicate observations recorded during past rainfall events. Calibration efforts were focused on a historic storm in May 2006. The storm lasted over a 4-day period and dropped nearly 11 inches of rain on the area.

May 2006 Rain	nfall Event recorded at B	everly Municipal Airport
	Precipitation	

	Precipitation
Date	(inches)
May 13, 2006	4.32
May 14, 2006	4.95
May 15, 2006	1.15
May 16, 2006	0.56
Total	10.98

Based on information provided by the NRCC, 11.29 inches of rain over a 4-day period is equivalent to a 100-year storm event, while 4.95 inches of rain in a 24 hour period is equivalent to a 25-year storm event.

Please refer to **Appendix C-1** for the precipitation data from Beverly Municipal Airport.

The May 2006 event was preceded by a wetter than normal weather pattern, which increased the moisture conditions in the ground. Therefore, the weighted runoff curve number (CN) values were adjusted in the calibration model to reflect the higher level of moisture in the soil at the time of the May 2006 rainfall event. The calculations for the CN values appear in **Appendix C-2**.

In order to calibrate the hydrology, observations of flooding elevations reported by the Town during the May 2006 flood event were compared to the elevations calculated by the HEC-HMS model for the storm event.

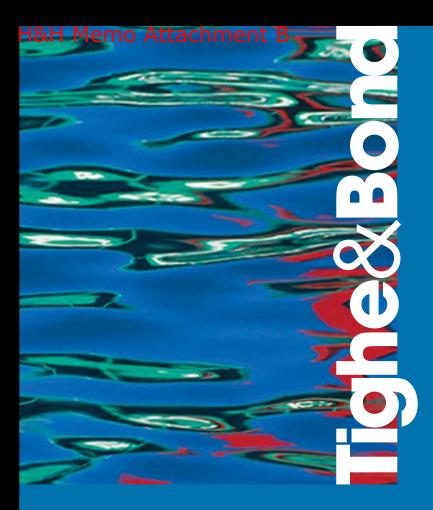
Please refer to **Table 2-4** for a comparison of observations and model predictions for the May 2006 flood event. The observations for the storm event come from the document titled "Hydrologic Study, Millets Brook and Sawmill Brook Watersheds" (Metcalf & Eddy, February 2008).

Location	Cross Section Number	Observed Elevation (NAVD 88) (feet)	HEC-RAS Model Prediction (NAVD 88) (feet)	
School Street north of Route 128	11191	45.1	43.04	
Mill Street at Cat Brook	2359	39.6	38.03	

Table 2-4May 2006 Flood Observations Compared to HEC-RAS Model Output

Note: Observed elevations presented in Table 2-4 are from Table 5 in the 2008 Metcalf & Eddy report. The survey from the 2008 report used vertical datum reference NGVD 29 (FT). They have been converted to NAVD 88 in Table 2-4 for consistency. An error was identified in Table 5 of the 2008 Metcalf & Eddy report. Table 5 indicates the observed elevation at School Street north of Route 128 was 48.75 feet (downstream) and 45.8 feet at Old School Street (upstream). To correct this error, the two points were swapped, and Table 2-4 includes the Metcalf & Eddy value for Old School Street, adjusted for NAVD88.

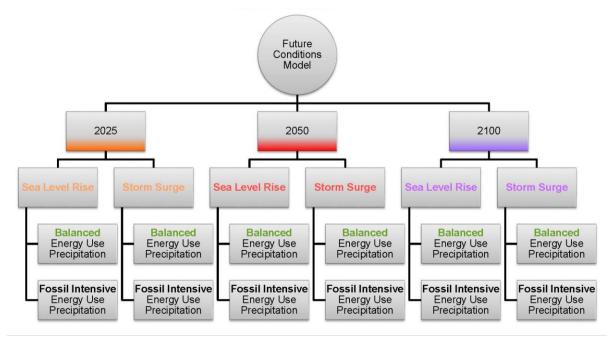
2.5 Model Output


After calibrating the model, existing conditions were simulated for the 25-year, 50-year and 100-year storm events. **Appendix D** provides the data outputs from the existing conditions modeling runs. To assist in interpretation of the results Table 2-5 provides a cross reference for each culverts and bridges in the model including identifying culvert number from the Task 2 culvert inventory, and their cross section number in the HEC-RAS model. Cross section numbering is based upon distance from the mouth of Sawmill Brook at Manchester Harbor for the main stem of Sawmill Brook, and from the distance with the confluence of the main stem of Sawmill Brook for the tributaries. **Figure 7** shows the existing conditions model results, where culvert overtopping may occur.

For the 2015 25-year storm, the existing conditions models indicate that 48% of the culverts overtop the roadway. For the 50-year storm, this number increases to 52%, and with a 100-year storm, 59% of culverts overtop.

Comparing the model existing conditions to the historic experience of culvert overtopping gives the reader an idea of where the model may be conservative. The model is consistently predicting the areas of historic flooding from the intersection of Causeway Brook to the Harbor, but may be conservative for culverts along Route 128 (culverts 33 and 35) and in the area of Old School Street at the Cedar Swamp, and Conservation Area on Winchester Drive. There are additional areas outside of Sawmill Brook that flood, so it is important to realize the limitations of the model extent and accuracy. The model can continue to be refined with observed flood elevations. It is an excellent screening tool to evaluate the impact of future flood conditions as discussed in Section 4 and the combined effect of flood mitigation projects, discussed in Section 5.

Stream	Culvert Inventory Identification Number	Street Crossing	HEC-RAS Section Number	
	25	Central Street	199	
	23	School Street	1629	
	22	Norwood Avenue	2653	
	17	Lincoln Street	3686	
	16	Golf Course Driveway	5192	
	27	Mill Street	7533.5	
	26	Route 128	7686	
Sawmill Brook	36	Route 128 Ramp	8131.5	
Sawmin Brook	4	Atwater Avenue	9168	
	3	School Street	11161	
	2	Old School Street	11479.5	
	5	Old Essex Road	13499	
	34	Route 128	14218	
	31, 33	Route 128	15106	
	32, 35	Route 128	16328	
	28, 29	Route 128	17648	
	18	Lincoln Street	378	
Causeway Brook	19	Golf Course Driveway	1280	
	20	Summer Street	1757	
Cat Brook	11	Mill Street	1869	
	12	Millet Lane	1777	
Millet Brook	13	The Plains	1570	
	15	Blue Heron Lane	1111	


Table 2-6 Cross Reference for Hydraulic Structure Identification in HEC-RAS Model

Section 3 Modeling Future Conditions

3.1 Overview

As part of the project, future flooding conditions within the Town were projected as a result of anticipated climate change and sea level rise at three different points in the future: 2025, 2050 and 2100. Data on climate change was obtained from two sources. Future conditions precipitation relied upon the Oyster River Culvert (UNH, 2010) analysis, while the future conditions sea level utilized projections along the Manchester-by-the Sea coastline prepared by Kiel Schmid (GeoScience, 2015).

3.2 Inputs for Future Conditions Model

3.2.1 Precipitation

The Oyster River Culvert Analysis University of New Hampshire (2010) was utilized to project precipitation depths for future conditions. The Oyster River Culvert Analysis extreme precipitation model was developed based upon recent peer-reviewed studies for statistical analysis of climate change effects. The model focuses on fall precipitation events (September, October, November) since 25-year events for this time period were consistently greater than events for late spring (April, May, June)

The Oyster River watershed is located in Durham, New Hampshire, approximately 60 miles north of Manchester-by-the-Sea along the New Hampshire coast. The two areas have a similar climate and elevation, and therefore would experience similar precipitation patterns.

The rate of increase in future precipitation events is anticipated to be dependent upon the use of fossil fuels and the corresponding impacts on greenhouse gases. If a transition to a more balanced use of renewable and fossil fuel energy sources is used, the expectation is that the rate of increase in precipitation would be less than it would if fossil fuels continue to be a primary source of energy.

The Oyster River study model predicts a range of possible climate change outcomes by considering two peer-reviewed greenhouse gas emission scenarios ⁴:

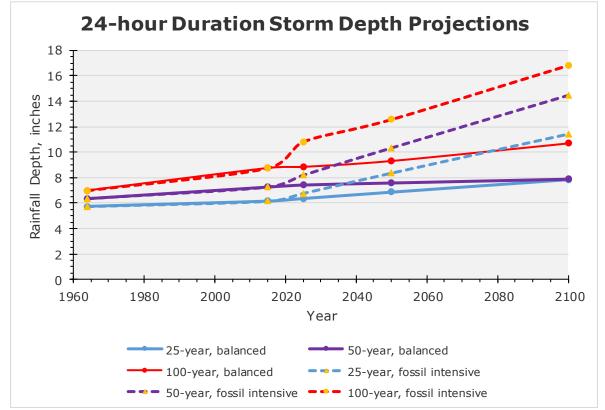
- 1. One scenario assumes a "balanced" global energy mix; i.e. an equal ratio of fossil fuel use to less greenhouse gas intensive sources of energy. This balanced scenario can be viewed as the more optimistic view of climate change's potential impacts in which the atmosphere has approximately 700 ppm of carbon dioxide equivalents by the year 2100.
- 2. The second scenario assumes a "fossil intensive" global energy mix; i.e. fossil fuels continue to be the primary fuel source. The fossil intensive scenario is the more pessimistic view of climate change's potential impacts in which the atmosphere has approximately 970 ppm of carbon dioxide equivalents by the year 2100.

The data in the Oyster River Culvert Analysis was utilized to project future precipitation in 2025, 2050, and 2100 for the balanced and fossil intensive scenarios, with the results shown in **Tables 3-1a** and **3-1b**. Data points from the 1964 U.S. Weather Bureau, the 2015 NRCC data, and the mid-century (2050) Oyster River Study precipitation estimates were plotted, and a logarithmic trend line was used to establish data points for balanced and fossil intensive energy use conditions in 2025 and 2100.

Frequency Storm	2025	2050	2100
25-year	6.36	6.86	7.84
50-year	7.42	7.58	7.88
100-year	8.85	9.31	10.69

Table 3-1a "Balanced Energy Use" Rainfall Depths for the Sawmill Brook Watershed (inches, 24-hour storm)

Table 3-1b


"Fossil Intensive Energy Use" Rainfall Depths for the Sawmill Brook Watershed (inches, 24-hour storm)

2050	
2050	2100
8.35	11.39
10.34	14.48
12.58	16.82
	8.35 10.34

⁴ Intergovernmental Panel on Climate Change's (IPCC) 4th Report developed in 2007

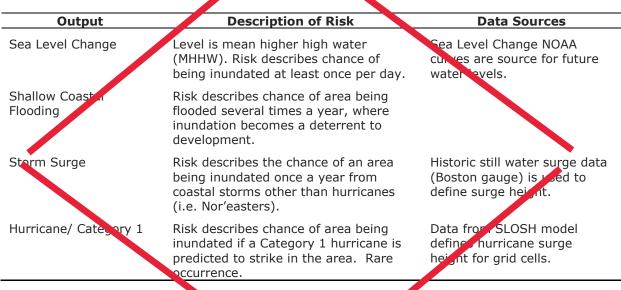
Chart 3-1 offers a graphic representation of the changing rainfall depths for a 24-hour duration storm over time, beginning with the U.S. Weather Bureau Technical Paper-40 data from 1964, through the 2015 Northeast Regional Climate Center data, and also the balanced and fossil intensive energy use projections for 2025, 2050, and 2100. Please refer to **Appendix C-3** for the calculations of the precipitation values in 2025, 2050 and 2100.

3.2.2 Coastal Climate Change Model

Potential sea level rise and future storm surge predictions for Manchester-by-the-Sea were obtained from the Inundation Risk Model (IRM). The IRM model was developed by Keil Schnidt of Geoscience Consultants in 2015 for the Salem Sound Coast Watch communities in Northeast Massachusetts, including Manchester-by-the sea. Tighe & Bond reviewed a number of coastal models with the Town and the Town's Coastal Resilience Advisory Group (CRAG) and elected to use the LKM model because of its balance of simplicity and detail. More information on the model selection may be found in a Tighe & Bond Technical Memorandum "Picential Climate Change Impacts to Manchester-by-the-Sea", September 30, 2010. Tighe & Bond worked with the model developer to refine data specific for Manchester-by-the-Sea.

The IRM is an expanded version of the National Oceanic and Atmospheric Administration (NOAA) Sea Level Rise (SLR) viewer, which considers presence and future inundation from SLR at mean higher high water (MHHW), shallow coastal flocting, Category 1 hurricanes, and stillwater annual storm surge (including coastal storms other than hurricanes, i.e. Nor'easters). The goal of the model is to provide easily understandable

H&H Manna Attant Prest Battons

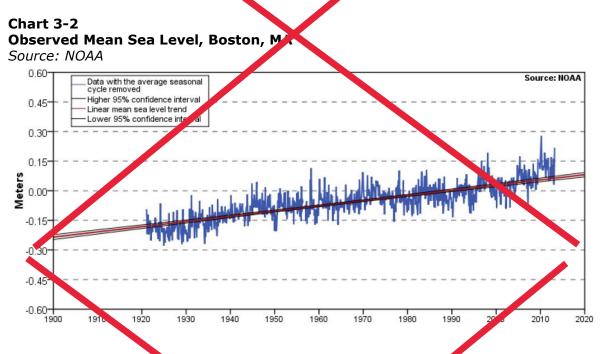


and self-contained information for decision makers and citizene that incorporates a probabilistic handling of the uncertainties involved in documenting future coastal hazards.

Model outputs are shown as risk of inundation presenced in percent risk of occurrence ranging from 1% highly unively to 99% certain risk. The model outputs do not show water levels or depth of inundation. Data sets include sea level rise at mean high high water, shallow coastal flooding, Category 1 nurricanes and still-water annual storm surge for selected timeframes (2015, 2025, 2050 and 2100). The output, description of risk and data sources are included in **Talue 3-2**.

Table 3-2

IRM Model Outputs, Description and Data Sources


Keil Schmidt of Geoscience Consultants provided elevation values for use as model inputs to the HEC RAS software for future coastal tailwater conditions. The image on the left, below, shows the output of all probability values for areas impacted by sea level rise for a particular time period, from 1% indark green as the least likely to occur to 99% in red as the most likely to occur. The right image shows the area covered by the 50 percent probability output, defined of the IRM author "flooding that is as likely to occur as not". Elevations provided by Ken Schmidt are based on the 50 percent output.

3.2 3 Sea Level Rise

Climate scientists are predicting a rise in sea level caused by a change in the volume of the world's oceans due to temperature increase, deglaciation (uncovering of glaciated land because of melting of the glacier), and ice melt. It is anticipated that as a result of sea level rise, the tidal influence of Manchester Harbor will exerce a greater effect than it does today, and the boundary of tidal influence will shift further up Sawmill Brook.

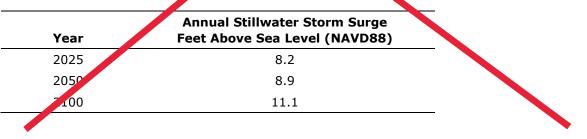
NOAA has documented that the average sea level has been slowly increasing in Boston Harbor, and has increased by approximately 2 millimeters on average per year since 1920, for a cumulative increase of 0.67 feet (**Chart 3-2**) to the present.

Keil Schmidt of Geoscience Consultants extracted the tidal elevations just downstream of the existing tide gate from the 50% probability of the IRM HHW model output for sea level rise in 2025, 2050 and 2100 (**Table 3-3**). These elevations were utilized to evaluate tailwater impacts on the vatershed flood model due only to sea level rise. The sea level rise flood elevations would impact affected properties on a daily basis, likely twice each day corresponding to the high tides.

Table 3-3

IRM Mean High High Water (Sea Level Rise) Tailwater Conditions for HEC-RAS Modeling 50% probability, approximate location 42° 34' 30.6664' N, 70° 46' 22.4346" W

Year	MnHW (Sea Level Rise) Feet Above Sea Level (NAVD88)	
2025	5.1	
2050	5.8	
210	8.0	


2.4 Storm Surge Influence

Keil Schmidt of Geoscience Consultants provided elevation data intervieted from the 50% probability contours of IRM model just outside of the existing title gate for annual stillwater mod scenarios, which include annual storm surge, as the governing elevation for the tailwater impact of coastal flooding. The annual stillwater scenarios were used because the stillwater methodology is consistent with what rEMA uses for determining backwater for rivenue analyses. The annual flood elevation would impact affected properties on an annual basis.

Table 3-4 shows tidal elevations extracted from the 50% probability of the IRM stillwater output for storm surge in 2025, 2056 and 2100. It is interesting to note that these model outputs bracket the 25-, 50- and 100-year FIRM stillwater elevations presented in Table 2-2.

Table 3-4

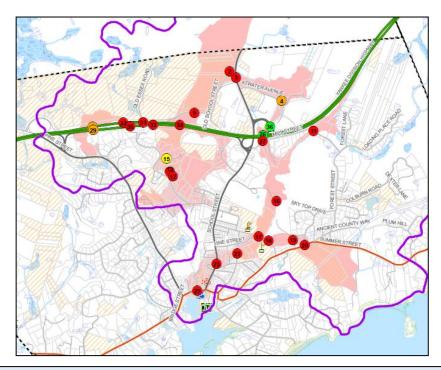
IRM Mean Storm Surge Tailwater Conditions for NEC-RAS Modeling 50% probability, approximate location 42° 34' 30.6664" N, 70° 46' 22.4346" W

3.3 Future Conditions Modeling Approach

3.3.1 Hydrology

The rainfall depths presented in Section 3.2.1 were entered into the HEC-HMS model of the watershed to determine flow rates (discharge) along the river. The results of the HEC-HMS under future conditions is included in **Appendix B-3**. **Table 3-5** summarizes the discharge at Central Street comparing balanced energy use (A1b) and fossil intensive use (A1fi) greenhouse gas emissions scenarios as described previously in Section 3.2.1. for present and future time periods. Table 3-5 illustrates that the flow rates increase dramatically under the fossil intensive uses and by 2100, under the fossil intensive scenario, flow rates will be nearly 2.5 times greater than they are today

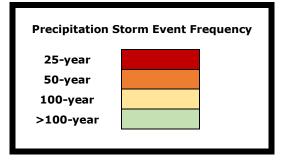
Table 3-5 Summary of Flow Rates (cubic feet per second) at Central Street	


Frequency		20	2025		2050		2050		100
(years)	2015	Bal.	Intensive	Bal.	Intensive	Bal.	Intensive		
25	1,437	1,513	1,674	1,706	2,261	2,073	3,437		
50	1,897	1,919	2,202	1,978	3,039	2,088	4,642		
100	2,427	2,450	3,222	2,630	3,868	3,174	5,924		

3.3.2 Future Conditions Hydraulics

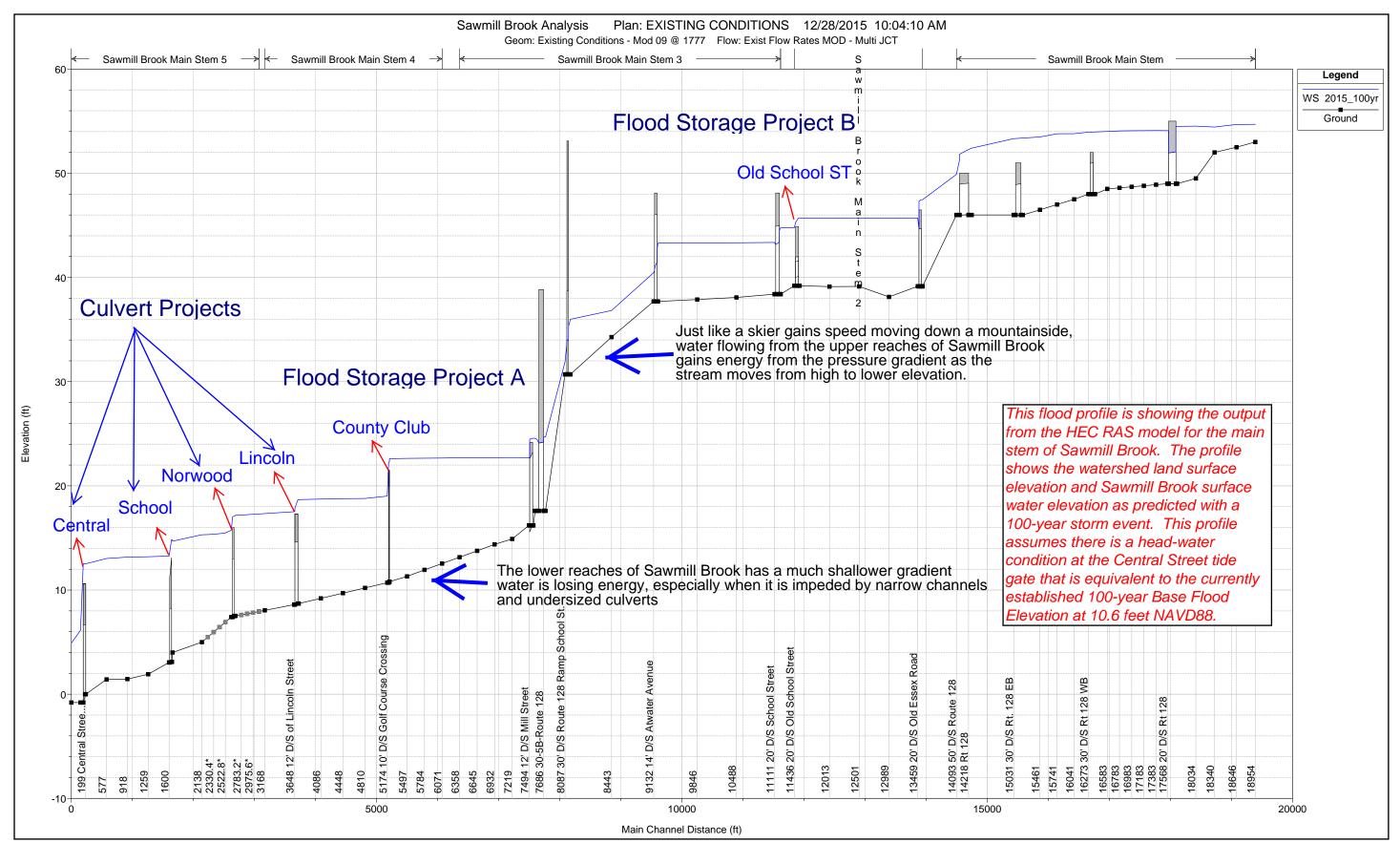
The riverine flow data obtained from the hydrologic analysis was entered and combined with two different tailwater elevations (storm surge and sea level rise) to model the watershed under future climate change scenarios in 2025, 2050, and 2100 for the balanced and fossil intensive energy use precipitation projections. As anticipated, the floodplain expands considerably, especially under the fossil intensive energy use scenarios. HEC-RAS model data for future conditions appears in **Appendix D**.

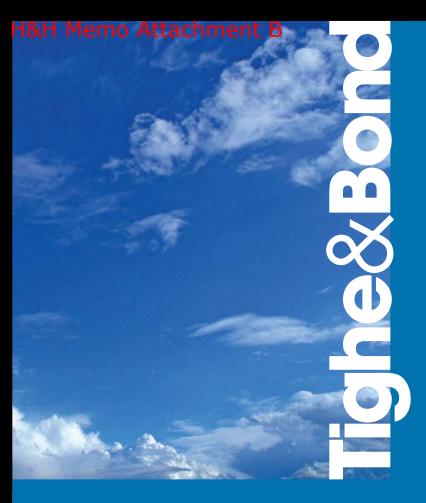
3.4 Impact on Existing Infrastructure


Based upon the results of the HEC-RAS model, the impact on the existing culverts and bridges in the watershed was assessed based on the 50% probability for both stillwater (annual storm surge) and sea level rise. By 2100 almost all of the culverts in the watershed will be overtopped for storms more frequent than the 100-year event due to either tailwater condition (see inset below). **Table 3-6** shows where, when and how culverts in the Sawmill Watershed will be impacted with climate change conditions. For example, using the Balanced Energy Use projection, the culvert at Mill Street on Sawmill Brook will overtop under the Balanced Energy Use in the years 2025 and 2050 during a 50-year storm; and under both Balanced and Fossil Intense Energy Use, it will overtop in the year 2100 during a 25-year storm. Overtopping results with sea level rise tailwater conditions. For project specific applications, the data provided in Appendix D should be referenced.

Shown above are culverts that will overtop during specific flood events in the year 2100 with a fossil intensive precipitation scenario and storm surge. Culverts shown in red will overtop during a 25 year storm, orange will over top during a 50 year storm, yellow will overtop during a 100 year event and culverts in green will not overtop even with a 100 year storm event. Areas of surficial flooding are shown in pink.

Table 3-6Storm Frequency at which Hydraulic Structures Overtop-Storm Surge or Sea Level Rise


Stream	Culvert Crossing		Balanced Energy Use			Fossil Intense Energy Use		
Stream			2025	2050	2100	2025	2050	2100
Sawmill	Location	Number						
Brook	Central Street	25						
	School Street	23						
	Norwood Avenue	22						
	Lincoln Street	17						
	Golf Course Driveway	16						
	Mill Street	27						
	Route 128	26						
	Route 128 Ramp	36						
	Atwater Avenue	4						
	School Street	3						
	Old School Street	2						
	Old Essex Road	5						
	Route 128	34						
	Route 128	31, 33						
	Route 128	32, 35						
	Route 128	28, 29						
	Lincoln Street	18						
Causeway Brook	Golf Course Driveway	19						
DIOOK	Summer Street	20						
Cat Brook	Mill Street	11						
	Millet Lane	12						
Millet Brook	The Plains	13						
DIOOK	Blue Heron Lane	15						



Another way of examining the model output is to look at flood profiles created by the HEC RAS model. The profiles across the Sawmill Brook Watershed are shown in Chart 3-3 for existing conditions. The chart shows the graphic output directly from the HEC-RAS model including the elevation profile of the land surface, the water table elevation resulting from a 100 year storm event in 2015, and the location of the 27 culverts that were included in the model. Locations are highlighted for Central Street, School Street, Norwood Avenue and Lincoln Street where culvert projects are proposed. The County Golf Course and Old School Street are highlighted where flood storage projects are proposed. These mitigation projects are further described in Section 4- Modeling Improvements for Flood Mitigation.

H&H Memo Attachment B

CHART 3-3 FLOOD PROFILE FOR EXISTING CONDITIONS SAWMILL BROOK MAIN STEM 2015 100-YEAR FLOOD

Section 4 Modeling Improvements for Flood Mitigation

The watershed modeling was expanded to look at potential improvements to flooding by relieving channel restrictions at Central Street, providing additional flood storage north of Route 128, managing flooding through culvert rightsizing, and utilizing green infrastructure best management practices at a variety of pre-screened locations. Modeling for the flood mitigation scenarios was based on conditions in the year 2050, assuming precipitation based on a balanced energy use and the 50 year storm event. This section provides a description of the specific flood mitigation projects considered, the model iteration process to evaluate the impact of different project combinations, and the resulting improvements.

4.1 Central Street Culvert and Tide Gate

The Town of Manchester-by-the-Sea has recognized that the Central Street tide gate, dam and related structures are in need of modification to provide better functionality with respect to drainage and fish passage. This location has been identified for many years as a source of flooding upstream due to this hydraulic restriction, particularly during large rainfall events. The elevated water behind the tide gate is also putting pressure on the seawall at Central Street, causing seepage though the rock voids in the wall.

Reviewing the flood elevations and profiles from Chart 3-3 in the previous section, the flood elevations change significantly across the Central Street Bridge and tide gate area, indicating that this location is a significant bottleneck along the channel. The structures were observed by Tighe & Bond in July 2015, and improvements were identified to address safety, drainage and fish passage.

Looking upstream (low tide) toward tide gate and Central St culvert

The options for the Central Street crossing and tide gate are presented in Table 4-1, while stream restoration options are presented in Table 4-2.

Table 4-1Sawmill Brook Central Street Design Concept Alternatives

Option	Design Element
Option 1	Remove tide gate
	Rehabilitate existing bridge/culvert/seawall structure
	Restore Sawmill Brook at Central Pond
Option 2	Remove tide gate
	Replace and widen culvert /restore seawall and guard rail
	Restore Sawmill Brook at Central Pond

Table 4-2Sawmill Brook Stream Restoration and Flood Stage Alternatives

Design Element	Purpose				
Widen bottleneck	Improve hydraulic flow through system, decrease upstream impounding				
Augment instream vegetation	Stabilize sediment, reduce downstream deposition, provide wildlife habitat				
Build up island and augment instream vegetation	Stabilize sediment, reduce downstream deposition, provide wildlife habitat				
Connect islands and augment instream vegetation	Direct stream flow into main channel, provide wildlife habitat				
Dredge central channel	Improve hydraulics, improve fish passage				
Dredge sediment from central pond	Remove fines and sources of nutrients, increase flood storage				
Maintain shallow channel	Minimize sediment management requirements, accommodate spawning areas				
Build up rock outcrop at mouth	Increase aeration, improve fish passage, naturalize transition between harbor and stream				
Create rock riffles	Improve fisheries/spawning habitat				
Stabilize banks	Minimize sedimentation of stream channel and harbor, protect adjacent land uses				
Flood bank storage	Improve flood storage capacity, reduce downstream flooding severity				

Water seepage (flow) coming from the stone culvert side wall

The HEC-RAS model was used to evaluate Option 2, removal of the tide gate, and widening the current dimensions of the Central Street culvert to maximize the cross sectional area available for flow. Stream restoration options will be considered in the conceptual design phase of the project.

Tables 4-3 and 4-4 summarize modeling runs for widening the culvert and removing the tide gate. The tables compare combinations of flooding and emissions scenarios for the years 2015-2100 to evaluate the range of conditions under which flooding would be mitigated. The results indicate that the improvements will substantially improve capacity for most storm events, even with sea level rise, however with the addition of storm surge, the roadway would be overtopped after the year 2050. Although water elevations are lowered significantly, improvements are only achieved near term under 25-year and 50-year storm events. In addition, the modeling runs with only Central Street improvements lowered water elevations in the stream reach immediately upgradient from Central Street, but did not alleviate flooding problems further upstream. Culverts continued to overtop for School Street, Norwood Street, Lincoln and other locations upstream.

Removal of the tide gate has two additional benefits beyond flood mitigation. The gate is set with a partial opening, which is not conducive for smelt migration due to the head pressure and high velocity of water exiting the gate. Removal of the tide gate will significantly improve the ability of fish to migrate upstream, particularly Rainbow Smelt, who cannot jump up the existing weirs.

In addition, removal of the tide gate will alleviate the hydraulic pressure on the Central Street Seawall. With the tide gate in place, the seawall is technically define by the state

as dam because the water impounded behind the wall exceeds five feet in height at a 100-year design storm. With removal of the tide gate, the technical definition will no longer apply, along with any jurisdictional responsibilities.

Table 4-3

Overtopping at Central Street with Tide Gate Removed and Culvert widened, Balanced Energy Use with Sea Level Rise

	25 yr		50 yr		100 yr	
Year	Exist.	Prop.	Exist.	Prop.	Exist.	Prop.
2015	Overtops	Capacity	Overtops	Capacity	Overtops	Overtops
2025	Overtops	Capacity	Overtops	Capacity	Overtops	Overtops
2050	Overtops	Capacity	Overtops	Capacity	Overtops	Overtops
2100	Overtops	Capacity	Overtops	Capacity	Overtops	Overtops

Table 4-4

Overtopping at Central Street with Tide Gate Removed and Culvert widened, Balanced Energy Use with Storm Surge

	25 yr		50 yr		100 yr	
Year	Exist.	Prop.	Exist.	Prop.	Exist.	Prop.
2015	Overtops	Capacity	Overtops	Capacity	Overtops	Overtops
2025	Overtops	Capacity	Overtops	Overtops	Overtops	Overtops
2050	Overtops	Overtops	Overtops	Overtops	Overtops	Overtops
2100	Overtops	Overtops	Overtops	Overtops	Overtops	Overtops

Enlarging the culvert and eliminating the tide gate would result in significant reductions in water surface elevation. Although the water surface elevation would drop in comparison with existing conditions if the proposed improvements were undertaken, the roadway would still eventually overtop because the surge elevation exceeds the roadway centerline elevation for 2050 and beyond. When only sea level rise is taken into account, the improvements have a larger impact on reducing water surface elevations.

Given the existing constraints in the area of the existing roadway elevation and development on both banks of the river, options to improve the situation at Central Street will need to included additional upstream culvert improvements and flood storage. Reducing storm surge might be achieved with some sort of hurricane barrier. A hurricane barrier might be situated at the mouth of Manchester Harbor.

4.2 Increasing Flood Storage

Four locations were evaluated for potential flood storage:

- Old School Street north of 128;
- Municipal land near Knights Circle;
- Land abutting the Coach Field Playground, and
- The Essex County Golf Course.

Modeling involved adjustment of model parameters at the project site to simulate potential flood attenuation. The model was run to determine the change in stream discharge for a 50-year storm, in the year 2050 using a balance energy emission scenario.

The land next to Coach Field Playground consists of municipally owned area abutting Sawmill Brook upstream of Norwood Avenue. This area is lightly vegetated (with some large diameter trees) with opportunity to create flood storage on the bank of the stream. A project would include re-grading the area and installing natural plantings while leaving the large diameter trees. Approximately 13,000 square feet of area could potentially be utilized.

Municipal land upstream of the School Street culvert, across from Knight's Circle, includes a potential opportunity to create a flood storage area to the left side of the Sawmill Brook looking upstream from School Street culvert. The project would include re-grading the bank area to allow for storage of flood waters by increasing the floodplain. It was assumed that the area on the north bank would be excavated beginning at 12 inches above the bottom of the stream in order to maintain a low-flow channel.

Tighe & Bond modeled these potential flood storage opportunities by modifying the corresponding cross sections in the HEC-RAS model. Because these two areas manage such small areas of floodwater compared to the overall Sawmill Brook watershed, they did not produce any discernable benefit. Two sites for flood storage, Old School Street and the Essex County Golf Course, produced discernable benefits and are described in more detail below.

4.2.1 Upstream of Old School Street

There is a significant area of storage upstream of Old School Street north of Route 128. If the road centerline of Old School Street were raised, additional stormwater could be impounded behind it. Increasing the storage behind Old School Street attenuates storm discharge and reduces the frequency and amount of instances where culverts overtop downstream. Providing flood storage at the top of the Sawmill Brook Watershed would provide greatest benefit for locations immediately downstream of Route 128, where flooding occurs frequently. The conceptual design included replacing the three existing culverts with two reinforced concrete box culverts with natural bottoms and one reinforced concrete pipe culvert. The road elevation of Old School Street would be raised by approximately 4 feet to elevation 46 feet NAVD88.

H&H Meeting Antra Find Improvements for Flood Mitigation

In order to model the raising of Old School Street, the stage-storage-discharge table at Old School Street was updated to account for the additional flow attenuation. The revised tabular data was then entered the into the HEC-HMS model to measure the flood attenuation that would result along the watercourse with the proposed modification.

To assess the benefit of increasing storage behind Old School Street, flow rates on the main stem of Sawmill Brook downstream of Old School Street were modeled for a 50-year storm event in the year 2050, utilizing a balanced energy emission scenario. Flows were entered into the HEC-RAS model to determine the resultant water surface elevations downstream and to demonstrate the impact of the proposed additional flood attenuation capacity at select locations on the river..

Increasing the storage behind Old School Street reduces the flow rates downstream and

reduces the frequency and amount of instances where culverts overtop downstream. The flood reduction benefit is limited to a stream reach of approximately one mile. The flood storage project has the potential to reduce flows by 16% to 85% in the area south of Old School Street before the Essex County Club, but by 1% or less downstream from the County Club, particularly in the downtown area.

4.2.2 Golf Course

The golf course selected based was on opportunities to manage flooding on both municipally owned or privately owned portions of the Essex County Club. Projects would include increasing flood storage areas abutting the stream channel by generally increasing the cross sectional area of the waterbody. In addition, restoring the channel to a more natural orientation would improve aesthetics. Improvements to this location would require coordination with the golf course and considerations for public safety.

Tighe & Bond looked at increasing flood storage on the course by re-grading an area abutting the stream channel to create approximately 6.6 acrefeet of storage. This would alter approximately 13.8 acres on the golf course property.

Providing flood storage within the golf course by increasing the cross sectional area of the existing stream channel will attenuate flood waters below

Essex County Club flood plain area

Inlet of one of Old School Street Culverts

Route 128, reducing downstream flooding severity.

Restoring the channel to a more natural orientation would improve aesthetics. This public location presents an excellent opportunity for a public education kiosk describing how open space parcels can help flood attenuation.

Based on the HEC-RAS watershed modeling completed, this project has limited potential to reduce water surface elevations and water flows during the 50 year storm in 2050, due to the extensive size of the watershed.

4.3 Culvert Rightsizing

Flooding can be managed by changing the dimensions of (i.e. "rightsizing") culverts throughout the watershed. Using the HEC-RAS model, Tighe & Bond evaluated culverts throughout Manchester-by-the-Sea to identify the preliminary impact on downstream and upstream flooding. Based on our evaluation, increasing the cross-sectional area of the following culverts has the most benefit to reducing overall watershed flooding:

- Culvert 23, School Street
- Culvert 22, Norwood Avenue
- Culvert 17, Lincoln Street

4.3.1 Culvert Improvements at School Street

Several design concepts were evaluated for culvert improvements at School Street to maximize flood mitigation. Additional HEC-RAS modeling runs were performed using a 50-year future design storm for the year 2050 under a balanced energy precipitation scenario, incorporating parameters for several sizes of culverts, and channel widening. After carefully evaluating the physical environment, site constraints and HEC-RAS modeling results, the following project elements were proposed to re-size the culvert at School Street to accommodate existing and future flood conditions.

- Remove the existing School Street culvert and replace with 6.6 foot tall by 16 foot wide box culvert
- Widen and lower limited segments of Sawmill Brook.
 - At School Street, lower stream channel by approximately 1.2 feet.
 - Downstream of School Street, widen by approximately 4 feet until Central Pond.
 - Upstream of School Street to Norwood Avenue, widen by approximately 4 to 8 feet depending on location and conflicts with private property.

Inlet of School Street Culvert

Outlet of School Street Culvert

Enlargement of the School Street culvert and limited widening of Sawmill Brook stream channel will improve hydraulic capacity of the stream channel and limit backwater flooding to alleviate flooding of private properties adjacent to Sawmill Brook. Improvements to stormwater drainage will benefit water quality. Sediment removal and stabilization of the streambank as part of the stream widening will improve rainbow smelt habitat.

Based on the HEC-RAS modeling completed, increasing the size of this culvert, widening and lowering of limited segments of Sawmill Brook, in addition to improving the downstream Central Street Culvert and upstream Norwood Avenue culvert, will decrease water surface elevations in flood conditions by approximately 5% upstream of School Street and approximately 13% downstream of School Street. Without making channel improvements, the downstream water surface elevations will only be reduced by only approximately 8%. It should be noted that some channel improvements are necessary for culvert widening.

4.3.2 Culvert Improvements at Norwood Avenue

Several design concepts were evaluated for culvert improvements at Norwood Avenue to maximize flood mitigation. Additional HEC-RAS modeling runs were performed using a 50-year future design storm for the year 2050 under a balanced energy precipitation scenario, incorporating parameters for several sizes of culverts, and channel widening. After carefully evaluating the physical environment, site constraints and HEC-RAS modeling, the following project elements were proposed to re-size the culvert at Norwood Avenue to accommodate existing and future flood conditions.

- Remove existing Norwood Avenue culvert and replace with 7' tall by 20' wide box culvert
- Widen Sawmill Brook stream channel downstream of Norwood Avenue by approximately 4 to 8 feet depending on location and conflicts with private property.
- Lower Sawmill Brook channel by approximately 3.1 feet at Norwood Avenue Culvert

Enlargement of the Norwood Avenue culvert and limited widening of Sawmill Brook stream channel will improve hydraulic capacity of the stream channel and limit backwater flooding to alleviate flooding of private properties and municipal facilities adjacent to Sawmill Brook.

Based on the HEC-RAS modeling completed, increasing the size of this culvert, widening and lowering of limited segments of Sawmill Brook, along with improving the downstream School Street and Central Street culverts, will decrease water surface elevations in flood conditions by approximately 6% downstream before School Street and approximately 13% downstream of School Street. As noted for the School Street culvert, some channel improvements are necessary for culvert widening.

Outlet of Norwood Avenue Culvert

4.3.3 Culvert Improvements at Lincoln Street

Several design concepts were evaluated for culvert improvements at Lincoln Street to maximize flood mitigation. Additional HEC-RAS modeling runs were performed using a 50-year future design storm for the year 2050 under a balanced energy precipitation scenario, incorporating parameters for several sizes of culverts. After carefully evaluating the physical environment, site constraints and HEC-RAS modeling, the following project elements were proposed to re-size the culvert at Lincoln Street to accommodate the 50-year storm for existing and future flood conditions.

- Remove existing Lincoln Street culvert and replace with 6.5 foot tall by 20 foot wide box culvert
- Full-depth roadway reconstruction including guardrail replacement.
- Sediment and organic debris removal in vicinity of culvert.

Enlargement of the Lincoln Street culvert will increase the hydraulic capacity of Sawmill Brook and reduce backwater flooding impacting the High School property and Lincoln Street Wellfield upgradient of the site, which has flooded in previous storm events. The stone culvert is aging, and replacement will eliminate safety concerns, especially during large flood events which are currently undercutting the banks at the culvert sidewalls.

Based on the HEC-RAS modeling completed, increasing the size of this culvert along with improving the downstream Norwood Avenue, School Street, and Central Street culverts, will decrease water surface elevations in flood conditions by up to 10% in the upstream segment, by approximately 3% directly downstream of Lincoln Street, almost 10% downstream of Norwood Avenue and School Street.

Stone Arch Construction of the Lincoln Street Culvert

4.4 Green Infrastructure

Tighe & Bond conducted an assessment of the potential benefit of installation of green infrastructure practices also known as Low Impact Development Best Management Practices (LID BMP's). For a complete description of the Green Infrastructure BMP Analysis, please refer to the Tighe & Bond Report, "Opportunities for Flood Mitigation within Sawmill Brook", July 30, 2015. As described in this report, opportunities to install green infrastructure throughout the watershed included the following locations:

- Parking lot abutting the Town Fire Station at 12 School Street;
- Parking lot for the Coach Field Playground;
- High School; and
- Elementary School.

Green infrastructure practices manage small areas of runoff compared to the overall Sawmill Brook watershed. Tighe & Bond evaluated these locations as part of the HEC RAS modeling. For example, for the Elementary School, we assumed that all of the existing pavement would be converted to permeable pavement, approximately 39,000 square feet. The curve number calculation for this location was adjusted for the land use coverage assuming that the area would be converted to permeable pavement. The runoff curve number dropped from 74 to 73, which is not significant. Additional model runs were performed to account for the reduced runoff curve number. We found that, under all modeling conditions, there was only a slight reduction (generally 2 cfs) in the flow rate downstream of the elementary school and that culvert overtopping was not reduced (i.e. the project would not have a significant impact on the water surface elevations).

Of the areas identified as potentially feasible for green infrastructure installation, the Coach Field Parking Area was selected by the Town to further explore the flood benefits from installation of porous pavement or LID BMPs.

4.4.1 Recommended Project - Porous Asphalt for Coach Field Parking

HEC-RAS modeling was evaluated for the potential benefit of installing porous asphalt in the Coach Field parking lot. Because the parking area is small (approximately 0.4 acres) in comparison the to overall watershed (approximately 3,400 acres), this improvement will have limited benefit to reducing flows during larger precipitation events (e.g. the 25, 50, and 100 year storms in 2025, 2050, and 2100 that range from 6.3 inches to almost 11 inches in a 24-hour However, it will have storm). some benefit during small storm events. In addition, installing

View of parking area from Norwood Avenue

porous aspahlt on the parking area will improve water quality and reduce thermal loading to Sawmill Brook. This project would consist of the following elements:

- Construction of a porous asphalt parking area to replace existing gravel parking, including excavation of existing parking lot and installation of sub-base.
- Installation of small bathroom facilities as part of project
- Project would include a public education component through signs and displays.

Water quality improvements would be attained with the implementation of this project. Sediment routinely migrates from the unpaved parking area to Sawmill Brook, negatively impacting smelt habitat. Porous asphalt, the green stormwater infrastructure recommended for the site, has the ability to reduce total suspended solids up to 80%. Porous asphalt will also help reduce runoff to Sawmill Brook during smaller storms. The public location of the parking area, and high use volume makes this an ideal spot for a public education kiosk, to inform the public about impacts of stormwater runoff on Sawmill Brook and the benefits of green stormwater infrastructure.

4.5 Storm Surge Barrier

A storm surge barrier would be an option to protect Manchester Harbor and vicinity from moderate storm surge, some sea level rise, wave action and if closed during low tide, a way to hold a low tail-water condition to minimize back-watered river flooding. These types of structures can range from large structures, such as the New Bedford Hurricane Barrier (right), to smaller tidal dikes, lower right. From the existing topographic land height limitations in Manchester Harbor, a surge barrier would likely be a structure size in between these two example photographs.

The site of the conceptual surge barrier illustrated in Figure 1 was selected as a balance between vicinity protected (most of the harbor area) and finding an area with adjacent high shoreline and relative shallow water depths to minimize structure costs. Several sites were considered, including the railroad bridge that benefits from the existing railroad fill, and were viewed and discussed with town officials. The preferred site from a technical perspective is the harbor entrance between Tucks Point and Proctor Point. This site is just inshore of mapped/historical eelgrass beds, thus avoiding sensitive benthic habitat.

View of Manchester Harbor

The conceptual design of the surge barrier is a traditional stone armored dike/breakwater with a navigation opening aligned with the harbor entrance channel. A boat navigation opening at least 60 feet wide would be provided in the barrier, aligned with the channel, formed by side walls and a hinged steel gate, typically open, lying on the seabed. The opening end walls might consist of steel sheet pile cells, or concrete structures. The concept layout is based on a 12 foot wide crest path that would likely be needed for periodic maintenance and a crest elevation about 21 feet above mean lower low water, based on the present FEMA 100 year velocity zone elevation. The barrier structure might also need to include submerged tunnels with gates, normally open, to maintain good tidal water exchange and water quality in the harbor. The existing town sewer outfall pipe is buried along the edge of the existing navigation channel and this would need to be investigated to see if modifications including armoring and a back flooding prevention valve might be needed.

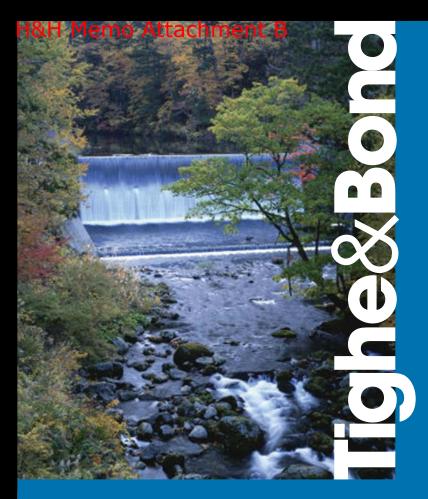
4.6 Evaluation of Combined Projects

To achieve optimal flood reduction benefits, a combination of culvert resizing projects and flood storage is desirable. HEC-RAS modeling runs were completed for a series of combined projects as shown below in **Table 4-5** to evaluate the potential benefits from cumulative flood mitigation. **Appendix E** provides a summary of the HEC-RAS modeling iterations with the project combinations. This information will be used in combination with other considerations to refine and prioritize projects for the final Task 6 memo.

Table 4-5

Project Elements		Modeling Iterations											
		2	3	4	5	6	7	8	9	10	11	12	13
Culvert Improvements*													
Central Street	Х		х			х	Х	Х	Х	Х	Х	Х	Х
School Street	х		х			х	х	Х	Х	х	х	х	х
Norwood			Х			Х	Х	Х	Х	Х	Х	Х	Х
Lincoln						Х	Х	Х	Х				
Channel Improvements													
School –Norwood Widen			х			х					Х	Х	Х
School-Norwood Widen and Deepen												х	х
Flood Storage													
Essex County Golf Course				х	х								
Old School Street		х	х		х	х		х					

Summary Table of Combined Flood Mitigation Projects


The following presents notes on the various model iterations:

• Iteration 1: Includes increasing dimension of culverts at Central Street to 19' wide 8' tall, School Street to 20' wide by 7.5' tall, and Norwood Avenue to 20' wide 7' tall (all three are proposed box culverts) and widening the Sawmill Brook channel between School Street and Norwood Avenue by eight feet on each side of the stream channel.

- Iteration 2: Includes only flood storage by raising Old School Street by approximately 4 feet to elevation 48.1.
- Iteration 3: Includes increasing dimension of culverts at Central Street to 19' wide 8' tall, School Street to 20' wide by 7.5' tall, and Norwood Avenue to 20' wide 7' tall (all three are proposed box culverts) and widening the Sawmill Brook channel between School Street and Norwood Avenue by eight feet on each side of the stream channel, and raising Old School street by approximately 4 feet to elevation 48.1 to create flood storage (Iteration 2).
- Iteration 4: Includes only flood storage at the Essex County Club by expanding area by 38 acre-feet at elevation 18.
- Iteration 5: Combines flood storage using Old School Street and the Essex County Club (Iterations 2 and 4).
- Iteration 6: Includes increasing dimension of culverts at Central Street to 20' wide 8' tall, School Street to 20' wide by 7.5' tall, Norwood Avenue to 20' wide 7' tall, and Lincoln Street to 20' wide by 6' tall (all four are proposed box culverts) and widening the Sawmill Brook channel between School Street and Norwood Avenue by ten feet on each side of the stream channel.
- Iteration 7: Includes increasing dimension of culverts at Central Street to 20' wide 8' tall, School Street to 20' wide by 7.5' tall, Norwood Avenue to 20' wide 7' tall, and Lincoln Street to 20' wide by 6' tall (all four are proposed box culverts) along with using flood storage at the Essex County Club (Iteration 4).
- Iteration 8: Includes increasing dimension of culverts at Central Street to 20' wide 8' tall, School Street to 20' wide by 7.5' tall, Norwood Avenue to 20' wide 7' tall, and Lincoln Street to 20' wide by 6' tall (all four are proposed box culverts) along with raising Old School Street to create flood storage (Iteration 2).
- Iteration 9: Includes increasing dimension of culverts at Central Street to 20' wide 8' tall, School Street to 20' wide by 7.5' tall, and Norwood Avenue to 20' wide 7' tall (all three as box culverts) and reducing the Lincoln Street to 10' wide by 5.9' tall (as an arch culvert) for creation of upstream flooding in Essex County Club.
- Iteration 10: Includes increasing dimension of culverts at Central Street to 20' wide 8' tall, School Street to 20' wide by 7.5' tall, and Norwood Avenue to 20' wide 7' tall (all three are proposed box culverts), with no other channel improvements.
- Iteration 11: Includes increasing dimension of culverts at Central Street to 20' wide 8' tall, School Street to 14' wide by 5.64' tall, and Norwood Avenue to 20' wide 4.65' tall (all three are proposed Con/Span® culverts), with widening Sawmill Brook by approximately four feet on each side in the vicinity of School Street, ten feet on each side in the vicinity of Norwood Avenue, and seven feet on each side in the area between School Street and Norwood Avenue.
- Iteration 12: Includes increasing dimension of culverts at Central Street to 20' wide 8' tall, School Street to 16' wide by 8' tall, and Norwood Avenue to 20' wide 7' tall (all three are proposed Con/Span® culverts), with widening Sawmill Brook

by approximately four feet on each side in the vicinity of School Street, ten feet on each side in the vicinity of Norwood Avenue, and seven feet on each side in the area between School Street and Norwood Avenue. This also includes deepening Sawmill Brook by approximately 1.9 feet at School Street, 2.3 feet at Norwood Avenue, and up to 2 feet in the channel between the two culverts.

• Iteration 13: Includes increasing dimension of culverts at Central Street to 20' wide 8' tall, School Street to 16' wide by 8' tall, and Norwood Avenue to 16' wide 7' tall (all three are proposed Con/Span® culverts), with widening Sawmill Brook by approximately four feet on each side in the vicinity of School Street, ten feet on each side in the vicinity of Norwood Avenue, and seven feet on each side in the area between School Street and Norwood Avenue. This also includes deepening Sawmill Brook by approximately 1.9 feet at School Street, 2.3 feet at Norwood Avenue, and up to 2 feet in the channel between the two culverts.

Section 5 Project Summary & Recommendations

5.1 Summary

Tighe & Bond evaluated the existing and future hydrology and hydraulics within the Sawmill Brook watershed under varying climatic events. Evaluation including modeling existing watershed conditions using information about soils, topography, ground cover (impervious cover and land uses), existing wetlands and waterbodies, water travel times, existing structures that control discharges (e.g. Central Street tide gate, culverts, etc.), rainfall depths developed by the Cornell University Northeast Regional Climate Center, and tidal influences using data from Flood Insurance Study for Essex County (July 2014). The existing conditions model was calibrated against the May 2006 storm (Mother's Day storm) that represent 25-year single day and 100-year consecutive day storm conditions.

Future watershed conditions were modeled to build off the existing conditions model and consider anticipated impacts from climate change and sea level rise in 2025, 2050, and 2100. For the future conditions model, precipitation estimates from the existing conditions scenario were replaced with estimates of future rainfall depths for 2025, 2050, and 2100 from the Oyster River Culvert Analysis project completed in Durham, New Hampshire (UNH, 2010). In addition, sea level rise and storm surge were considered using data from the Inundation Risk Model (IRM) outputs developed by Keil Schmid (Geoscience, 2015).

Using the future conditions model, we evaluated potential impacts on existing infrastructure (e.g. Central Street tide gate, culverts, crossings) from storm surge, sea level rise, and future precipitation conditions in 2025, 2050, and 2100. The future condition model for the year 2050 using a 50-year storm and a balance energy emission scenario was also used to evaluate right sizing culverts sizes and needed upgrades, and the mitigation value of proposed stormwater best management practices including green stormwater infrastructure, conveyance projects, and flood storage.

In general, the floodplain will continue to expand over time for the proposed climate change scenarios, and as a result of the increased flow and higher tailwater elevations exerted by tidal forces, by 2100, under a fossil intensive projection, 60% of the culverts in the watershed will overtop during a 25-year storm, and 70% will overtop during a 100-year storm under both storm surge conditions and sea level rise conditions.

Tighe & Bond expanded the modeling to look at potential improvements to flooding by relieving channel restrictions at Central Street, providing additional flood storage north of Route 128, rightsizing culverts, and utilizing green infrastructure best management practices at a variety of pre-screened locations. Based on the modeling results looking at individual projects, the scenario with resizing the culvert at Central Street has by far the largest improvement in the watercourse's flood carrying capacity.

To achieve optimal flood reduction benefits, a combination of culvert resizing projects and flood storage is desirable. HEC-RAS modeling runs were completed for a series of combined projects. This information will be utilized to make recommendations for prioritizing projects as part of Task 6.

5.2 Recommendations

Tighe & Bond met with Town staff on October 26, 2015, to review the modeling effort and preliminary results and to identify projects for further evaluation under Task 5, conceptual designs and preliminary permitting evaluation. Based on discussions at this meeting, conceptual designs will be prepared for the following nine projects:

- 1. Removing channel restrictions at Central Street (Option 1) consists of removing the tide gate and keeping the configuration of the culvert, potentially with a rock riffle to keep Central Pond full of water
- 2. Removing channel restrictions at Central Street (Option 2) consist of removing the tide gate, opening the culvert, removing the dam, and changing the entire crossing to be a bridge, and restoring the historic stream channel
- 3. Increasing the dimensions of the School Street culvert (23) with modifications to the channel of Sawmill Brook to account for increased culvert sizing
- 4. Increasing the dimensions of the Norwood Avenue culvert (22) with modifications to the Sawmill Brook channel to account for the increased culvert dimensions
- 5. Increasing the dimensions of the Lincoln Avenue culvert (17)
- 6. Flood storage in the Essex County Club Golf Course.
- 7. Flood storage upstream of Old School Street culvert (2)
- 8. Development of a hurricane barrier located in Manchester Harbor to manage overtopping from storm surge and hurricanes
- 9. Installation of a green infrastructure practice, porous pavement, at the Coach Field parking lot

Removing Channel Restrictions at Central Street & Installation of a Hurricane Barrier

- When only sea level rise is taken into account, the Central Street improvements have the largest impact on reducing water surface elevations upstream. Due to the locations of business on the east bank of the river, and the roadway on the west bank, any widening of the river approach would be difficult, but eliminating the tide gate would result in reductions in water surface elevation. Culvert enlargements would also result in significant reductions in water surface elevation upstream, and would restore the stream crossing to historic conditions. Both improvement alternatives will improve smelt passage and spawning potential.
- Under worst case future storm conditions, even with modifications to the Central Street Bridge, the roadway would still overtop because the surge elevation exceeds the roadway centerline elevation for 2050 and beyond. This may be addressed with use of a hurricane barrier or raising the elevation of Central Street. A hurricane barrier might be located at the mouth of Manchester Harbor.

Removing Channel Restrictions at Culverts

• Improving conveyance of Sawmill Brook in the "downtown" area of Manchester (i.e. culverts at School Street, Norwood Avenue, and Lincoln Street) will reduce the overall watershed flooding.

Increasing Flood Storage at the Golf Course

• The golf course is located at approximately the halfway point in the watershed, includes Town-owned land, and has a large area for flood management before Sawmill Brook flows into Manchester's downtown area. These reasons make the golf course an excellent candidate for managing floodwaters with limited impacts to abutters.

Improving Flood Storage behind Old School Street

 Increasing the storage behind Old School Street (north of Route 128) reduces the flow rate for the stretch of stream channel between School Street and the confluence of Causeway Brook at Lincoln Street for large storm events. Most improvement would be between School Street and Mill Street. Further downstream, flows from other areas in the watershed combine, increasing flow in the watershed, so the contribution of the storage decreases until it disappears by the time the brook meets Causeway Brook.

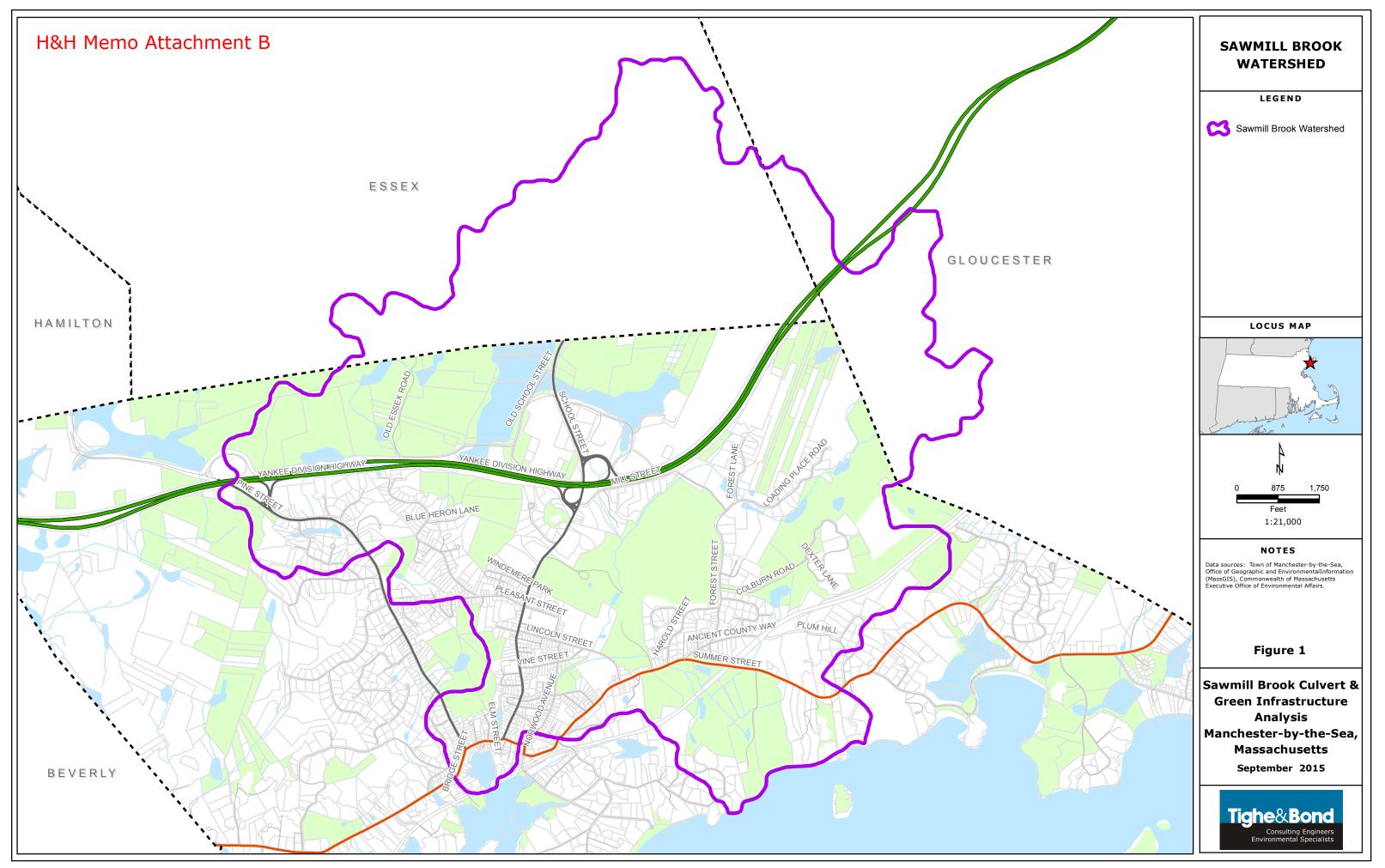
Installation of Green Infrastructure at the Coach Field Playground Parking Area

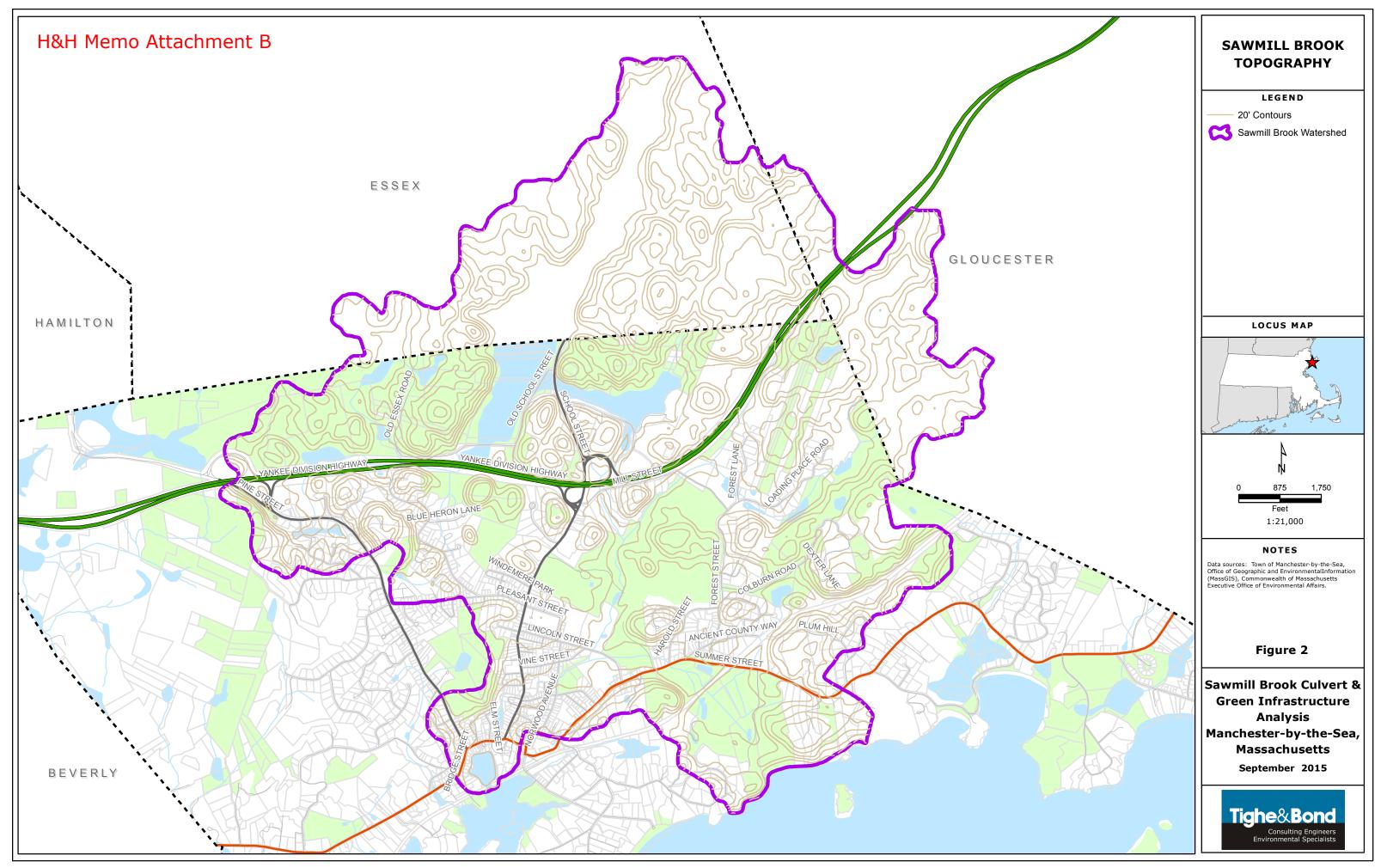
• The Coach Field Playground parking area was identified as a priority over the Elementary School parking area due to proximity to Sawmill Brook and planned improvements at the Elementary School. While installation of porous pavement at the Coach Field Playground parking area does not reduce flood elevations in Sawmill Brook, it does have an excellent opportunity to improve water quality and result in localized reductions in discharge from the parking lot. This is also an excellent location for public education.

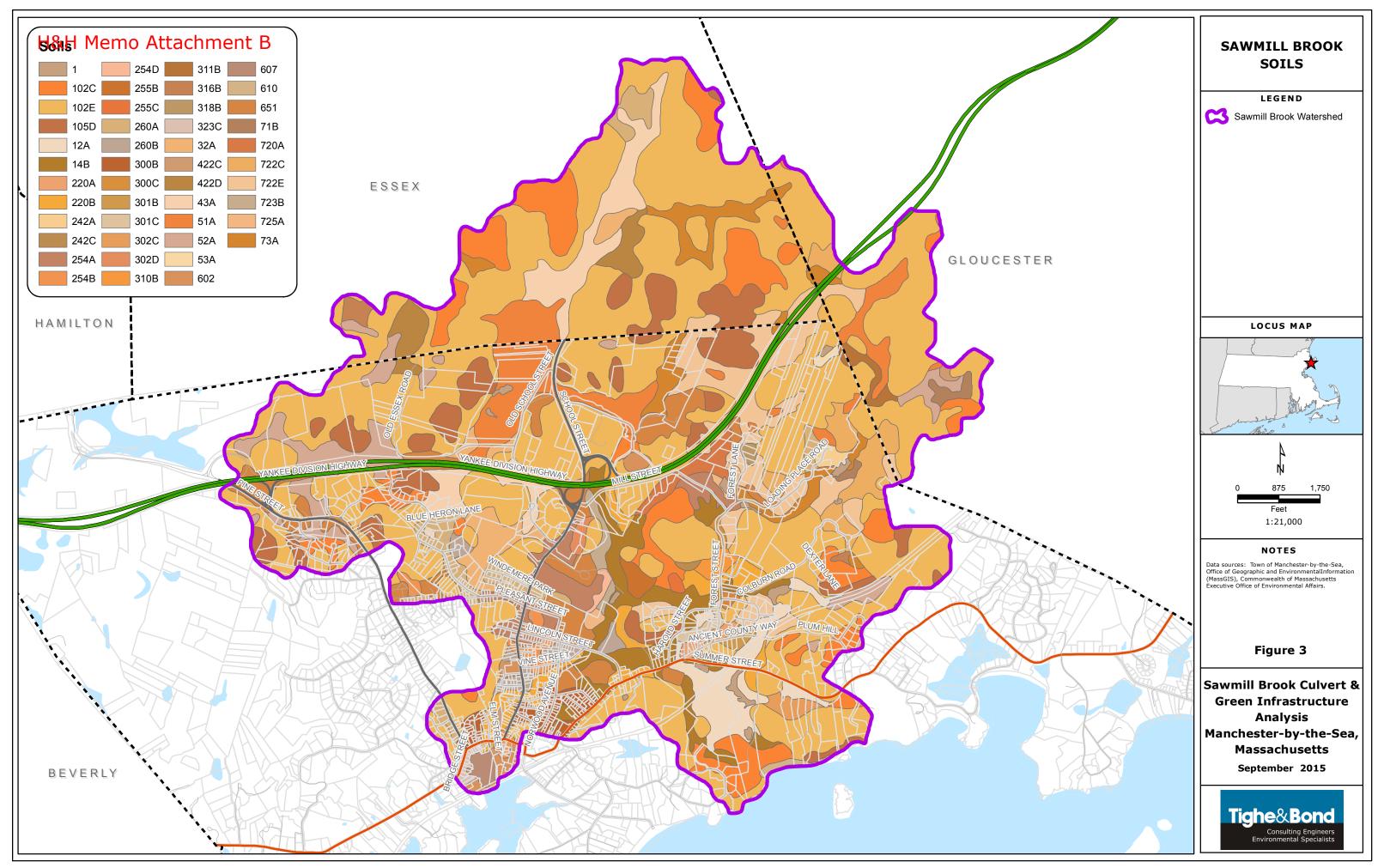
References

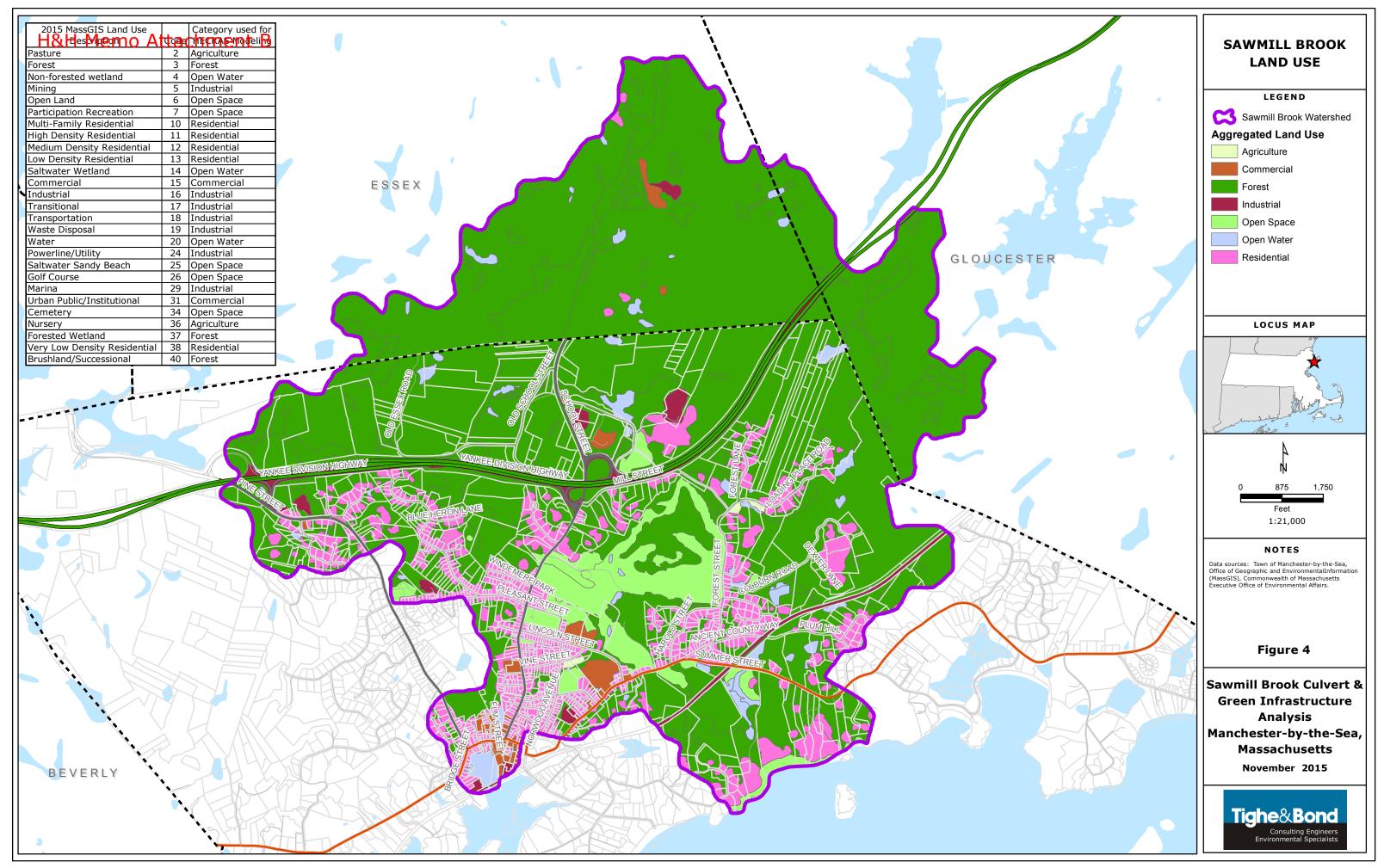
University of New Hampshire (2010). The Oyster River Culvert Analysis.

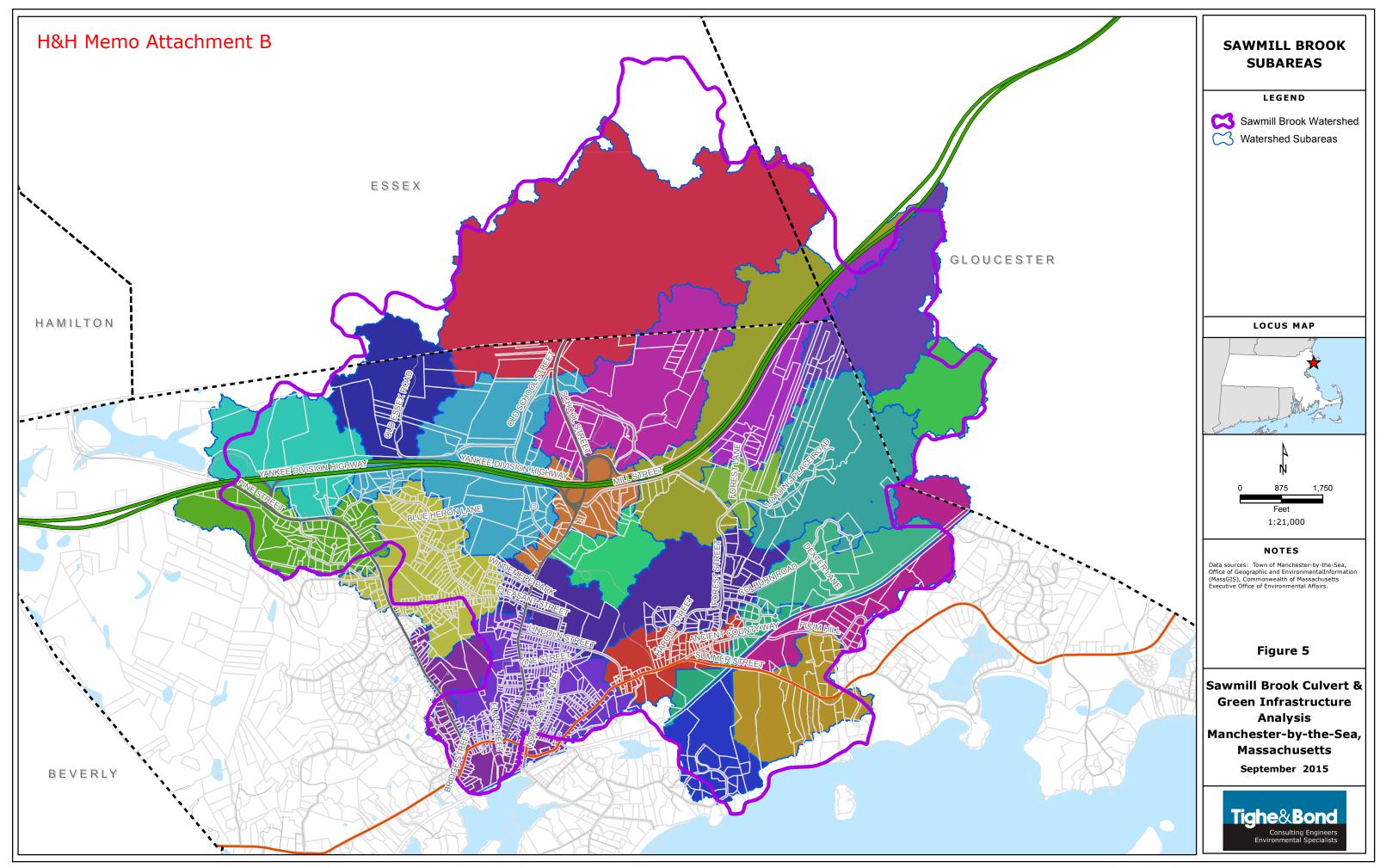
Schmidt, Keil. Integrated Risk Model Website: http://www.geosciconsultants.com/projects/2015/5/27/coastal-risk-mapping-in-salemsound

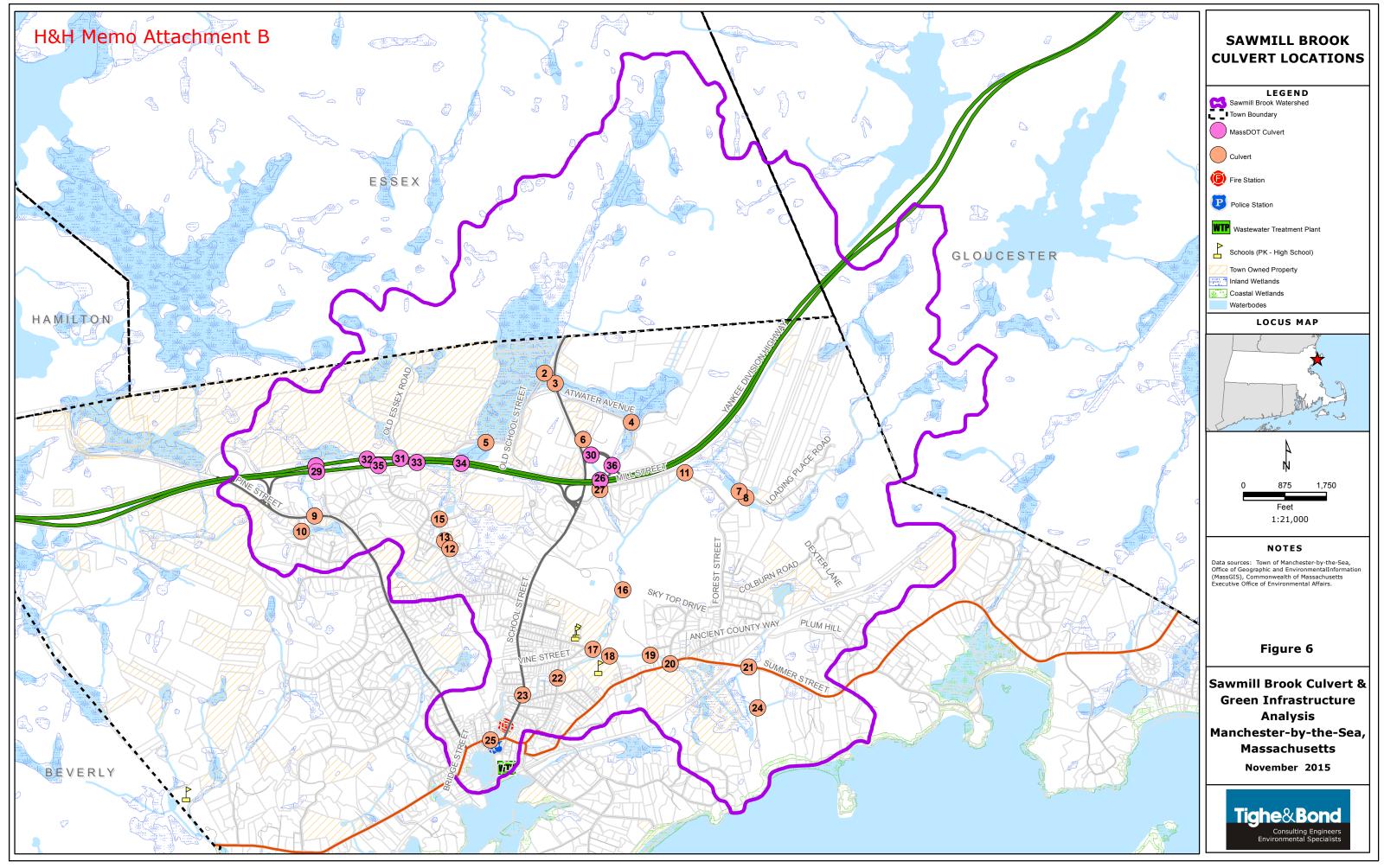

Tighe & Bond (6/2015). Memo to Mary Reilly, "Manchester-by-the-Sea, Grants Coordinator, Sawmill Brook Central St Seawall, Tide Gate & Culvert Observations".

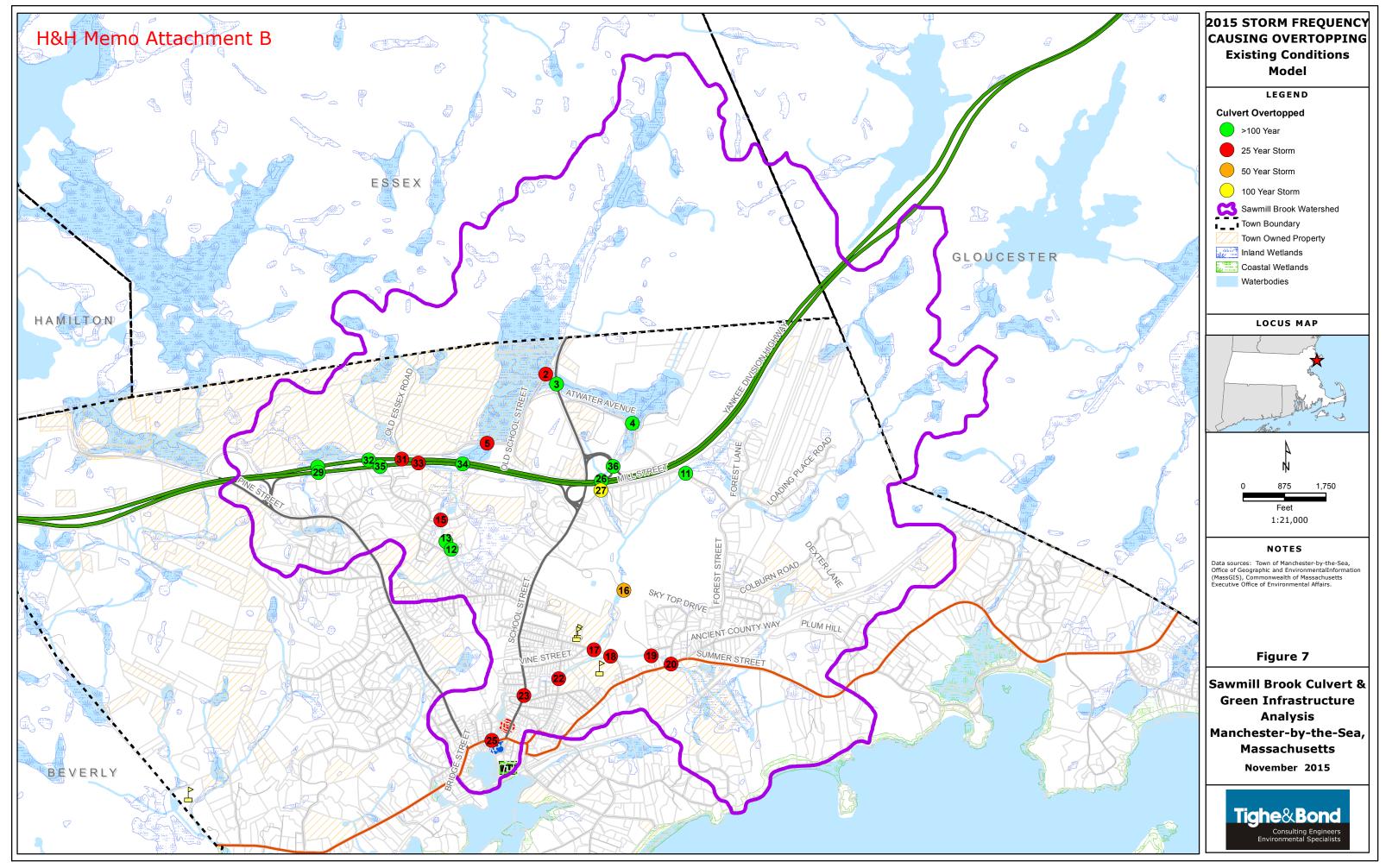

Tighe & Bond (7/2015). Report, "Opportunities for Flood Mitigation within Sawmill Brook

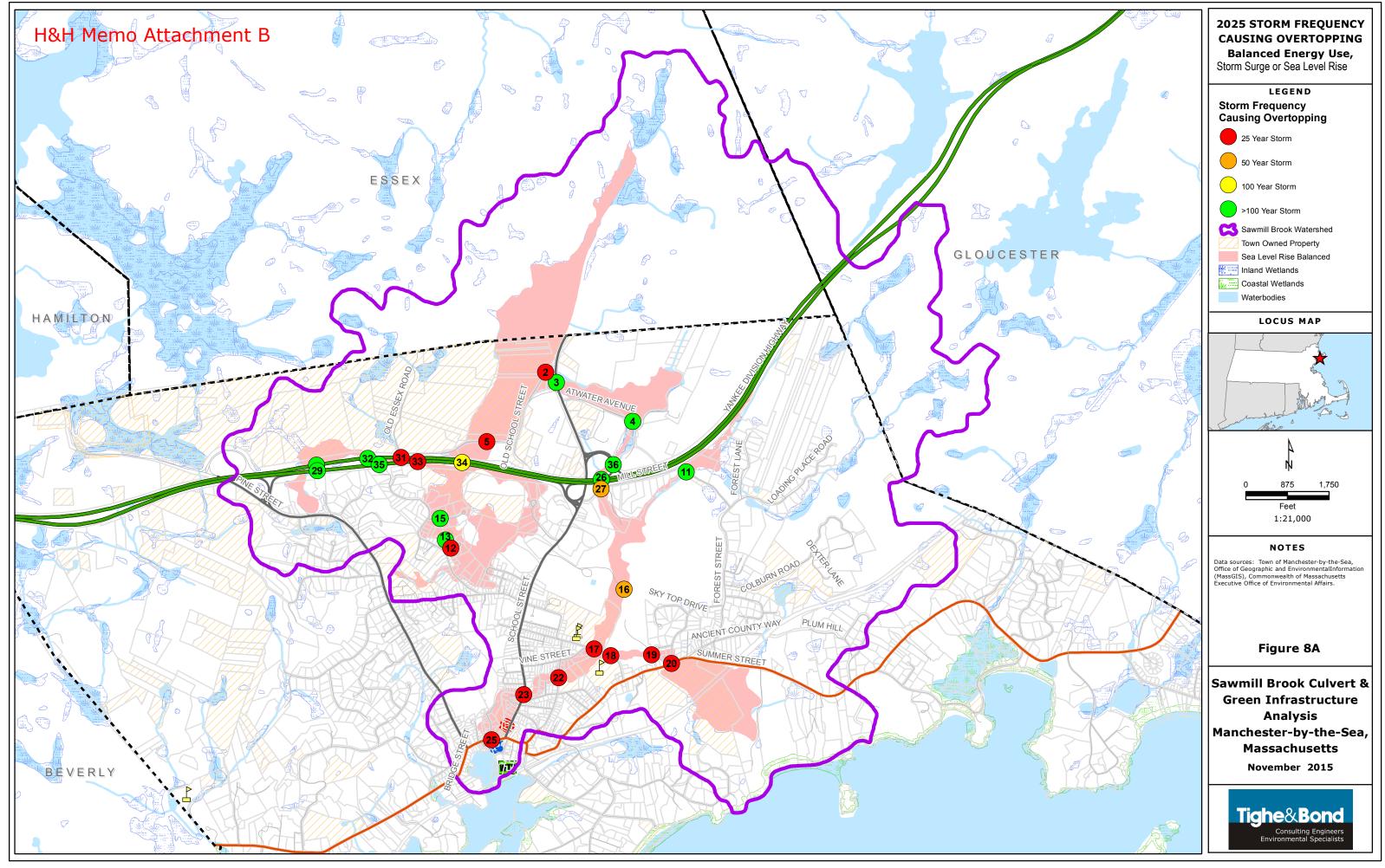

Tighe & Bond (7/2015). "Manchester-by-the-Sea, Massachusetts, Stream Crossing Evaluation, Sawmill Brook Watershed".

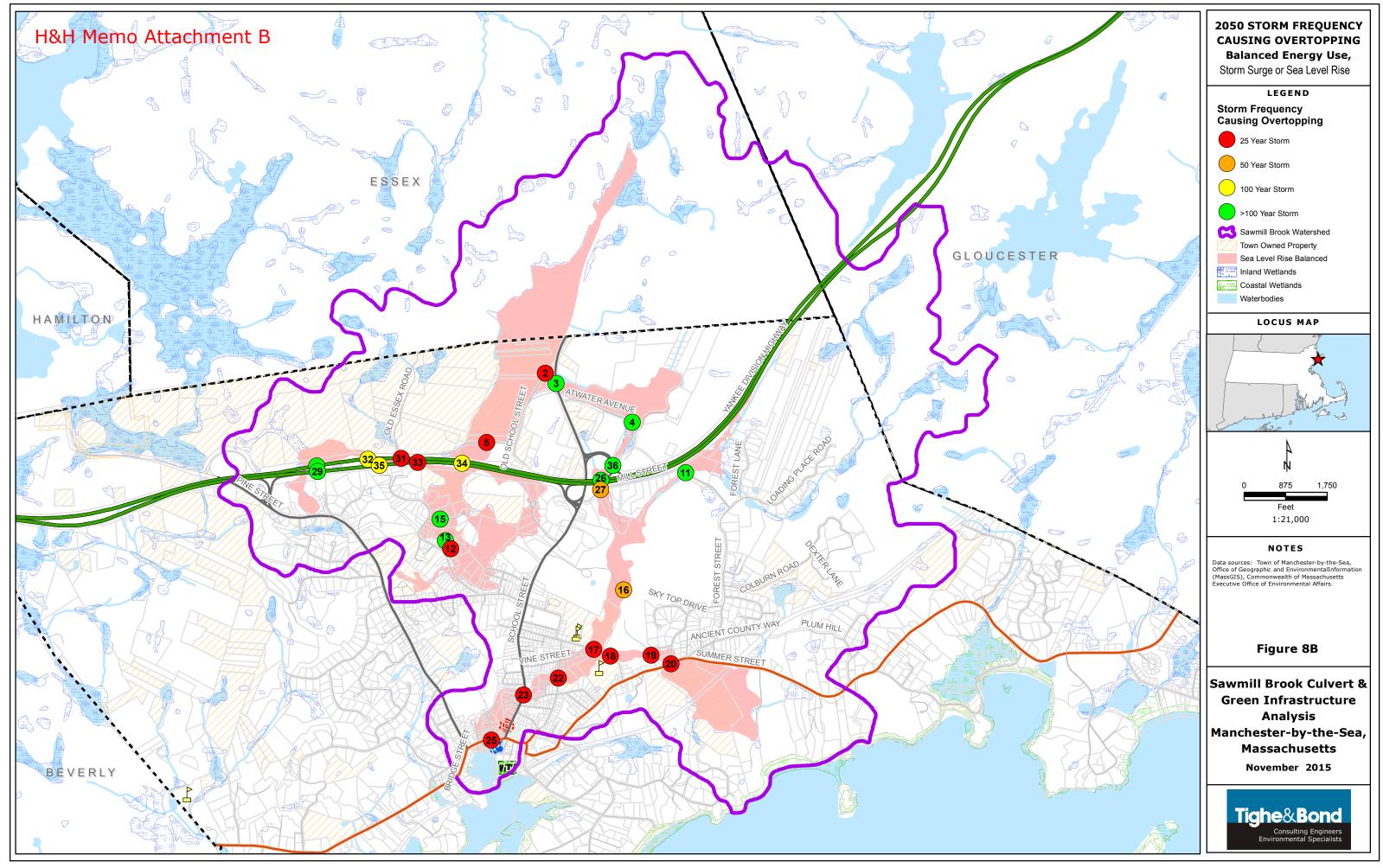

Tighe & Bond (9/ 2015). Technical Memorandum "Potential Climate Change Impacts to Manchester-by-the-Sea".

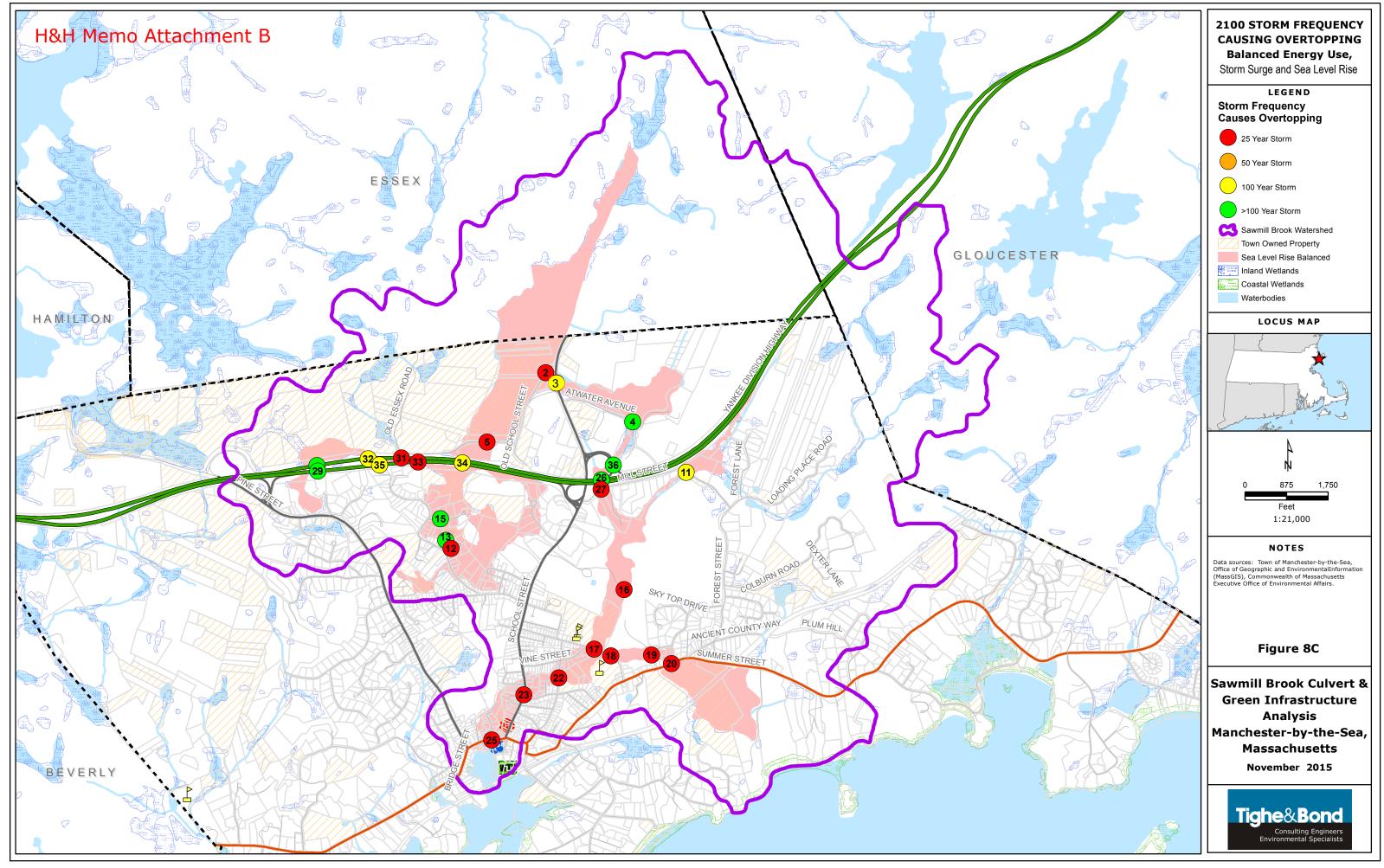

FIGURES

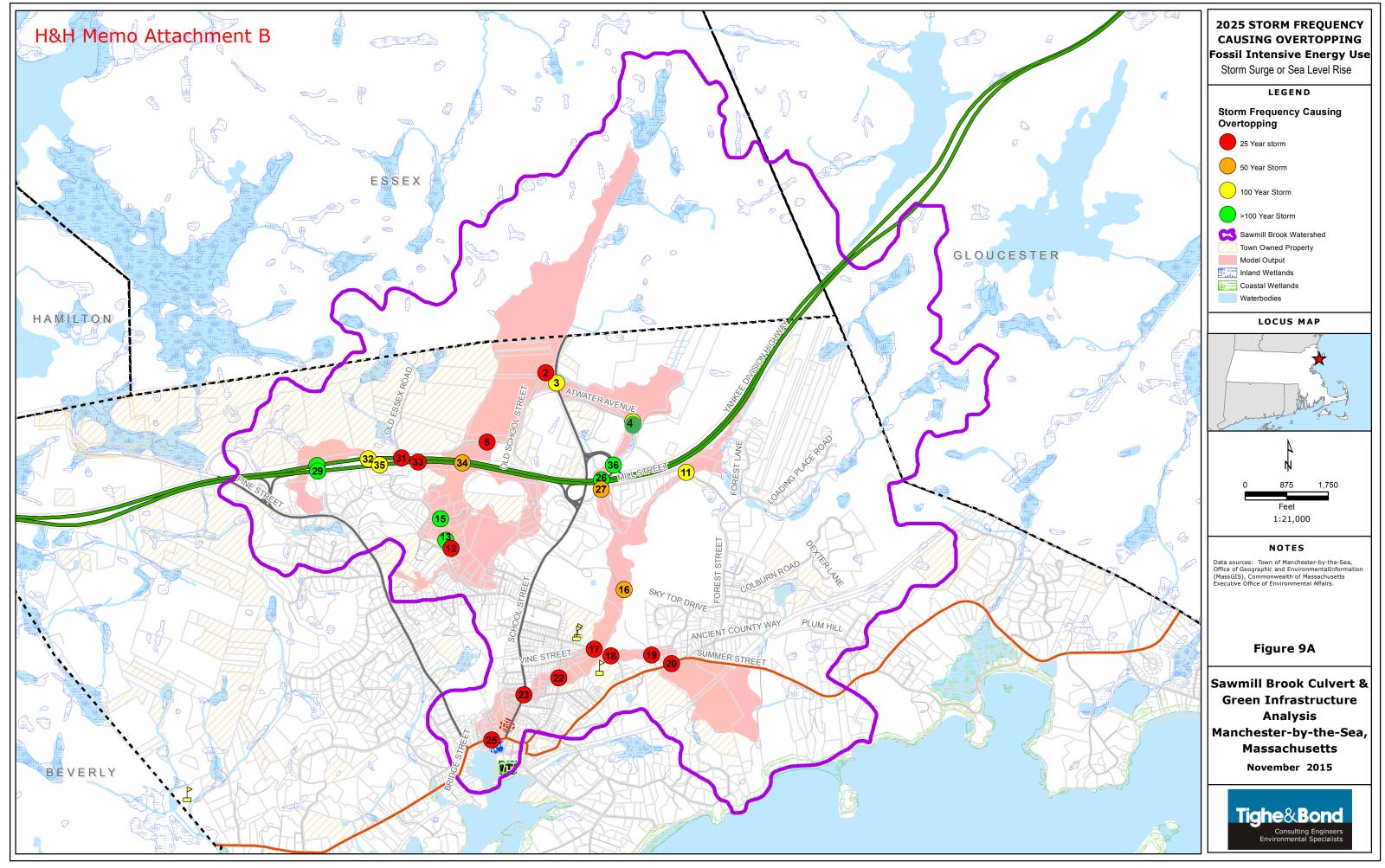


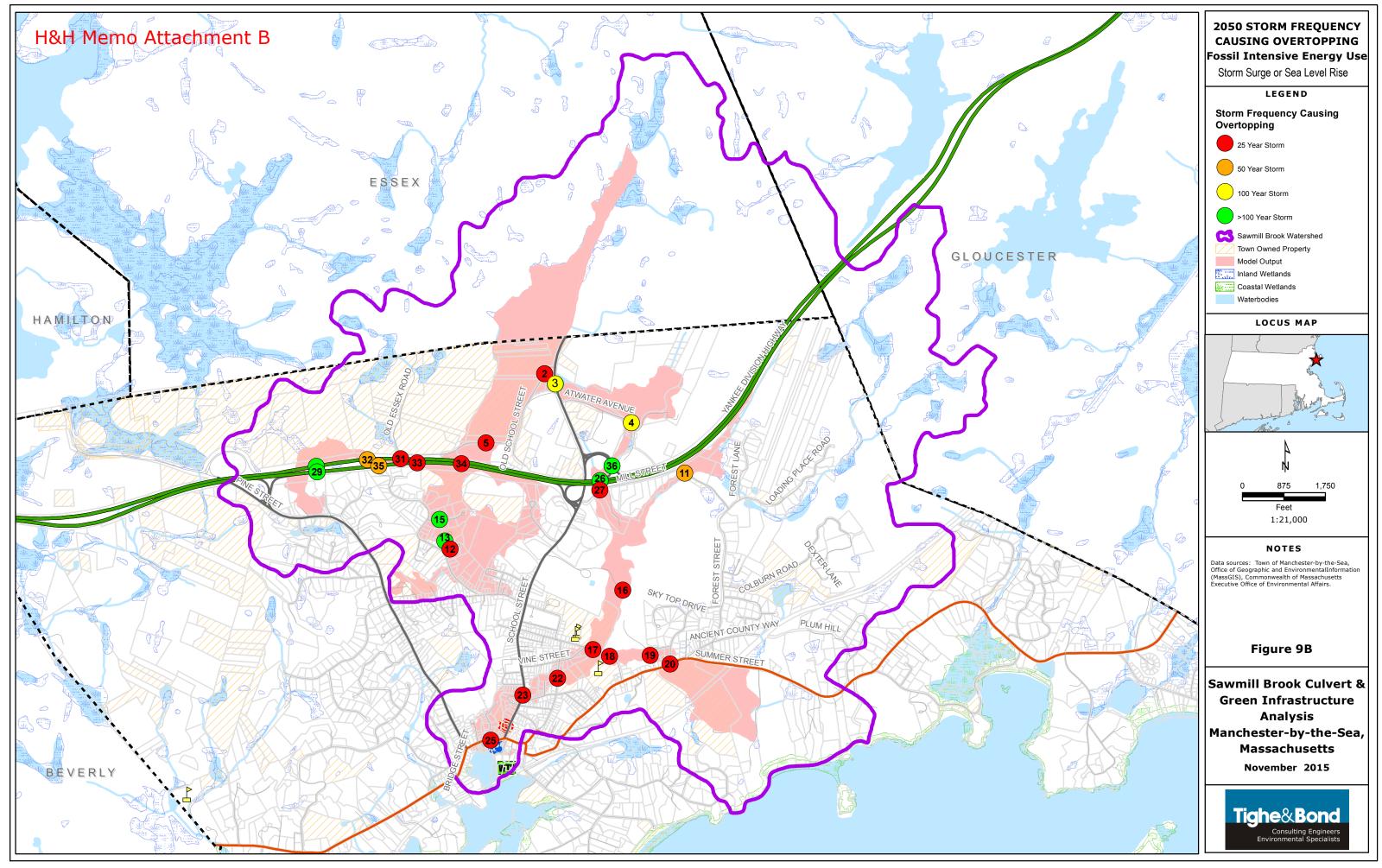


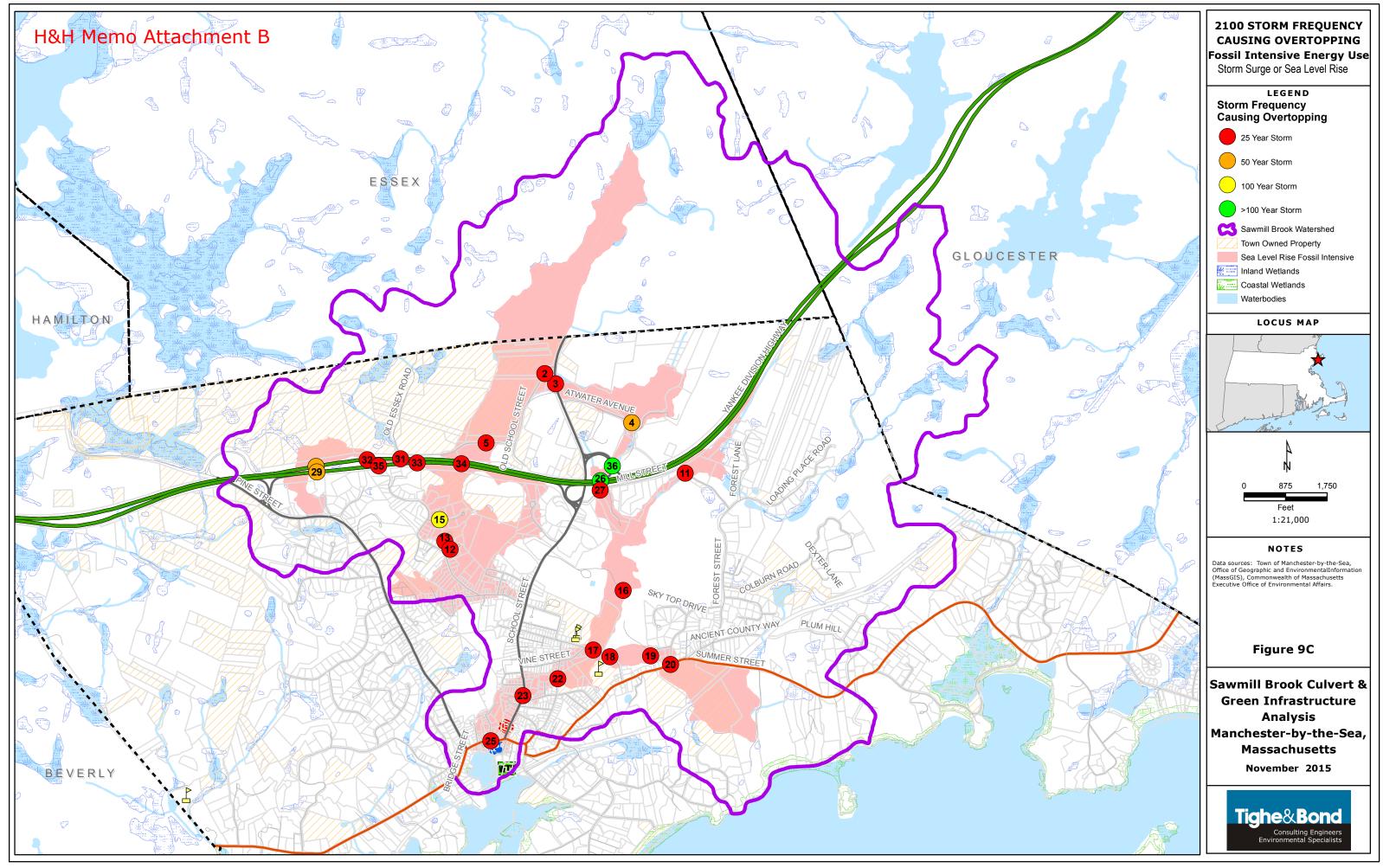


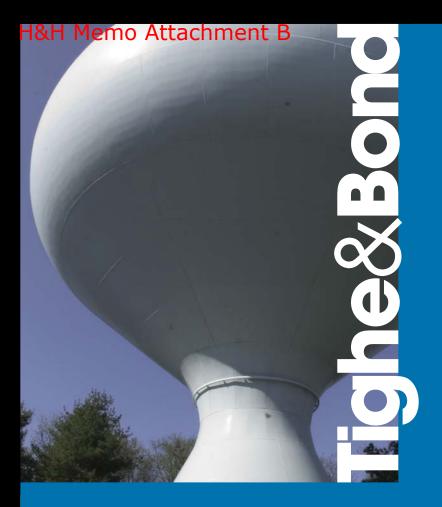












.

Natural Resources Conservation Service Agricultural Experiment Stations, and local participants Custom Soil Resource Report for Essex County, Massachusetts, Southern Part

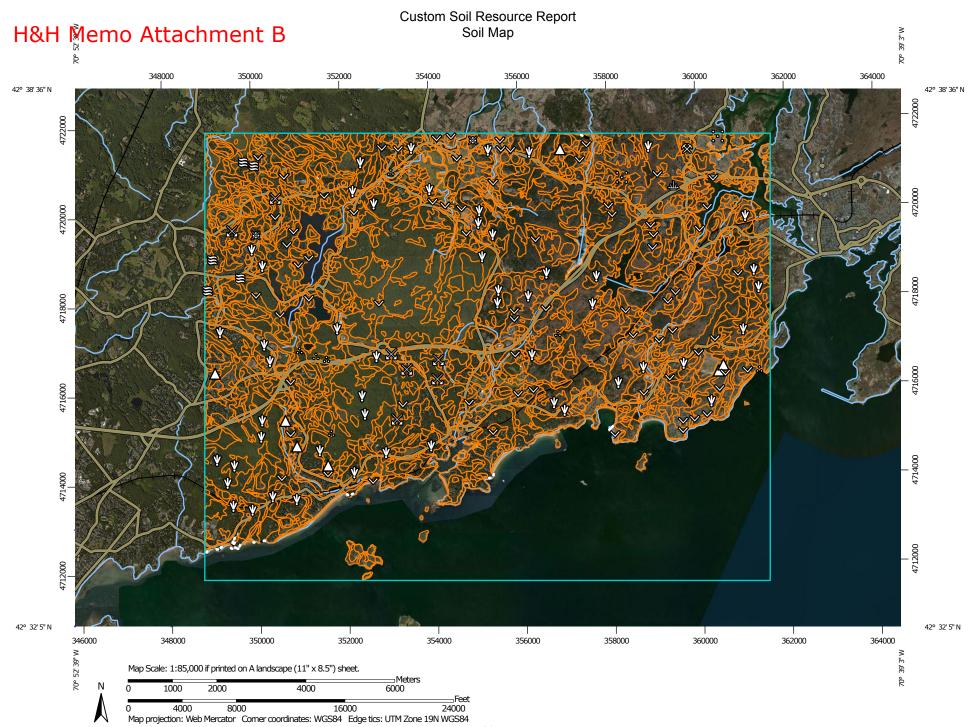
NOTE: The original report included additional data on the soil types. The full report can be provided upon request.

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (http:// offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).


Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means

for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

MAP I	_EGEND	MAP INFORMATION		
Area of Interest (AOI)	Spoil Area	The soil surveys that comprise your AOI were mapped at 1:15		
Area of Interest (AOI)	Stony Spot			
Soils	M Very Stony Spot	Please rely on the bar scale on each map sheet for map measurements.		
Soil Map Unit Polygons	wet Spot			
Soil Map Unit Lines	∆ Other	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov		
Soil Map Unit Points	Special Line Features	Coordinate System: Web Mercator (EPSG:3857)		
Special Point Features	Water Features			
Blowout	Streams and Canals	Maps from the Web Soil Survey are based on the Web Merca projection, which preserves direction and shape but distorts		
Borrow Pit	Transportation	distance and area. A projection that preserves area, such as		
💥 Clay Spot	+++ Rails	Albers equal-area conic projection, should be used if more acc calculations of distance or area are required.		
Closed Depression	Interstate Highways			
Gravel Pit	JS Routes	This product is generated from the USDA-NRCS certified data		
Gravelly Spot	📈 Major Roads	the version date(s) listed below.		
Landfill	Local Roads	Soil Survey Area: Essex County, Massachusetts, Southern		
Lava Flow	Background	Survey Area Data: Version 11, Sep 19, 2014		
Arsh or swamp	Aerial Photography	Soil map units are labeled (as space allows) for map scales 1:50		
Mine or Quarry		or larger.		
Miscellaneous Water		Date(s) aerial images were photographed: Jan 1, 1999—Se		
O Perennial Water		2014		
Rock Outcrop		The orthophoto or other base map on which the soil lines wer		
Saline Spot		compiled and digitized probably differs from the background		
Sandy Spot		imagery displayed on these maps. As a result, some minor sh of map unit boundaries may be evident.		
Severely Eroded Spot				
Sinkhole				
Slide or Slip				
Sodic Spot				

Map Unit Legend

Mar II. Y O. I. I	Essex County, Massachusetts,		Demont (10)
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
1	Water	715.7	2.3%
12A	Maybid silt loam, 0 to 3 percent slopes	259.0	0.8%
14B	Scitico silt loam, 0 to 5 percent slopes	432.7	1.4%
31A	Walpole sandy loam, 0 to 3 percent slopes	166.0	0.5%
31B	Walpole fine sandy loam, 3 to 8 percent slopes	10.9	0.0%
32A	Wareham loamy sand, 0 to 3 percent slopes	101.1	0.3%
38A	Pipestone loamy fine sand, 0 to 3 percent slopes	6.3	0.0%
43A	Scarboro mucky fine sandy loam, 0 to 3 percent slopes	352.8	1.1%
51A	Swansea muck, 0 to 1 percent slopes	256.8	0.8%
52A	Freetown muck, 0 to 1 percent slopes	1,344.9	4.2%
53A	Freetown muck, ponded, 0 to 1 percent slopes MLRA 144A	107.2	0.3%
70B	Ridgebury fine sandy loam, 0 to 6 percent slopes	16.6	0.1%
71A	Ridgebury fine sandy loam, 0 to 3 percent slopes, extremely stony	27.5	0.1%
71B	Ridgebury fine sandy loam, 3 to 8 percent slopes, extremely stony	300.2	0.9%
73A	Whitman loam, 0 to 3 percent slopes, extremely stony	530.9	1.7%
102C	Chatfield-Hollis-Rock outcrop complex, 3 to 15 percent slopes	2,499.8	7.9%
102E	Chatfield-Hollis-Rock outcrop complex, 15 to 35 percent slopes	7,900.6	24.9%
105D	Rock outcrop-Hollis complex, 3 to 25 percent slopes	616.9	1.9%
220A	Boxford silt loam, 0 to 3 percent slopes	65.8	0.2%
220B	Boxford silt loam, 3 to 8 percent slopes	264.6	0.8%
220C	Boxford silt loam, 8 to 15 percent slopes	16.1	0.1%

H&H Memo Attachment B^{Custom Soil Resource Report}

Map Unit Symbol Map Unit Name Acres in AOI Percent of AOI							
225B	Belgrade very fine sandy loam, 0 to 8 percent slopes	33.8	0.1%				
242A	Hinckley gravelly fine sandy loam, 0 to 3 percent slopes	222.9	0.7%				
242B	Hinckley gravelly fine sandy loam, 3 to 8 percent slopes	297.2	0.9%				
242C	Hinckley gravelly fine sandy loam, 8 to 15 percent slopes	124.0	0.4%				
242D	Hinckley gravelly fine sandy loam, 15 to 25 percent slopes	89.7	0.3%				
242E	Hinckley gravelly fine sandy loam, 25 to 45 percent slopes	49.8	0.2%				
250B	Pollux fine sandy loam, 0 to 8 percent slopes	31.3	0.1%				
254A	Merrimac fine sandy loam, 0 to 3 percent slopes	181.7	0.6%				
254B	Merrimac fine sandy loam, 3 to 8 percent slopes	349.3	1.1%				
254C	Merrimac fine sandy loam, 8 to 15 percent slopes	111.3	0.4%				
254D	Merrimac fine sandy loam, 15 to 25 percent slopes	44.6	0.1%				
255A	Windsor loamy sand, 0 to 3 percent slopes	15.8	0.0%				
255B	Windsor loamy sand, 3 to 8 percent slopes	36.7	0.1%				
255C	Windsor loamy sand, 8 to 15 percent slopes	2.4	0.0%				
256A	Deerfield loamy fine sand, 0 to 3 percent slopes	121.7	0.4%				
260A	Sudbury fine sandy loam, 0 to 3 percent slopes	547.6	1.7%				
260B	Sudbury fine sandy loam, 3 to 8 percent slopes	237.5	0.7%				
276B	Ninigret fine sandy loam, 3 to 8 percent slopes	8.3	0.0%				
300B	Montauk fine sandy loam, 3 to 8 percent slopes	44.6	0.1%				
300C	Montauk fine sandy loam, 8 to 15 percent slopes	2.8	0.0%				
301B	Montauk fine sandy loam, 3 to 8 percent slopes, very stony	70.8	0.2%				
301C	Montauk fine sandy loam, 8 to 15 percent slopes, very stony	43.5	0.1%				
301D	Montauk fine sandy loam, 15 to 25 percent slopes, very stony	22.5	0.19				
302C	Montauk fine sandy loam, 8 to 15 percent slopes, extremely stony	8.9	0.0%				

H&H Memo Attachment B^{Custom Soil Resource Report}

Map Unit Symbol Map Unit Name Acres in AOI Percent of AOI							
302D	Montauk fine sandy loam, 15 to 25 percent slopes, extremely stony	10.0	0.0'				
305B	Paxton fine sandy loam, 3 to 8 percent slopes	37.4	0.1				
305C	Paxton fine sandy loam, 8 to 15 percent slopes	30.7	0.1				
305D	Paxton fine sandy loam, 15 to 25 percent slopes	4.6	0.0				
306B	Paxton fine sandy loam, 3 to 8 percent slopes, very stony	58.6	0.2				
306C	Paxton fine sandy loam, 8 to 15 percent slopes, very stony	28.6	0.1				
306D	Paxton fine sandy loam, 15 to 25 percent slopes, very stony	81.9	0.3				
310B	Woodbridge fine sandy loam, 3 to 8 percent slopes	44.1	0.1				
310C	Woodbridge fine sandy loam, 8 to 15 percent slopes	16.7	0.1				
311B	Woodbridge fine sandy loam, 0 to 8 percent slopes, very stony	138.7	0.4				
311C	Woodbridge fine sandy loam, 8 to 15 percent slopes, very stony	69.9	0.2				
311D	Woodbridge fine sandy loam, 15 to 25 percent slopes, very stony	14.1	0.0				
315B	Scituate fine sandy loam, 3 to 8 percent slopes	11.1	0.0				
316B	Scituate fine sandy loam, 3 to 8 percent slopes, very stony	190.4	0.6				
316C	Scituate fine sandy loam, 8 to 15 percent slopes, very stony	22.1	0.1				
317B	Scituate fine sandy loam, 3 to 8 percent slopes, extremely stony	4.3	0.0				
318B	Scituate fine sandy loam, 3 to 8 percent slopes, extremely bouldery	176.5	0.6				
318C	Scituate fine sandy loam, 8 to 15 percent slopes, extremely bouldery	53.3	0.2				
323B	Poquonock loamy sand, 3 to 8 percent slopes, very stony	14.4	0.0				
323C	Poquonock loamy sand, 8 to 15 percent slopes, very stony	30.6	0.1				
323D	Poquonock loamy sand, 15 to 25 percent slopes, very stony	10.0	0.0				

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI	
392E	Paxton and Montauk fine sandy loams, 25 to 45 percent slopes, extremely stony	4.4	0.0%	
420B	Canton fine sandy loam, 3 to 8 percent slopes	25.6	0.1%	
420C	Canton fine sandy loam, 8 to 20 percent slopes	3.2	0.0%	
421B	Canton fine sandy loam, 3 to 8 percent slopes, very stony	139.3	0.4%	
421C	Canton fine sandy loam, 8 to 15 percent slopes, very stony	168.4	0.5%	
421D	Canton fine sandy loam, 15 to 25 percent slopes, very stony	76.2	0.2%	
422B	Canton fine sandy loam, 3 to 8 percent slopes, extremely stony	72.6	0.2%	
422C	Canton fine sandy loam, 8 to 15 percent slopes, extremely stony	162.3	0.5%	
422D	Canton fine sandy loam, 15 to 25 percent slopes, extremely stony	120.7	0.4%	
422E	Canton fine sandy loam, 25 to 35 percent slopes, extremely stony	45.3	0.1	
600	Pits, gravel	84.8	0.3%	
602	Urban land	185.2	0.6%	
607	Water, saline	421.3	1.3%	
610	Beaches	65.0	0.2%	
616A	Fluvaquents, frequently flooded, 0 to 3 percent slopes	11.3	0.0%	
626B	Merrimac-Urban land complex, gently sloping	69.1	0.2%	
651	Udorthents, smoothed	389.2	1.2%	
652	Udorthents, refuse substratum	69.5	0.2%	
702C	Udipsamments, rolling	7.0	0.0%	
712A	Ipswich and Westbrook mucky peats, 0 to 2 percent slopes, very frequently flooded	565.2	1.89	
714B	Melrose fine sandy loam, 3 to 8 percent slopes	21.4	0.19	
720A	Whately Variant mucky fine sandy loam, 0 to 1 percent slopes	26.1	0.1%	
722B	Annisquam fine sandy loam, 3 to 8 percent slopes, extremely bouldery	184.3	0.6%	

	Essex County, Massachuse	tts, Southern Part (MA606)	
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
722C	Annisquam fine sandy loam, 8 to 15 percent slopes, extremely bouldery	349.6	1.1%
722E	Annisquam fine sandy loam, 15 to 35 percent slopes, extremely bouldery	711.1	2.2%
723A	Elmridge fine sandy loam, 0 to 3 percent slopes	1.7	0.0%
723B	Elmridge fine sandy loam, 3 to 8 percent slopes	35.8	0.1%
725A	Shaker fine sandy loam, 0 to 3 percent slopes	45.0	0.1%
Subtotals for Soil Survey A	rea	23,799.5	75.0%
Totals for Area of Interest		31,724.8	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic

classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

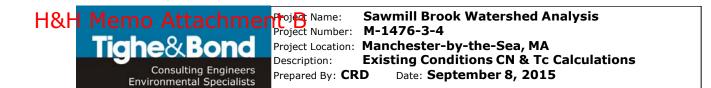
Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.


United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

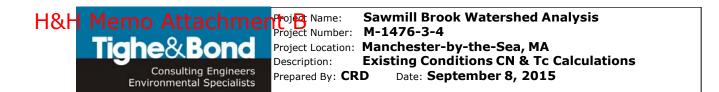
United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

Designation: **Area 1** Location:

Cover Type	Area, ac	CN	A x CN
Commercial - Soil Type A	0.0000000	89	0.0000
Commercial - Soil Type B	0.4813295	92	44.2823
Commercial - Soil Type C	0.2013695	94	18.9287
Commercial - Soil Type D	0.7687470	95	73.0310
Forest - Soil Type A	0.0000000	25	0.0000
Forest - Soil Type B	59.7666670	55	3287.1667
Forest - Soil Type C	4.5745470	70	320.2183
Forest - Soil Type D	22.3574500	77	1721.5237
Industrial - Soil Type A	0.0000000	81	0.0000
Industrial - Soil Type B	3.3827060	88	297.6781
Industrial - Soil Type C	1.5265560	91	138.9166
Industrial - Soil Type D	0.1003350	93	9.3312
Open Space - Soil Type A	0.0000000	39	0.0000
Open Space - Soil Type B	0.1823675	61	11.1244
Open Space - Soil Type C	0.1823675	74	13.4952
Open Space - Soil Type D	0.0000000	80	0.0000
Open Water	0.7380440	98	72.3283
Residential - Soil Type A	0.0000000	51	0.0000
Residential - Soil Type B	21.2265220	68	1443.4035
Residential - Soil Type C	3.0271120	79	239.1418
Residential - Soil Type D	5.8960520	84	495.2684
	124.4121720		8185.8382


Weighted CN:

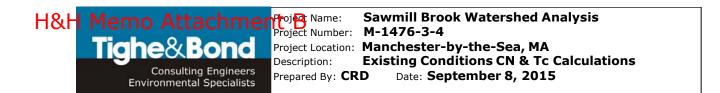
66

Time of Concentration

Overland				
Segment	Surface "n"	Flow Length (ft.)	Slope (ft/ft)	Time (min.)
Segment A - B	0.4	300	0.16	22.2

	Shallow Concentrated Flow					1
Segm	ent	Slope (ft/ft)	V (ft/s)	Length (ft)	Time (min.)	1
Segment B - C	unpaved	0.11	5.35	610	1.9	1
Segment C - D	unpaved	0.02	2.28	230	1.7	1
Segment D - E	unpaved	0.15	6.25	210	0.6	
Segment E - F	unpaved	0.01	1.61	620	6.4	
				Total Tc =	32.7	Mi
Note:			nputed using "Kinemat ion computed using Ma			

Designation: Area 2 Location:


Cover Type	Area, ac	CN	A x CN
Commercial - Soil Type A	0.0000000	89	0.0000
Commercial - Soil Type B	0.0295055	92	2.7145
Commercial - Soil Type C	0.0295055	94	2.7735
Commercial - Soil Type D	0.000000	95	0.0000
Forest - Soil Type A	0.000000	25	0.0000
Forest - Soil Type B	78.5247715	55	4318.8624
Forest - Soil Type C	1.0337415	70	72.3619
Forest - Soil Type D	39.3928500	77	3033.2495
Industrial - Soil Type A	0.000000	81	0.0000
Industrial - Soil Type B	6.6709650	88	587.0449
Industrial - Soil Type C	5.1479850	91	468.4666
Industrial - Soil Type D	3.2584850	93	303.0391
Open Space - Soil Type A	0.000000	39	0.0000
Open Space - Soil Type B	0.3073545	61	18.7486
Open Space - Soil Type C	0.0123755	74	0.9158
Open Space - Soil Type D	0.000000	80	0.0000
Residential - Soil Type A	0.000000	51	0.0000
Residential - Soil Type B	2.1432190	68	145.7389
Residential - Soil Type C	0.2189090	79	17.2938
Residential - Soil Type D	0.3870230	84	32.5099
	137.1566900		9003.7195

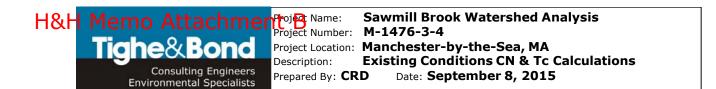
Weighted CN:

66

Time of Concentration

		Ov	erland		
Segm	ent	Surface "n"	Flow Length (ft.) Slope (ft/ft)	Time (min.)
Segment A - B		0.4	300	0.06	32.8
		Shallow Co	ncentrated Flow		
Segm	ent	Slope (ft/ft)	V (ft/s)	Length (ft)	Time (min.)
Segment B - C	unpaved	0.055	3.78	290	1.3
Segment C - D	unpaved	0.01	1.61	3990	41.2
				Total Tc =	75.3
Note:			mputed using "Kinema tion computed using Ma		

Designation:	Area	3
Location:		


Cover Type	Area, ac	CN	A x CN
Commercial - Soil Type A	0.0000000	89	0.0000
Commercial - Soil Type B	0.000000	92	0.0000
Commercial - Soil Type C	0.0000000	94	0.0000
Commercial - Soil Type D	0.0000000	95	0.0000
Forest - Soil Type A	0.0000000	25	0.0000
Forest - Soil Type B	91.2347725	55	5017.9125
Forest - Soil Type C	0.4559385	70	31.9157
Forest - Soil Type D	25.7968300	77	1986.3559
Industrial - Soil Type A	0.0000000	81	0.0000
Industrial - Soil Type B	0.0000000	88	0.0000
Industrial - Soil Type C	0.0000000	91	0.0000
Industrial - Soil Type D	0.4411070	93	41.0230
Open Space - Soil Type A	0.0000000	39	0.0000
Open Space - Soil Type B	0.7374990	61	44.9874
Open Space - Soil Type C	0.0000000	74	0.0000
Open Space - Soil Type D	2.3157050	80	185.2564
Residential - Soil Type A	0.000000	51	0.0000
Residential - Soil Type B	0.0000000	68	0.0000
Residential - Soil Type C	0.0000000	79	0.0000
Residential - Soil Type D	0.0000000	84	0.0000
	120.9818520		7307.4509

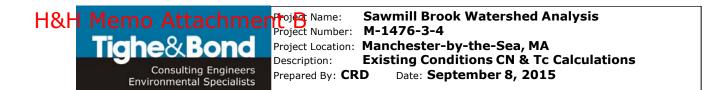
Weighted CN:

60

Time of Concentration

		Ον	erland]
Segm	ent	Surface "n"	Flow Length (ft.)	Slope (ft/ft)	Time (min.)	
Segment A - B		0.4	300	0.12	24.9	
		Shallow Cor	ncentrated Flow			1
Segm	ent	Slope (ft/ft)	V (ft/s)	Length (ft)	Time (min.)	-
Segment B - C	unpaved	0.18	6.85	365	0.9	
Segment C - D	unpaved	0.02	2.28	2150	15.7	
Segment D - E	unpaved	0.01	1.61	1660	17.1]
				Total Tc =	58.6	Min
Note:			mputed using "Kinemati tion computed using Ma			

Designation:	Area	4
Location.		


CN A x CN **Cover Type** Area, ac Cultivated Land - Soil Type A 0.0000000 0.0000 72 Cultivated Land - Soil Type B 0.2832580 81 22.9439 Cultivated Land - Soil Type C 0.0000000 88 0.0000 Cultivated Land - Soil Type D 91 0.0000 0.0000000 Commercial - Soil Type A 0.0000000 89 0.0000 Commercial - Soil Type B 92 19.5170 0.2121410 Commercial - Soil Type C 94 0.0000000 0.0000 Commercial - Soil Type D 0.3709880 95 35.2439 Forest - Soil Type A 49.2543 1.9701730 25 Forest - Soil Type B 66.3823440 55 3651.0289 Forest - Soil Type C 7.9728160 70 558.0971 Forest - Soil Type D 6.7207360 77 517.4967 Industrial - Soil Type A 0.1547980 81 12.5386 Industrial - Soil Type B 0.8209655 88 72.2450 Industrial - Soil Type C 91 0.7870605 71.6225 Industrial - Soil Type D 0.0000000 93 0.0000 Open Space - Soil Type A 39 39.6091 1.0156190 Open Space - Soil Type B 61 2.1298345 129.9199 Open Space - Soil Type C 74 135.1957 1.8269695 Open Space - Soil Type D 80 0.0000000 0.0000 **Open Water** 0.0160190 98 1.5699 109.0580 Residential - Soil Type A 2.1383920 51 Residential - Soil Type B 68 53.2291420 3619.5817 Residential - Soil Type C 2.8236280 79 223.0666 Residential - Soil Type D 3.7732600 84 316.9538 152.6281440 9584.9426

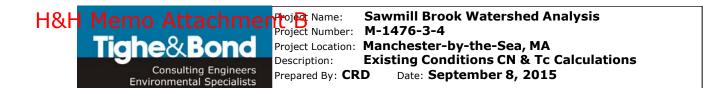
Weighted CN:

63

Time of Concentration

		Ov	erland		
Segm	ent	Surface "n"	Flow Length (ft.)	Slope (ft/ft)	Time (min.)
Segment A - B		0.4	300	0.07	30.9
		Shallow Co	ncentrated Flow	- 	·
Segm	ent	Slope (ft/ft)	V (ft/s)	Length (ft)	Time (min.)
Segment B - C	unpaved	0.12	5.59	365	1.1
Segment C - D	unpaved	0.01	1.61	3390	35.0
				Total Tc =	67.0
Note:			mputed using "Kinemati tion computed using Ma		

Designation: **Area 5** Location:


Cover Type	Area, ac	CN	A x CN
Commercial - Soil Type A	0.000000	89	0.0000
Commercial - Soil Type B	4.5807180	92	421.4261
Commercial - Soil Type C	0.0000000	94	0.0000
Commercial - Soil Type D	0.4414000	95	41.9330
Forest - Soil Type A	0.000000	25	0.0000
Forest - Soil Type B	400.1507000	55	22008.2885
Forest - Soil Type C	7.0185110	70	491.2958
Forest - Soil Type D	158.6166000	77	12213.4782
Industrial - Soil Type A	0.0000000	81	0.0000
Industrial - Soil Type B	2.7357220	88	240.7435
Industrial - Soil Type C	0.0000000	91	0.0000
Industrial - Soil Type D	0.0000000	93	0.0000
Open Space - Soil Type A	0.0000000	39	0.0000
Open Space - Soil Type B	5.1837990	61	316.2117
Open Space - Soil Type C	0.0546360	74	4.0431
Open Space - Soil Type D	5.0924340	80	407.3947
Residential - Soil Type A	0.000000	51	0.0000
Residential - Soil Type B	0.8820270	68	59.9778
Residential - Soil Type C	0.0000000	79	0.0000
Residential - Soil Type D	0.7779140	84	65.3448
· · ·	585.5344610		36270.1372

Weighted CN:

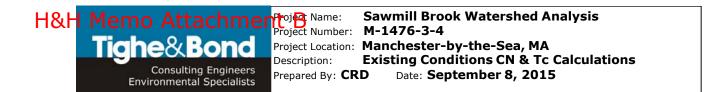
62

Time of Concentration

		Ον	erland			1	
Segm	ent	Surface "n"	Flow Length (ft.)) Slope (ft/ft)	Time (min.)		
Segment A - B		0.4	300	0.1	26.8		
Shallow Concentrated Flow							
Segm	ent	Slope (ft/ft)	V (ft/s)	Length (ft)	Time (min.)	1	
Segment B - C	unpaved	0.11	5.35	340	1.1	1	
Segment C - D	unpaved	0.023	2.45	2840	19.3	1	
Segment D - E	unpaved	0.005	1.14	4300	62.8]	
Total Tc = 110.0 Mir							
Note:			mputed using "Kinemat tion computed using Ma				

Designation: **Area 6** Location:

Cover Type	Area, ac	CN	A x CN
Forest - Soil Type A	0.000000	25	0.0000
Forest - Soil Type B	77.1055250	55	4240.8039
Forest - Soil Type C	31.6154950	70	2213.0847
Forest - Soil Type D	79.9118000	77	6153.2086
Industrial - Soil Type A	0.000000	81	0.0000
Industrial - Soil Type B	4.7944175	88	421.9087
Industrial - Soil Type C	2.9058525	91	264.4326
Industrial - Soil Type D	5.7669230	93	536.3238
Open Space - Soil Type A	0.000000	39	0.0000
Open Space - Soil Type B	0.7483435	61	45.6490
Open Space - Soil Type C	0.2092595	74	15.4852
Open Space - Soil Type D	0.0771170	80	6.1694
Open Water	1.5568290	98	152.5692
Residential - Soil Type A	0.000000	51	0.0000
Residential - Soil Type B	11.6022500	68	788.9530
Residential - Soil Type C	1.1815200	79	93.3401
Residential - Soil Type D	4.9056750	84	412.0767
	222.3810070		15344.0048


Time of Concentration

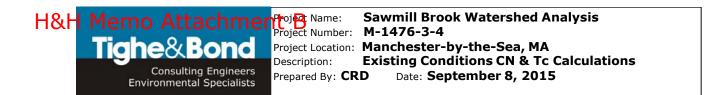
ion

69

Weighted CN:

		Ov	erland				
Segm	ent	Surface "n"	Flow Length (ft.) Slope (ft/ft)	Time (min.)		
Segment A - B		0.4	300	0.15	22.7		
Shallow Concentrated Flow							
Segm	ent	Slope (ft/ft)	V (ft/s)	Length (ft)	Time (min.)		
Segment B - C	unpaved	0.1	5.10	620	2.0		
Segment C - D	unpaved	0.004	1.02	4890	79.9		
Total Tc = 104.6 Mi							
Note:			1 5	matic Wave" equation Manning's equation			

Designation: **Area 7** Location:


Cover Type	Area, ac	CN	A x CN
Commercial - Soil Type A	0.000000	89	0.0000
Commercial - Soil Type B	7.6448645	92	703.3275
Commercial - Soil Type C	1.5274255	94	143.5780
Commercial - Soil Type D	0.1847730	95	17.5534
Forest - Soil Type A	0.000000	25	0.0000
Forest - Soil Type B	82.2797180	55	4525.3845
Forest - Soil Type C	22.0388780	70	1542.7215
Forest - Soil Type D	54.5009900	77	4196.5762
Industrial - Soil Type A	0.000000	81	0.0000
Industrial - Soil Type B	7.4969680	88	659.7332
Industrial - Soil Type C	3.2601710	91	296.6756
Industrial - Soil Type D	0.4708370	93	43.7878
Open Space - Soil Type A	0.000000	39	0.0000
Open Space - Soil Type B	0.7639410	61	46.6004
Open Space - Soil Type C	0.000000	74	0.0000
Open Space - Soil Type D	5.8189200	80	465.5136
Residential - Soil Type A	0.000000	51	0.0000
Residential - Soil Type B	8.3506505	68	567.8442
Residential - Soil Type C	3.9453645	79	311.6838
Residential - Soil Type D	0.7794350	84	65.4725
	199.0629360		13586.4523

Weighted CN:

68

Time of Concentration

		Ον	erland			1	
Segm	ent	Surface "n"	Flow Length (ft.)	Slope (ft/ft)	Time (min.)		
Segment A - B		0.4	300	0.3	17.2		
Shallow Concentrated Flow							
Segm	ent	Slope (ft/ft)	V (ft/s)	Length (ft)	Time (min.)	-	
Segment B - C	unpaved	0.06	3.95	1290	5.4		
Segment C - D	unpaved	0.005	1.14	1211	17.7	1	
Segment D - E	unpaved	0.01	1.61	841	8.7]	
Total Tc = 49.1 Min							
Note:			mputed using "Kinemati tion computed using Ma				

Designation: **Area 8** Location:

Cover Type	Area, ac	CN	A x CN
Commercial - Soil Type A	0.0030000	89	0.2670
Commercial - Soil Type B	0.8806055	92	81.0157
Commercial - Soil Type C	0.1805565	94	16.9723
Commercial - Soil Type D	0.000000	95	0.0000
Forest - Soil Type A	1.3140500	25	32.8513
Forest - Soil Type B	24.5143300	55	1348.2882
Forest - Soil Type C	16.4080900	70	1148.5663
Forest - Soil Type D	0.0396170	77	3.0505
Industrial - Soil Type A	0.000000	81	0.0000
Industrial - Soil Type B	7.8476305	88	690.5915
Industrial - Soil Type C	6.2926515	91	572.6313
Industrial - Soil Type D	0.1354370	93	12.5956
Open Space - Soil Type A	1.1303490	39	44.0836
Open Space - Soil Type B	0.0010770	61	0.0657
Open Space - Soil Type C	0.000000	74	0.0000
Open Space - Soil Type D	0.000000	80	0.0000
Residential - Soil Type A	2.6127490	51	133.2502
Residential - Soil Type B	5.6295575	68	382.8099
Residential - Soil Type C	3.6306515	79	286.8215
Residential - Soil Type D	0.000000	84	0.0000
·	70.6203520		4753.8605

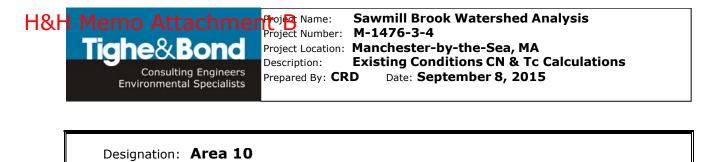
Time of Concentration

Weighted CN:

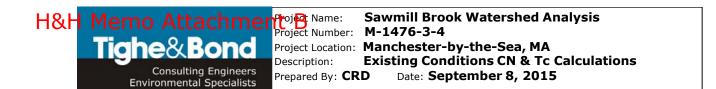
67

		Ον	erland		
Segm	ent	Surface "n"	Flow Length (f	t.) Slope (ft/ft)	Time (min.)
Segment A - B		0.4	300	0.15	22.7
				•	
		Shallow Co	ncentrated Flow	1	
Segm	ent	Slope (ft/ft)	V (ft/s)	Length (ft)	Time (min.)
Segment B - C	unpaved	0.008	1.44	1420	16.4
				Total Tc =	39.1
Note:	Overland time	of concentration co	mputed using "Kinem	atic Wave" equation	
	Gutter and pipe	e time of concentra	tion computed using	Manning's equation	

Designation: **Area 9** Location:


Cover Type	Area, ac	CN	A x CN
Forest - Soil Type A	0.000000	25	0.0000
Forest - Soil Type B	114.3190950	55	6287.5502
Forest - Soil Type C	11.3404050	70	793.8284
Forest - Soil Type D	23.0580800	77	1775.4722
Industrial - Soil Type A	0.000000	81	0.0000
Industrial - Soil Type B	0.8992280	88	79.1321
Industrial - Soil Type C	0.000000	91	0.0000
Industrial - Soil Type D	0.000000	93	0.0000
Open Space - Soil Type A	0.000000	39	0.0000
Open Space - Soil Type B	0.5846950	61	35.6664
Open Space - Soil Type C	0.8978510	74	66.4410
Open Space - Soil Type D	2.0889870	80	167.1190
	153.1883410		9205.2091

Weighted CN:


60

Time of Concentration

		Ον	erland		
Segm	ent	Surface "n"	Flow Length (f	t.) Slope (ft/ft)	Time (min.)
Segment A - B		0.4	300	0.15	22.7
			ncentrated Flow		
Segm	ent	Slope (ft/ft)	V (ft/s)	Length (ft)	Time (min.)
Segment B - C	unpaved	0.1	5.10	530	1.7
Segment C - D	unpaved	0.008	1.44	3540	40.9
				Total Tc =	65.4
Note:			mputed using "Kinem		
	Gutter and pipe	e time of concentra	tion computed using	Manning's equation	

Cove	er Type		Area, ac	CN	A x CN
orest - Soil Type A			0.000000	25	0.0000
Forest - Soil Type B			49.0138700	55	2695.7629
Forest - Soil Type C	pe C		9.5524960	70	668.6747
Forest - Soil Type D			12.5813700	77	968.7655
			71.1477360		4333.2031
			w	eighted CN:	61
		_		eighted eith	•=
Time of Concen		-			
Time of Concent computed in accordance		-			
		-			
		DOT Drainage Man	ual, Sec. 6C) erland	-	
computed in accordance		DOT Drainage Man	ual, Sec. 6C)	-	
computed in accordance		DOT Drainage Man	ual, Sec. 6C) erland	-	
computed in accordance		DOT Drainage Man Ov Surface "n" 0.4	ual, Sec. 6C) erland Flow Length (ft.) 300	Slope (ft/ft)	Time (min.)
computed in accordance Segment Segment A - B		DOT Drainage Man Ove Surface "n" 0.4 Shallow Cor	ual, Sec. 6C) erland Flow Length (ft.) 300 ncentrated Flow	Slope (ft/ft) 0.12	Time (min.) 24.9
computed in accordance Segment A - B Segment A - B	with Conn	DOT Drainage Man Ov Surface "n" 0.4	ual, Sec. 6C) erland Flow Length (ft.) 300 ncentrated Flow	Slope (ft/ft)	Time (min.)
computed in accordance Segment A - B Segment A - B		DOT Drainage Man Ove Surface "n" 0.4 Shallow Cor	ual, Sec. 6C) erland Flow Length (ft.) 300 ncentrated Flow	Slope (ft/ft) 0.12	Time (min.) 24.9
computed in accordance Segment A - B Segment A - B	with Conn	DOT Drainage Man Ove Surface "n" 0.4 Shallow Cor Shallow Cor Slope (ft/ft)	ual, Sec. 6C) erland Flow Length (ft.) 300 ncentrated Flow V (ft/s)	Slope (ft/ft) 0.12 Length (ft)	Time (min.) 24.9 Time (min.)
computed in accordance Segment A - B Segment A - B	with Conn	DOT Drainage Man Ove Surface "n" 0.4 Shallow Cor Shallow Cor Slope (ft/ft)	ual, Sec. 6C) erland Flow Length (ft.) 300 ncentrated Flow V (ft/s)	Slope (ft/ft) 0.12 Length (ft)	Time (min.) 24.9 Time (min.)

Designation: **Area 11** Location:

Cover Type	Area, ac	CN	A x CN
Cultivated Land - Soil Type A	0.000000	72	0.0000
Cultivated Land - Soil Type B	0.0685500	81	5.5526
Cultivated Land - Soil Type C	0.0685500	88	6.0324
Cultivated Land - Soil Type D	0.8803650	91	80.1132
Forest - Soil Type A	2.6996860	25	67.4922
Forest - Soil Type B	91.1689330	55	5014.2913
Forest - Soil Type C	63.1804330	70	4422.6303
Forest - Soil Type D	16.5103600	77	1271.2977
Open Space - Soil Type A	0.6526330	39	25.4527
Open Space - Soil Type B	0.9131650	61	55.7031
Open Space - Soil Type C	1.6288510	74	120.5350
Open Space - Soil Type D	0.5415190	80	43.3215
Open Water	0.2306420	98	22.6029
Residential - Soil Type A	2.4906710	51	127.0242
Residential - Soil Type B	4.3719895	68	297.2953
Residential - Soil Type C	8.4222135	79	665.3549
Residential - Soil Type D	1.5005030	84	126.0423
	195.3290640		12350.7414

Time of Concentration

(computed in accordance with ConnDOT Drainage Manual, Sec. 6C)

		Ov	erland		
Segm	ent	Surface "n"	Flow Length (ft.)	Slope (ft/ft)	Time (min.)
Segment A - B		0.4	300	0.05	35.3
			ncentrated Flow		· · · · · · · · · · · · · · · · · · ·
Segm	ent	Slope (ft/ft)	V (ft/s)	Length (ft)	Time (min.)
Segment B - C	unpaved	0.07	4.27	840	3.3
Segment C - D	unpaved	0.01	1.61	4120	42.6
				Total Tc =	81.1
Note:	Overland time	of concontration co	mputed using "Kinemat	ic Wayo" equation	
Note:			1 5		
	Gutter and pipe	e time of concentra	tion computed using Ma	nning's equation	

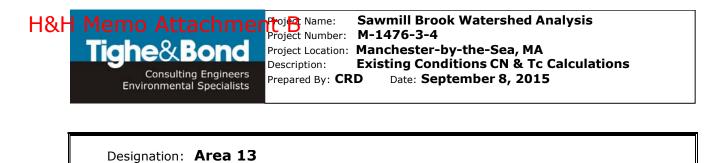
Weighted CN:

63

Designation: **Area 12** Location:

Cover Type	Area, ac	CN	A x CN
Cultivated Land - Soil Type A	0.6340950	72	45.6548
Cultivated Land - Soil Type B	0.0069025	81	0.5591
Cultivated Land - Soil Type C	0.2796655	88	24.6106
Cultivated Land - Soil Type D	0.1347230	91	12.2598
Forest - Soil Type A	2.6848930	25	67.1223
Forest - Soil Type B	6.1097505	55	336.0363
Forest - Soil Type C	10.8562465	70	759.9373
Forest - Soil Type D	4.3346270	77	333.7663
Open Water	2.5482710	98	249.7306
Residential - Soil Type A	1.5636160	51	79.7444
Residential - Soil Type B	1.0276765	68	69.8820
Residential - Soil Type C	4.7672715	79	376.6144
Residential - Soil Type D	0.1794950	84	15.0776
	35.1272330		2370.9954

Time of Concentration


(computed in accordance with ConnDOT Drainage Manual, Sec. 6C)

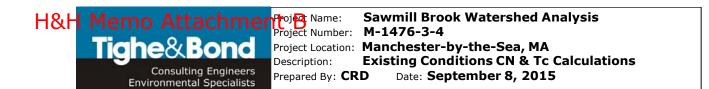
Overland				
Segment	Surface "n"	Flow Length (ft	t.) Slope (ft/ft)	Time (min.)
Segment A - B	0.4	300	0.086	28.4

Weighted CN:

67

Shallow Concentrated Flow						
Segm	ent	Slope (ft/ft)	V (ft/s)	Length (ft)	Time (min.)	
Segment B - C	unpaved	0.056	3.82	920	4.0	
Segment C - D	unpaved	0.012	1.77	1290	12.2	
				Total Tc =	44.6	Min
Note:	Overland time	of concentration com	nputed using "Kinem	atic Wave" equation		
	Gutter and pipe	e time of concentrati	on computed using I	Manning's equation		

Cover Type	Area, ac	CN	A x CN
Forest - Soil Type A	0.000000	25	0.0000
Forest - Soil Type B	15.0106400	55	825.5852
Forest - Soil Type C	16.3488900	70	1144.4223
Forest - Soil Type D	0.6096530	77	46.9433
Industrial - Soil Type A	0.000000	81	0.0000
Industrial - Soil Type B	1.6537130	88	145.5267
Industrial - Soil Type C	2.7249300	91	247.9686
Industrial - Soil Type D	0.2542820	93	23.6482
	36.6021080		2434.0944


Weighted CN: 67

Time of Concentration

Location:

Overland				
Segment	Surface "n"	Flow Length (ft.)	Slope (ft/ft)	Time (min.)
Segment A - B	0.4	300	0.053	34.5

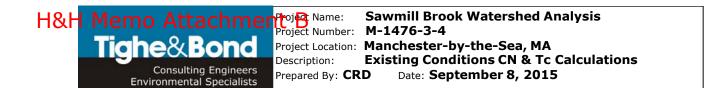
C = ===	k		centrated Flow		Time of the internet	
Segm	ent	Slope (ft/ft)	V (ft/s)	Length (ft)	Time (min.)	
Segment B - C	unpaved	0.11	5.35	700	2.2	
Segment C - D	unpaved	0.01	1.61	2595	26.8	
				Total Tc =	63.5	Mir
					05.5	
Note:	Overland time	of concentration com	puted using "Kinem	atic Wave" equation		
	Gutter and pipe	e time of concentrati	on computed using N	fanning's equation		

Designation: **Area 14** Location:

		01	
Cover Type	Area, ac 0.0610400	CN 72	A x CN 4.3949
Cultivated Land - Soil Type A	0.0010400		
Cultivated Land - Soil Type B		81	0.0000
Cultivated Land - Soil Type C	0.1430460	88	
Cultivated Land - Soil Type D	0.000000	91	0.0000
Commercial - Soil Type A	0.000000	89	
Commercial - Soil Type B	0.7424845	92	68.3086
Commercial - Soil Type C	0.6956585	94	65.3919
Commercial - Soil Type D	0.0000000	95	
Forest - Soil Type A	4.3478540	25	
Forest - Soil Type B	64.2755335	55	3535.1543
Forest - Soil Type C	35.1635835	70	2461.4508
Forest - Soil Type D	43.7558400	77	3369.1997
Industrial - Soil Type A	0.0000000	81	0.0000
Industrial - Soil Type B	7.6404400	88	672.3587
Industrial - Soil Type C	13.8440500	91	1259.8086
Industrial - Soil Type D	0.8397800	93	78.0995
Open Space - Soil Type A	2.5349470	39	98.8629
Open Space - Soil Type B	5.6881740	61	346.9786
Open Space - Soil Type C	3.3474700	74	247.7128
Open Space - Soil Type D	0.5405180	80	43.2414
Residential - Soil Type A	0.4185010	51	21.3436
Residential - Soil Type B	2.8704970	68	
Residential - Soil Type C	1.4716380	79	
Residential - Soil Type D	0.8012590	84	67.3058
		01	
Residential - Soil Type D	0.8012590 189.1823140	84	67.3058 12772.3497

Weighted CN:

68


Time of Concentration

(computed in accordance with ConnDOT Drainage Manual, Sec. 6C)

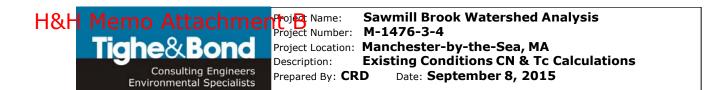
Overland					
Segment	Surface "n"	Flow Length (ft.)	Slope (ft/ft)	Time (min.)	
Segment A - B	0.4	300	0.086	28.4	

Shallow Concentrated Flow							
Segm	ent	Slope (ft/ft)	V (ft/s)	Length (ft)	Time (min.)		
Segment B - C	unpaved	0.11	5.35	825	2.6		
Segment C - D	unpaved	0.01	1.61	3590	37.1		
Segment E - F	unpaved	0.015	1.98	1900	16.0		
				Total Tc =	84.1	Mi	
Note:			nputed using "Kinemat ion computed using Ma				

J:\M\M1476 Manchester MA Hydro Study\Task 4-Hydaulic Modeling\Calculations\CN & Tc.xlsm

Designation: **Area 15** Location:

Cover Type	Area, ac	CN	A x CN
Commercial - Soil Type A	1.1053290	89	98.3743
Commercial - Soil Type B	2.7624160		254.1423
Commercial - Soil Type C	3.6066940	94	339.0292
Commercial - Soil Type D	0.000000	95	0.0000
Forest - Soil Type A	1.4780120	25	36.9503
Forest - Soil Type B	7.0487515	55	387.6813
Forest - Soil Type C	11.6029625	70	812.2074
Forest - Soil Type D	0.000000	77	0.0000
Open Space - Soil Type A	6.2413210	39	243.4115
Open Space - Soil Type B	4.3844480	61	267.4513
Open Space - Soil Type C	12.2569380	74	907.0134
Open Space - Soil Type D	0.000000	80	0.0000
Open Water	0.7575120	98	74.2362
Residential - Soil Type A	2.8504210	51	145.3715
Residential - Soil Type B	1.2505335	68	85.0363
Residential - Soil Type C	1.6199555	79	127.9765
Residential - Soil Type D	0.0039260	84	0.3298
	56.9692200		3779.2112


tration

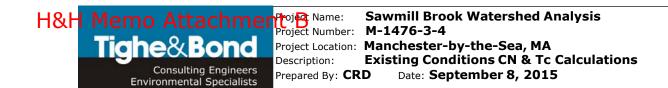
Weighted CN:

66

Time of Concentration

		Ov	erland		
Segm	ent	Surface "n"	Flow Length (ft.)	Slope (ft/ft)	Time (min.)
Segment A - B		0.4	300	0.12	24.9
		Shallow Co	ncentrated Flow		
Segm	ent	Slope (ft/ft)	V (ft/s)	Length (ft)	Time (min.)
Segment B - C	unpaved	0.11	5.35	225	0.7
Segment C - D	unpaved	0.013	1.84	2420	21.9
				Total Tc =	47.5
Note:			mputed using "Kinemat tion computed using Ma		

Designation: **Area 16** Location:


Cover Type	Area, ac	CN	A x CN
Cultivated Land - Soil Type A	0.000000	72	0.0000
Cultivated Land - Soil Type B	0.000000	81	0.0000
Cultivated Land - Soil Type C	0.0738820	88	6.5016
Cultivated Land - Soil Type D	0.000000	91	0.0000
Commercial - Soil Type A	0.5998970	89	53.3908
Commercial - Soil Type B	6.2823150	92	577.9730
Commercial - Soil Type C	6.9572250	94	653.9792
Commercial - Soil Type D	0.000000	95	0.0000
Forest - Soil Type A	1.0710070	25	26.7752
Forest - Soil Type B	25.8914065	55	1424.0274
Forest - Soil Type C	27.1233665	70	1898.6357
Forest - Soil Type D	3.3719570	77	259.6407
Open Space - Soil Type A	28.2593400	39	1102.1143
Open Space - Soil Type B	16.9178495	61	1031.9888
Open Space - Soil Type C	29.2607295	74	2165.2940
Open Space - Soil Type D	0.000000	80	0.0000
Residential - Soil Type A	7.6001010	51	387.6052
Residential - Soil Type B	16.7912330	68	1141.8038
Residential - Soil Type C	17.5399530	79	1385.6563
Residential - Soil Type D	1.6941540	84	142.3089
	189.4344160		12257.6947

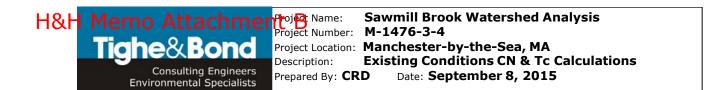
Weighted CN:

65

Time of Concentration

		Ov	erland		
Segm	ent	Surface "n"	Flow Length (ft.)	Slope (ft/ft)	Time (min.)
Segment A - B		0.4	300	0.19	20.7
			ncentrated Flow		
Segm	ent	Slope (ft/ft)	V (ft/s)	Length (ft)	Time (min.)
Segment B - C	unpaved	0.04	3.23	1395	7.2
Segment C - D	unpaved	0.005	1.14	3055	44.6
				Total Tc =	72.5
Note:			mputed using "Kinemat		
	Gutter and pipe	e time of concentra	tion computed using Ma	nning's equation	

Designation: Area 17 Location:


Cover Type	Area, ac	CN	A x CN
Forest - Soil Type A	0.0000000	25	0.0000
Forest - Soil Type B	58.8637300	55	3237.5052
Forest - Soil Type C	7.2655540	70	508.5888
Forest - Soil Type D	16.8892200	77	1300.4699
Industrial - Soil Type A	0.000000	81	0.0000
Industrial - Soil Type B	0.8738010	88	76.8945
Industrial - Soil Type C	0.000000	91	0.0000
Industrial - Soil Type D	0.3864040	93	35.9356
Open Space - Soil Type A	0.000000	39	0.0000
Open Space - Soil Type B	0.0983860	61	6.0015
Open Space - Soil Type C	0.5108140	74	37.8002
Open Space - Soil Type D	0.2498860	80	19.9909
Open Water	2.3070120	98	226.0872
Residential - Soil Type A	0.000000	51	0.0000
Residential - Soil Type B	8.9858820	68	611.0400
Residential - Soil Type C	2.2805250	79	180.1615
Residential - Soil Type D	0.5916320	84	49.6971
	99.3028460		6290.1723

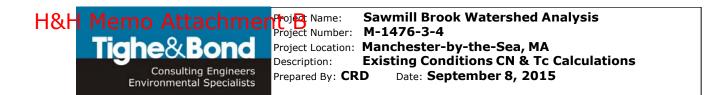
Weighted CN:

63

Time of Concentration

		Ον	erland				
Segm	ent	Surface "n"	Flow Length (ft.)	Slope (ft/ft)	Time (min.)		
Segment A - B		0.4	300	0.06	32.8		
Shallow Concentrated Flow							
Segm	ent	Slope (ft/ft)	V (ft/s)	Length (ft)	Time (min.)		
Segment B - C	unpaved	0.09	4.84	1150	4.0		
Segment C - D	unpaved	0.01	1.61	3280	33.9		
				Total Tc =	70.7		
Note:			mputed using "Kinemat tion computed using Ma				

Designation: **Area 18** Location:


Cover Type	Area, ac	CN	A x CN
Forest - Soil Type A	0.0000000	25	0.0000
Forest - Soil Type B	67.5319475	55	3714.2571
Forest - Soil Type C	8.9334105	70	625.3387
Forest - Soil Type D	10.7447800	77	827.3481
Industrial - Soil Type A	0.0000000	81	0.0000
Industrial - Soil Type B	2.3922210	88	210.5154
Industrial - Soil Type C	0.6760360	91	61.5193
Industrial - Soil Type D	1.8701820	93	173.9269
Open Space - Soil Type A	0.0000000	39	0.0000
Open Space - Soil Type B	1.0169250	61	62.0324
Open Space - Soil Type C	0.3940770	74	29.1617
Open Space - Soil Type D	3.7764440	80	302.1155
Residential - Soil Type A	0.0000000	51	0.0000
Residential - Soil Type B	12.0038800	68	816.2638
Residential - Soil Type C	0.0974100	79	7.6954
Residential - Soil Type D	0.2069950	84	17.3876
	109.6443080		6847.5620

Weighted CN:

62

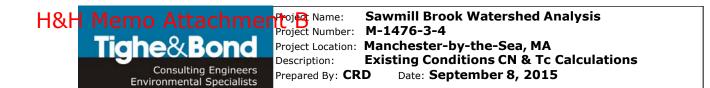
Time of Concentration (computed in accordance with ConnDOT Drainage Manual, Sec. 6C)

		Ov	rerland			l
Segm	ent	Surface "n"	Flow Length	(ft.) Slope (ft/ft) Time (min.)	
Segment A - B		0.4	300	0.09	27.9	
	ont		ncentrated Flo		Time (min)	
Segm Segment B - C	unpaved	Slope (ft/ft) 0.12	V (ft/s) 5.59	Length (ft) 505	Time (min.) 1.5	
Segment C - D	unpaved	0.011	1.69	4615	45.5	
				Total Tc =	= 74.9	Mi
Note:			1 5	ematic Wave" equation g Manning's equation	I	

Designation: Area 19 Location:

Cover Type	Area, ac	CN	A x CN
Forest - Soil Type A	0.0000000	25	0.0000
Forest - Soil Type B	56.7524920	55	3121.3871
Forest - Soil Type C	10.5942720	70	741.5990
Forest - Soil Type D	10.8942400	77	838.8565
Open Space - Soil Type A	0.0000000	39	0.0000
Open Space - Soil Type B	0.9408105	61	57.3894
Open Space - Soil Type C	0.9948375	74	73.6180
Open Space - Soil Type D	6.1952120	80	495.6170
Open Water	3.8543420	98	377.7255
Residential - Soil Type A	0.000000	51	0.0000
Residential - Soil Type B	17.0980300	68	1162.6660
Residential - Soil Type C	2.7846000	79	219.9834
Residential - Soil Type D	0.3797200	84	31.8965
	110.4885560		7120.7384

Time of Concentration


(computed in accordance with ConnDOT Drainage Manual, Sec. 6C)

Overland					
Segment	Surface "n"	Flow Length (ft.)	Slope (ft/ft)	Time (min.)	
Segment A - B	0.4	300	0.1	26.8	

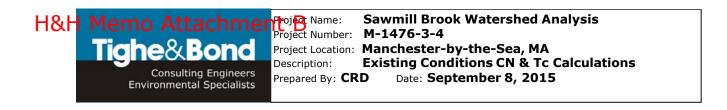
Weighted CN:

64

Shallow Concentrated Flow							
Segm	ent	Slope (ft/ft)	V (ft/s)	Length (ft)	Time (min.)		
Segment B - C	unpaved	0.064	4.08	1190	4.9		
Segment C - D	unpaved	0.013	1.84	1430	13.0		
				Total Tc =	44.6	Min	
Note:	Overland time	of concentration cor	mputed using "Kinemat	ic Wave" equation			
	Gutter and pipe time of concentration computed using Manning's equation						

Designation: **Area 20** Location:

Cover Type	Area, ac	CN	A x CN
Commercial - Soil Type A	0.0000000	89	0.0000
Commercial - Soil Type B	0.5878800	92	54.0850
Commercial - Soil Type C	0.8112100	94	76.2537
Commercial - Soil Type D	0.0089780	95	0.8529
Forest - Soil Type A	0.000000	25	0.0000
Forest - Soil Type B	6.0729415	55	334.0118
Forest - Soil Type C	4.2213490	70	295.4944
Forest - Soil Type D	7.7075540	77	593.4817
Industrial - Soil Type A	0.000000	81	0.0000
Industrial - Soil Type B	0.4432680	88	39.0076
Industrial - Soil Type C	0.3894590	91	35.4408
Industrial - Soil Type D	1.6570170	93	154.1026
Open Space - Soil Type A	0.0000000	39	0.0000
Open Space - Soil Type B	0.0000000	61	0.0000
Open Space - Soil Type C	0.0000000	74	0.0000
Open Space - Soil Type D	0.0003650	80	0.0292
Open Water	0.3600720	98	35.2871
Residential - Soil Type A	0.0000000	51	0.0000
Residential - Soil Type B	1.8431930	68	125.3371
Residential - Soil Type C	8.6666330	79	684.6640
Residential - Soil Type D	3.5837980	84	301.0390
	36.3537175		2729.0868


Weighted CN:

75

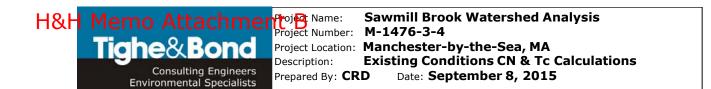
Time of Concentration

Overland						
Segment	Surface "n"	Flow Length (ft.)	Slope (ft/ft)	Time (min.)		
Segment A - B	0.4	300	0.13	24.1		

Shallow Concentrated Flow							
Segm	ent	Slope (ft/ft)	V (ft/s)	Length (ft)	Time (min.)		
Segment B - C	unpaved	0.07	4.27	470	1.8		
Segment C - D	unpaved	0.005	1.14	2085	30.5		
				Total Tc =	56.4	Min.	
Note:	Overland time of concentration computed using "Kinematic Wave" equation Gutter and pipe time of concentration computed using Manning's equation						

Designation: Area 21 Location:

Cover Type	Area, ac	CN	A x CN
Forest - Soil Type A	0.000000	25	0.0000
Forest - Soil Type B	30.9244700	55	1700.8459
Forest - Soil Type C	7.7738120	70	544.1668
Forest - Soil Type D	17.5871800	77	1354.2129
Open Space - Soil Type A	0.0000000	39	0.0000
Open Space - Soil Type B	0.2626280	61	16.0203
Open Space - Soil Type C	0.1036110	74	7.6672
Open Space - Soil Type D	1.6182250	80	129.4580
Open Water	0.5985200	98	58.6550
Residential - Soil Type A	0.000000	51	0.0000
Residential - Soil Type B	14.9731800	68	1018.1762
Residential - Soil Type C	0.1875550	79	14.8168
Residential - Soil Type D	0.4614880	84	38.7650
· · · · · · · · · · · · · · · · · · ·	74.4906690		4882.7841


Time of Concentration

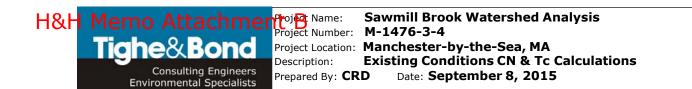
(computed in accordance with ConnDOT Drainage Manual, Sec. 6C)

		Ov	erland			
Segm	ent	Surface "n"	Flow Length (ft.) Slope (ft/ft)	Time (min.)	
Segment A - B		0.4	300	0.19	20.7	
		Shallow Co	ncentrated Flow			
Segm	ent	Slope (ft/ft)	V (ft/s)	Length (ft)	Time (min.)	
Segment B - C	unpaved	0.015	1.98	2355	19.9	
				Total Tc =	40.6	Mi
Note:			mputed using "Kinema tion computed using M			

Weighted CN:

66

Designation: Area 22 Location:


Cover Turo		CN	
Cover Type	Area, ac	CN 89	A x CN 0.0000
Commercial - Soil Type A	0.0000000		
Commercial - Soil Type B	1.6856195	92	155.0770
Commercial - Soil Type C	4.4715885	94	420.3293
Commercial - Soil Type D	1.0450260	95	99.2775
Forest - Soil Type A	0.000000	25	0.0000
Forest - Soil Type B	11.5052245	55	632.7873
Forest - Soil Type C	8.3242075	70	582.6945
Forest - Soil Type D	5.8662210	77	451.6990
Open Space - Soil Type A	0.000000	39	0.0000
Open Space - Soil Type B	1.6990270	61	103.6406
Open Space - Soil Type C	8.0298160	74	594.2064
Open Space - Soil Type D	0.000000	80	0.0000
Open Water	0.2445050	98	23.9615
Residential - Soil Type A	0.000000	51	0.0000
Residential - Soil Type B	5.1140770	68	347.7572
Residential - Soil Type C	20.2266740	79	1597.9072
Residential - Soil Type D	1.3563090	84	113.9300
	69.5682950		5123.2676

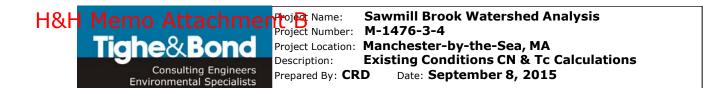
Weighted CN:

74

Time of Concentration

		Ον	erland			
Segm	ent	Surface "n"	Flow Length (ft	.) Slope (ft/ft)	Time (min.)	
Segment A - B		0.4	300	0.2	20.3	
						-
		Shallow Cor	ncentrated Flow			
Segm	ent	Slope (ft/ft)	V (ft/s)	Length (ft)	Time (min.)	
Segment B - C	unpaved	0.01	1.61	2640	27.3	
				Total Tc =	47.5	Mi
Note:			mputed using "Kinema tion computed using N			

Designation: **Area 23** Location:


Cover Type	Area, ac	CN	A x CN
Cultivated Land - Soil Type A	0.0000000	72	0.0000
Cultivated Land - Soil Type B	0.1615515	81	13.0857
Cultivated Land - Soil Type C	1.1720855	88	103.1435
Cultivated Land - Soil Type D	0.000000	91	0.0000
Commercial - Soil Type A	1.0393830	89	92.5051
Commercial - Soil Type B	6.1427160	92	565.1299
Commercial - Soil Type C	14.1682360	94	1331.8142
Commercial - Soil Type D	0.000000	95	0.0000
Forest - Soil Type A	1.1550670	25	28.8767
Forest - Soil Type B	31.1801290	55	1714.9071
Forest - Soil Type C	8.2102310	70	574.7162
Forest - Soil Type D	0.000000	77	0.0000
Industrial - Soil Type A	0.0000000	81	0.0000
Industrial - Soil Type B	0.000000	88	0.0000
Industrial - Soil Type C	2.2760550	91	207.1210
Industrial - Soil Type D	0.000000	93	0.0000
Open Space - Soil Type A	1.2117320	39	47.2575
Open Space - Soil Type B	0.000000	61	0.0000
Open Space - Soil Type C	0.1933880	74	14.3107
Open Space - Soil Type D	0.000000	80	0.0000
Open Water	1.9125480	98	187.4297
Residential - Soil Type A	17.9797300	51	916.9662
Residential - Soil Type B	21.4814870	68	1460.7411
Residential - Soil Type C	38.9467670	79	3076.7946
Residential - Soil Type D	0.0000000	84	0.0000
	147.2311060		10218.5700

Weighted CN:

69

Time of Concentration

		Ον	erland			1
Segm	ent	Surface "n"	Flow Length (ft.)	Slope (ft/ft)	Time (min.)	1
Segment A - B		0.4	300	0.013	60.5	
						- -
		Shallow Co	ncentrated Flow			
Segm	ent	Slope (ft/ft)	V (ft/s)	Length (ft)	Time (min.)]
Segment B - C	unpaved	0.017	2.10	2970	23.5	
				Total Tc =	84.0	м
Note:			omputed using "Kinemati Ition computed using Ma			

Designation: Area 24 Location:

Cover Type	Area, ac	CN	A x CN
Commercial - Soil Type A	1.9172210	89	170.6327
Commercial - Soil Type B	4.5329700	92	417.0332
Commercial - Soil Type C	5.4558450	94	512.8494
Commercial - Soil Type D	0.000000	95	0.0000
Forest - Soil Type A	0.000000	25	0.0000
Forest - Soil Type B	26.7715400	55	1472.4347
Forest - Soil Type C	0.1550690	70	10.8548
Forest - Soil Type D	3.0804360	77	237.1936
Industrial - Soil Type A	0.000000	81	0.0000
Industrial - Soil Type B	2.2327755	88	196.4842
Industrial - Soil Type C	2.2327755	91	203.1826
Industrial - Soil Type D	0.000000	93	0.0000
Open Space - Soil Type A	0.000000	39	0.0000
Open Space - Soil Type B	0.0024505	61	0.1495
Open Space - Soil Type C	0.3150935	74	23.3169
Open Space - Soil Type D	0.000000	80	0.0000
Open Water	8.1189770	98	795.6597
Residential - Soil Type A	0.5921410	51	30.1992
Residential - Soil Type B	20.2509870	68	1377.0671
Residential - Soil Type C	11.8766070	79	938.2520
Residential - Soil Type D	0.000000	84	0.0000
	87.5348880		6385.3097

Weighted CN:

73

Time of Concentration

Overland								
Segment	Surface "n"	Flow Length (ft.)	Slope (ft/ft)	Time (min.)				
Segment A - B	0.4	300	0.06	32.8				

Shallow Concentrated Flow											
Segm	ent	Slope (ft/ft)	V (ft/s)	Length (ft)	Time (min.)						
Segment B - C	unpaved	0.165	6.55	230	0.6						
Segment C - D	unpaved	0.017	2.10	3465	27.5						
				Total Tc =	60.9	Mir					
Note:			mputed using "Kinemat ion computed using Ma								

H&H Memo Attachment B

Appendix A-3 Saw Mill Brook Culvert Summary

Culvert #	Stream	Street	Inlet Din (f		Inlet Elevation	Doucet Inlet Elevation	Doucet Road Centerline	Top of Road		mensions ft)	Outlet Elevation	Doucet Outlet Elevation	Top of Road	Length (ft)	# of Crossings	Culvert Type	Cul	vert
			Width	Height					Width	Height							Material	Condition
2	Cedar Swamp	School Street	2.67	2.67	40.20	39.20	44.90	45.80	3.33	2.83	39.10	39.30	45.80	45.00	3	box culvert	Dry Stone	old
2a	Cedar Swamp	School Street	1.50	1.50	41.40	40.00	44.70	45.40	1.50	1.50	41.10	407	45.40			round culvert	clay pipie	
2b	Cedar Swamp	School Street	3.00	2.58	40.80	39.50	39.10	44.90	3.00	3.33	40.40	39.10	45.00			dry stone culvert box		
3	Sawmill Brook	School Street	15.35	6.58	40.10	38.40	48.10	50.10	15.35	6.58	40.20	38.40	48.90	58.00	1	open bottom arch	Metal	new
4	Sawmill Brook	Atwater Avenue	14.70	8.30		37.70	48.10		14.70	8.30		37.70		42.00	1	open bottom arch	Metal	old
5	Sawmill Brook	Conservation Winchester Drive	9.00	5.58	40.10			47.10	9.00	5.67	39.80		47.10	38.00	1	open bottom arch	Metal	rusted
6	Sawmill Brook	School Street	1.10	1.10	N/A			N/A	1.10	1.10	N/A		N/A	28.00	1	round culvert	Concrete	new
7	Cat Brook	Forrest Road	11.60	2.90	43.60			48.20	11.60	2.90	43.90		48.50	20.20	1	open bottom arch	Stone	old- collapsing
8	Cat Brook	Load Place	2.00	2.00	44.30			47.90	2.00	2.00	44.30		47.30	30.70	3	round culvert	Plastic	new
9	Sawmill Brook	Pine Street	2.92	2.92	N/A			N/A	2.92	2.92	N/A		N/A	42.00	2	round culvert	Metal	old
10	Sawmill Brook	Rockwood Heights	1.83	1.58	N/A				1.83	1.25	N/A		N/A	25.00	2	embedded round culvert	concrete/stone	old
11	Cat Brook	Mill Street	12.50	3.70	33.50			40.40	12.00	5.58	31.70		40.50	20.10	1	open bottom arch	concrete	
12	Sawmill Brook	Millet Lane	5.00	5.00	46.50			49.30	2.50	2.50	46.30		52.20	35.00	1	round culvert	Concrete/metal	rusty outlet
13	Sawmill Brook	The Plains	5.00	2.00	45.80			51.20	5.00	2.75	45.00		51.80	40.00	1	open bottom arch (actually round)	Concrete	new
15	Sawmill Brook	Blue Heron Lane	2.50	2.50	N/A			N/A	2.50	2.50	N/A		N/A	28.00	1	open bottom arch	concrete	new
16	Sawmill Brook	Golf Course	12.00	9.42	11.50			21.60	11.50	9.58	11.40		21.60	20.00	1	open bottom box culvert	stone	
17	Sawmill Brook	Lincoln Street	12.00	6.00		8.70	17.30		12.00	6.00		8.60		50.00	1	open bottom arch	stone	good

H&H Memo Attachment B

Table 2-1 Saw Mill Brook Culvert Summary

Culvert #	Stream	Street		nensions t)	Inlet Elevation	Doucet Inlet Elevation	Doucet Road Centerline	Top of Road		mensions ft)	Outlet Elevation	Doucet Outlet Elevation	Top of Road	Length (ft)	# of Crossings	Culvert Type	Cul	vert
			Width	Height					Width	Height							Material	Condition
18	Causeway Brook	Lincoln Street	14.50	3.67		8.20	16.30		13.00	3.67		8.20		60.00	1	open bottom arch	stone	old but good
19	Causeway Brook	School Street- Golf	8.33	4.50		9.00	15.60		7.75	4.08		8.90		41.25	1	open bottom arch	metal	old but good
20	Causeway Brook	Summer Street	8.17	4.25		10.70	17.90		10.25	4.92		10.70		15.00	1	open bottom arch	metal	old
21	Causeway Brook	Summer Street	5.42	3.10	N/A			N/A	5.42	3.10	N/A		N/A	59.25	1	box culvert	concrete	old
22	Sawmill Brook	Norwood Avenue	14.25	5.50		7.50	16.00		13.00	5.42		7.50		42.00	1	bridge with abutments	metal/stone	old
23	Sawmill Brook	School Street	8.76	4.67		3.60	13.10		8.92	4.83		3.10		36.00	2	open bottom arch	concrete/stone	old
24	Causeway Brook	Summer Street	3.58	2.10	N/A			N/A	1.58	1.58	N/A		N/A	60.15	1	upstream bridge with abutments, dowstream round culvert	concrete/plastic	old- rusted
25	Sawmill Brook	Central Street	16.00	6.67		-0.04	10.60		14.00	8.25		-4.00		42.00	1	open bottom arch	stone	old collapsing
26	Sawmill Brook	MassDOT Mill Street	14.70	8.10		17.80			14.70	8.10		17.50			1	bridge with abutments	concrete	old
27	Sawmill Brook	Mill Street	7.10	7.10		16.20	24.40		6.80	6.80		15.60		47.00	1	round culvert	metal	old
30	Sawmill Brook	MassDOT Rte 128	14.00	6.50	26.1			44.6	14	6.5	18.3		45,5	60	1	box culvert	concrete	
36	Sawmill Brook	Mass DOT Rte 128 ramp	14.00	8.00	31.4			53.8	14	8	31.4		51.6	60	1	box culvert	concrete	

Notes: July 2015 Survey completed by Doucet Survey Associates. Horizontal datum reference NAD83/2011 Massachusetts State Plane, Verticle Datum NAVD88. August 24, 20017 Survey completed by Corcoran Associates, Inc. Horizantal Reference NAD 83 (FT), Vertical Datum NGVD 29 (FT) Reminder of information results of May 30, 2015, volunteer data collection in Manchester-by-the-Sea

Pond Report A Memo Attachment B

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Pond No. 1 - Pond 1

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 56.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	56.00	23,500	0	0	
2.00	58.00	148,330	153,898	153,898	
4.00	60.00	247,610	391,685	545,583	

Culvert / Orifice Structures

Culvert / Ori	ifice Structu	Weir Structures							
	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 35.16	0.00	0.00	0.00	Crest Len (ft)	= 0.00	0.00	0.00	0.00
Span (in)	= 35.16	0.00	0.00	0.00	Crest El. (ft)	= 0.00	0.00	0.00	0.00
No. Barrels	= 2	0	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert EI. (ft)	= 56.00	0.00	0.00	0.00	Weir Type	=			
Length (ft)	= 40.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 2.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Contour)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	CIv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	56.00	0.00										0.000
0.20	15,390	56.20	0.61 ic										0.611
0.40	30,780	56.40	2.38 ic										
0.60	46,169	56.60	5.24 ic										2.384
0.80	61,559	56.80	9.12 ic										5.240
1.00	76,949	57.00	13.86 ic										9.118
1.20	92,339	57.20	19.43 ic										13.86
1.40	107,729	57.40	25.64 ic										19.43
1.60	123,119	57.60	32.45 ic										25.64
1.80	138,508	57.80	39.70 ic										32.45
2.00	153,898	58.00	47.22 ic										39.70
2.20	193,067	58.20											47.22
2.20	232,235		54.87 ic										54.87
2.40		58.40	62.37 ic										62.37
	271,404	58.60	68.99 oc										68.99
2.80	310,572	58.80	72.03 oc										72.03
3.00	349,740	59.00	75.30 oc										75.30
3.20	388,909	59.20	83.50 oc										83.50
3.40	428,077	59.40	90.31 ic										90.31
3.60	467,246	59.60	94.86 ic										94.86
3.80	506,414	59.80	99.21 ic										99.21
4.00	545,583	60.00	103.37 ic										103.37

Pond Report H&H Memo Attachment B

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Pond No. 2 - Pond 2

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 38.40 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	38.40	00	0	0
3.60	42.00	890,820	1,068,877	1,068,877
5.60	44.00	3,846,995	4,392,245	5,461,122
7.60	46.00	4,733,124	8,563,968	14,025,090
9.60	48.00	5,262,020	9,989,478	24,014,568
11.60	50.00	5,717,121	10,974,896	34,989,464
13.60	52.00	6,237,440	11,949,588	46,939,052

Culvert / Orifice Structures

[A] [C] [PrfRsr] [B] [A] [B] [C] [D] Rise (in) = 78.96 0.00 0.00 0.00 0.00 Crest Len (ft) = 150.00 0.00 0.00 Span (in) = 184.20 0.00 0.00 0.00 Crest El. (ft) = 50.00 0.00 0.00 0.00 No. Barrels = 1 1 0 0 Weir Coeff. = 2.60 3.33 3.33 3.33 = 38.40 Invert El. (ft) 0.00 0.00 0.00 Weir Type = Broad ---_ ----Length (ft) = 58.00 0.00 0.00 0.00 Multi-Stage = No No No No Slope (%) = 0.10 0.00 0.00 n/a N-Value = .013 .013 .013 n/a Orifice Coeff. = 0.60 0.60 0.60 0.60 Exfil.(in/hr) = 0.000 (by Contour) Multi-Stage = n/aNo No No TW Elev. (ft) = 0.00

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage / Storage / Discharge Table

Weir Structures

Stage / Storage / Discharge Table													
Stage	Storage	Elevation	CIV A	Clv B	Clv C	PrfRsr	Wr A	Wr B	WrC	Wr D	Exfil	User	Total
ft	cuft	ft	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs
								0.000					0.0
0.00	0	38.40	0.00				0.00						0.000
0.36	106,888	38.76	6.53 oc				0.00						6.529
0.72	213,775	39.12	15.12 oc				0.00						15.12
1.08	320,663	39.48	23.84 oc				0.00						23.84
1.44	427,551	39.84	32.57 oc				0.00						32.57
1.80	534,439	40.20	41.29 oc				0.00						41.29
2.16	641,326	40.56	50.01 oc				0.00						50.01
2.52	748,214	40.92	58.71 oc				0.00						58.71
2.88	855,102	41.28	67.41 oc				0.00						67.41
3.24	961,989	41.64	76.11 oc				0.00						76.11
3.60	1,068,877	42.00	84.80 oc				0.00						84.80
3.80	1,508,102	42.20	89.62 oc				0.00						89.62
4.00	1,947,326	42.40	94.45 oc				0.00						94.45
4.20	2,386,551	42.60	99.27 oc				0.00						99.27
4.40	2,825,775	42.80	104.10 oc				0.00						104.10
4.60	3,265,000	43.00	108.92 oc				0.00						108.92
4.80	3,704,224	43.20	113.74 oc				0.00						113.74
5.00	4,143,449	43.40	118.56 oc				0.00						118.56
5.20	4,582,673	43.60	123.39 oc				0.00						123.39
5.40	5,021,898	43.80	128.21 oc				0.00						128.21
5.60	5,461,122	44.00	133.03 oc				0.00						133.03
5.80	6,317,519	44.20	137.85 oc				0.00						137.85
6.00	7,173,916	44.40	142.67 oc				0.00						142.67
6.20	8,030,313	44.60	147.49 oc				0.00						147.49
6.40	8,886,709	44.80	152.31 oc				0.00						152.31
6.60	9,743,106	45.00	179.32 oc				0.00						179.32
6.80	10,599,503	45.20	338.53 oc			-	0.00						338.53
7.00	11,455,900	45.40	443.90 oc				0.00						443.90
7.20	12,312,297	45.60	528.67 oc				0.00						528.67
7.40	13,168,694	45.80	601.61 oc				0.00						601.61
7.60	14,025,090	46.00	666.62 oc				0.00						666.62
7.80	15,024,038	46.20	725.83 oc				0.00						725.83
8.00	16,022,986	46.40	780.56 oc				0.00						780.56
8.20	17,021,934	46.60	831.70 oc				0.00						831.70
												on nevi	

Continues on next page ...

Hound Memo Attachment B Stage / Storage / Discharge Table

Stage Storage Elevation CIV A CIV B CIV C PrfRsr Wr A Wr B Wr C Wr D Exfil User Total ft cuft ft cfs 8.40 18,020,882 46.80 879.87 oc ----------0.00 ---879.87 ---8.60 19,019,830 47.00 925.53 oc ----0.00 --------------------------925.53 8.80 20,018,778 47.20 969.05 oc -------0.00 --------969.05 ---------------9.00 21,017,726 47.40 1010.70 oc -------0.00 --------------1010.70 --------9.20 22,016,674 47.60 1050.69 oc ------0.00 ----------------------1050.69 9.40 23,015,622 47.80 1089.22 oc ---0.00 ---------------------------1089.22 9.60 24,014,568 48.00 1126.43 oc -----------0.00 -----------------1126.43 9.80 25,112,058 48.20 1162.45 oc -------0.00 ---..... --------------1162.45 10.00 26,209,548 48.40 1197.39 oc ---------0.00 ------------------1197.39 10.20 27,307,038 48.60 1231.33 oc -----------0.00 -------------------1231.33 10.40 28,404,528 48.80 1264.37 oc ---------0.00 ------------------1264.37 10.60 29,502.018 49.00 1296.56 oc ------------0.00 ------------------1296.56 10.80 30,599,508 49.20 1327.97 oc -----------0.00 ----------1327.97 -------11.00 31,696,998 49.40 1350.38 ic ---0.00 ---------------------------1350.38 11.20 32,794,488 49.60 1367.78 ic ----------0.00 ------------1367.78 -------11.40 33,891,976 49.80 1384.97 ic ---------0.00 ------------------1384.97 11.60 34,989,464 50.00 1401.94 ic ------------0.00 -----------1401.94 -------11.80 36.184.424 50.20 1418.71 ic -------34.88 -----------------------1453.59 12.00 37,379,384 50.40 1435.28 ic --------98.66 ------------------1533.95 ----12.20 38,574,344 50.60 1451.67 ic ----------181.26 ------------------1632.92 12 40 39,769,304 50.80 1467.87 ic --------279.06 -----------------------1746.93 12.60 40,964,264 51.00 1483.90 ic ----------390.00 ------------------1873.90 12.80 42,159,224 51.20 1499.75 ic -------512.67 ----------------------2012.42 13.00 43,354,184 51.40 1515.44 ic ------------646.04 --------------------2161.48 13.20 44,549,144 51.60 1530.97 ic ---789.31 ----------------------2320.27 ----13.40 45,744,104 51.80 1546.34 ic -----------941.84 ----2488.17 ---------------13.60 46,939,052 52.00 1561.56 ic -------1103.09 -----------.... 2664.64 -------

...End

Pond Report H&H Memo Attachment B

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Pond No. 3 - Pond 3

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 37.70 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	37.70	8,961	0	0
4.30	42.00	896,992	1,426,895	1,426,895
6.30	44.00	1,270,225	2,156,208	3,583,103
8.30	46.00	1,403,064	2,671,921	6,255,024
10.30	48.00	1,728,489	3,125,588	9,380,612

Culvert / Orifice Structures

[A] [B] [C] [PrfRsr] [A] [B] [C] [D] Rise (in) = 99.60 0.00 0.00 0.00 Crest Len (ft) = 0.00 0.00 0.00 0.00 Span (in) = 176.40 0.00 0.00 0.00 Crest El. (ft) = 0.00 0.00 0.00 0.00 No. Barrels = 1 0 0 0 Weir Coeff. = 3.33 3.33 3.33 3.33 Invert EI. (ft) = 37.70 0.00 0.00 0.00 Weir Type = --------------Length (ft) = 42.00 0.00 0.00 0.00 Multi-Stage = No No No No Slope (%) = 1.00 0.00 0.00 n/a N-Value = .013 .013 .013 n/a Orifice Coeff. = 0.60 0.60 0.60 0.60 Exfil.(in/hr) = 0.000 (by Contour) Multi-Stage = n/aNo TW Elev. (ft) No No = 0.00

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage / Storage / Discharge Table

Weir Structures

The second s		Discharge			01 0	D (D							
Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A	Wr B	Wr C	WrD	Exfil	User	Total
	cuit	n	CIS	CIS	CIS	CIS	cfs	cfs	cfs	cfs	cfs	cfs	cfs
0.00	0	37.70	0.00										0.000
0.43	142,690	38.13	14.11 ic										14.11
0.86	285,379	38.56	39.92 ic										39.92
1.29	428,068	38.99	73.33 ic										73.33
1.72	570,758	39.42	102.92 oc										102.92
2.15	713,447	39.85	129.76 oc										129.76
2.58	856,137	40.28	156.57 oc										156.57
3.01	998,826	40.71	183.36 oc										183.36
3.44	1,141,516	41.14	210.14 oc										210.14
3.87	1,284,205	41.57	236.90 oc										236.90
4.30	1,426,895	42.00	263.66 oc										263.66
4.50	1,642,516	42.20	276.10 oc										276.10
4.70	1,858,136	42.40	288.55 oc										288.55
4.90	2,073,757	42.60	300.99 oc										300.99
5.10	2,289,378	42.80	313.43 oc										313.43
5.30	2,504,999	43.00	325.87 oc									-	325.87
5.50	2,720,620	43.20	338.30 oc										338.30
5.70	2,936,240	43.40	350.74 oc										350.74
5.90	3,151,861	43.60	363.18 oc										363.18
6.10	3,367,482	43.80	375.61 oc										375.61
6.30	3,583,103	44.00	388.05 oc										388.05
6.50	3,850,295	44.20	400.48 oc										400.48
6.70	4,117,487	44.40	412.92 oc										412.92
6.90	4,384,679	44.60	425.35 oc										425.35
7.10	4,651,871	44.80	437.79 oc										437.79
7.30	4,919,063	45.00	450.22 oc										450.22
7.50	5,186,255	45.20	462.65 oc										462.65
7.70	5,453,447	45.40	475.08 oc										475.08
7.90	5,720,639	45.60	487.52 oc										487.52
8.10	5,987,831	45.80	499.95 oc										499.95
8.30	6,255,024	46.00	512.38 oc										512.38
8.50	6,567,583	46.20	618.01 oc										618.01
8.70	6,880,142	46.40	710.73 oc										710.73
8.90	7,192,701	46.60	792.68 oc										792.68
9.10	7,505,260	46.80	866.92 oc										866.92
9.30	7,817,819	47.00	935.28 oc										935.28
										C	ontinues	on next	

H&H Memo Attachment B Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
9.50	8,130,378	47.20	998.98 oc										998.98
9.70	8,442,936	47.40	1058.85 oc										1058.85
9.90	8,755,495	47.60	1115.52 oc										1115.52
10.10	9,068,054	47.80	1169.44 oc										1169.44
10.30	9,380,612	48.00	1220.97 oc										1220.97

14

...End

H&AMente Attachment B

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

Pond No. 4 - Pond 4

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 32.80 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	32.80	00	0	0	
1.20	34.00	5,000	2,000	2,000	
3.20	36.00	13,887	18,145	20,145	
5.20	38.00	103,621	103,618	123,762	
7.20	40.00	262,510	354,005	477,767	
9.20	42.00	262,510	524,967	1,002,734	

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 44.40	0.00	0.00	0.00	Crest Len (ft)	= 0.00	0.00	0.00	0.00
Span (in)	= 150.00	0.00	0.00	0.00	Crest El. (ft)	= 0.00	0.00	0.00	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert EI. (ft)	= 32.80	0.00	0.00	0.00	Weir Type	=			
Length (ft)	= 20.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 0.50	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)	
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). Stage / Storage / Discharge Table

Weir Structures

stage / Storage / Discharge	lable	
-----------------------------	-------	--

otage /	Storage /	Discharge	lable										
Stage	Storage	Elevation	CIV A	Clv B	Clv C	PrfRsr	Wr A	Wr B	Wr C	Wr D	Exfil	User	Total
ft	cuft	ft	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs	cfs
0.00	0	32.80	0.00										0.000
0.12	200	32.92	1.77 ic										1.769
0.24	400	33.04	5.00 ic										5.004
0.36	600	33.16	8.26 oc										8.261
0.48	800	33.28	11.39 oc										11.39
0.60	1,000	33.40	14.52 oc										14.52
0.72	1,200	33.52	17.64 oc										17.64
0.84	1,400	33.64	20.77 oc										20.77
0.96	1,600	33.76	23.89 oc										23.89
1.08	1,800	33.88	27.00 oc										27.00
1.20	2,000	34.00	30.12 oc										30.12
1.40	3,814	34.20	35.31 oc										35.31
1.60	5,629	34.40	40.49 oc										40.49
1.80	7,443	34.60	45.67 oc										45.67
2.00	9,258	34.80	50.85 oc										50.85
2.20	11,072	35.00	56.03 oc										56.03
2.40	12,887	35.20	61.21 oc										61.21
2.60	14,701	35.40	66.38 oc										66.38
2.80	16,516	35.60	71.55 oc										71.55
3.00	18,330	35.80	76.73 oc										76.73
3.20	20,145	36.00	81.90 oc										81.90
3.40	30,506	36.20	87.07 oc										87.07
3.60	40,868	36.40	92.24 oc										92.24
3.80	51,230	36.60	132.85 oc										132.85
4.00	61,592	36.80	187.88 oc										187.88
4.20	71,953	37.00	230.10 oc										230.10
4.40	82,315	37.20	265.70 oc										265.70
4.60	92,677	37.40	297.06 oc										297.06
4.80	103,039	37.60	325.41 oc										325.41
5.00	113,400	37.80	351.49 oc										351.49
5.20	123,762	38.00	375.76 oc										375.76
5.40	159,163	38.20	398.55 oc										398.55
5.60	194,563	38.40	420.11 oc										420.11
5.80	229,964	38.60	440.61 oc										440.61
6.00	265,364	38.80	453.66 ic										453.66
												on nevt	8.09.01989 (PR.70.2

Continues on next page ...

H&H Memo Attachment B Stage / Storage / Discharge Table

Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
6.20	300,764	39.00	464.46 ic										464.46
6.40	336,165	39.20	475.02 ic										475.02
6.60	371,565	39.40	485.35 ic										485.35
6.80	406,966	39.60	495.46 ic										495.46
7.00	442,366	39.80	505.37 ic										505.37
7.20	477,767	40.00	515.09 ic										515.09
7.40	530,263	40.20	524.63 ic										524.63
7.60	582,760	40.40	534.00 ic										534.00
7.80	635.257	40.60	543.21 ic										543.21
8.00	687,754	40.80	552.26 ic										552.26
8.20	740,250	41.00	561.17 ic										561.17
8.40	792,747	41.20	569.94 ic										569.94
8.60	845,244	41.40	578.57 ic										578.57
8.80	897,741	41.60	587.08 ic										587.08
9.00	950,237	41.80	595.47 ic										595.47
9.20	1,002,734	42.00	603.74 ic										603.74

...End

Hydraflow Hydrographs Extension for AutoCAD® Civil 3D® 2015 by Autodesk, Inc. v10.4

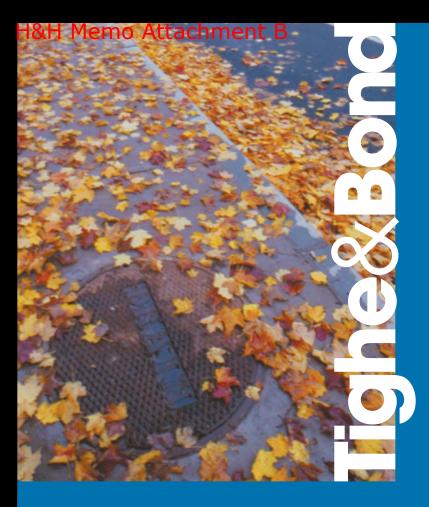
Pond No. 5 - Pond 5

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 10.70 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	10.70	00	0	0	
3.30	14.00	13,888	15,275	15,275	
5.30	16.00	1,450,420	1,070,717	1,085,992	
7.30	18.00	2,260,770	3,680,971	4,766,963	


Culvert / Orifice Structures

[A] [B] [C] [PrfRsr] [A] [B] [C] [D] = 51.00 0.00 Rise (in) 0.00 0.00 Crest Len (ft) = 0.00 0.00 0.00 0.00 Span (in) = 98.04 0.00 0.00 0.00 Crest El. (ft) = 0.00 0.00 0.00 0.00 No. Barrels = 1 0 0 0 Weir Coeff. = 3.33 3.33 3.33 3.33 Invert El. (ft) = 10.70 0.00 0.00 0.00 Weir Type = -----------Length (ft) = 15.00 0.00 0.00 0.00 Multi-Stage = No No No No Slope (%) = 0.00 0.00 0.00 n/a **N-Value** = .013 .013 .013 n/a 0.60 0.60 Orifice Coeff. = 0.60 0.60 Exfil.(in/hr) = 0.000 (by Wet area) Multi-Stage = n/aNo No No TW Elev. (ft) = 0.00

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Weir Structures

Stage	/ Storage /		Table	uttiows are a	inalyzed undei	r inlet (ic) and o	outlet (oc) coi	ntrol. Weir ris	ers checked to	or orifice con	ditions (ic)	and subme	ergence (s).
Stage ft	Storage cuft	Elevation ft	Clv A cfs	Clv B cfs	Clv C cfs	PrfRsr cfs	Wr A cfs	Wr B cfs	Wr C cfs	Wr D cfs	Exfil cfs	User cfs	Total cfs
0.00	0	10.70	0.00										0.000
0.33	1,528	11.03	5.27 ic										5.273
0.66	3,055	11.36	14.91 ic										14.91
0.99	4,583	11.69	27.40 ic		-								27.40
1.32	6,110	12.02	42.19 ic										42.19
1.65	7,638	12.35	58.96 ic										58.96
1.98	9,165	12.68	77.50 ic										77.50
2.31	10,693	13.01	97.66 ic										97.66
2.64	12,220	13.34	119.32 ic										119.32
2.97	13,748	13.67	142.38 ic						***				142.38
3.30	15,275	14.00	166.75 ic										166.75
3.50	122,347	14.20	182.14 ic										182.14
3.70	229,419	14.40	197.97 ic										197.97
3.90	336,490	14.60	214.24 ic										214.24
4.10	443,562	14.80	230.93 ic										230.93
4.30	550,634	15.00	50.09 oc										50.09
4.50	657,705	15.20	112.01 oc										112.01
4.70	764,777	15.40	150.28 oc										150.28
4.90	871,849	15.60	180.61 oc										180.61
5.10	978,920	15.80	206.54 oc										206.54
5.30	1,085,992	16.00	229.56 oc										229.56
5.50	1,454,089	16.20	250.47 oc										250.47
5.70	1,822,186	16.40	269.76 oc										269.76
5.90	2,190,283	16.60	287.77 oc										287.77
6.10	2,558,380	16.80	304.71 oc										304.71
6.30	2,926,477	17.00	320.76 oc										320.76
6.50	3,294,574	17.20	336.04 oc										336.04
6.70	3,662,671	17.40	350.65 oc										350.65
6.90	4,030,768	17.60	364.69 oc										364.69
7.10	4,398,866	17.80	372.91 ic										372.91
7.30	4,766,963	18.00	380.33 ic										380.33

APPENDIX B

H&H Memo Attachment B Extreme Precipitation Tables

Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

Smoothing	Yes
State	Massachusetts
Location	
Longitude	70.772 degrees West
Latitude	42.575 degrees North
Elevation	Unknown/Unavailable
Date/Time	Sat, 19 Sep 2015 14:15:15 -0400

Extreme Precipitation Estimates

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.27	0.41	0.51	0.67	0.84	1.06	1yr	0.72	0.98	1.24	1.60	2.08	2.72	3.00	1yr	2.41	2.88	3.31	4.01	4.70	1yr
2yr	0.33	0.51	0.64	0.84	1.06	1.34	2yr	0.91	1.24	1.56	1.99	2.53	3.25	3.61	2yr	2.87	3.47	3.99	4.75	5.39	2yr
5yr	0.39	0.61	0.77	1.03	1.32	1.69	5yr	1.14	1.56	1.97	2.51	3.21	4.09	4.61	5yr	3.62	4.43	5.08	6.01	6.77	5yr
10yr	0.44	0.69	0.88	1.19	1.55	2.00	10yr	1.34	1.86	2.35	3.01	3.83	4.88	5.56	10yr	4.32	5.34	6.10	7.18	8.05	10yr
25yr	0.52	0.83	1.05	1.45	1.92	2.51	25yr	1.66	2.34	2.96	3.79	4.85	6.16	7.11	25yr	5.45	6.84	7.79	9.10	10.14	25yr
50yr	0.58	0.93	1.20	1.68	2.27	3.00	50yr	1.96	2.78	3.55	4.56	5.80	7.34	8.58	50yr	6.50	8.25	9.37	10.89	12.07	50yr
100yr	0.67	1.08	1.39	1.97	2.68	3.56	100yr	2.31	3.32	4.22	5.43	6.93	8.77	10.35	100yr	7.76	9.96				100vr
200yr	0.75	1.23	1.60	2.29	3.17	4.24	200yr	2.73	3.95	5.04	6.50	8.29	10.47	12.49	200yr	9.26	_				200vr
500yr	0.91	1.49	1.95	2.82	3.95	5.32	500yr	3.41	4.98	6.35	8.21	Concession in the local division in the loca			500yr						500yr

Lower Confidence Limits

_	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.23	0.35	0.43	0.58	0.71	0.84	1yr	0.62	0.82	1.04	1.43	1.83	2.42	2.65				_	3.56		1vr
2yr	0.32	0.49	0.60	0.82	1.01	1.23	2yr	0.87	1.20	1.41	1.85	2.37	3.13	3.47	2yr	2.77	3.34	3.85	4.60	5.21	2vr
5yr	0.37	0.56	0.70	0.96	1.22	1.46									5yr						5vr
10yr	0.41	0.62	0.77	1.08	1.40	1.67	10yr	and the second division of the local divisio	and the second division of the second divisio	and the owner where the party is not					-					7.10	10vr
																					203

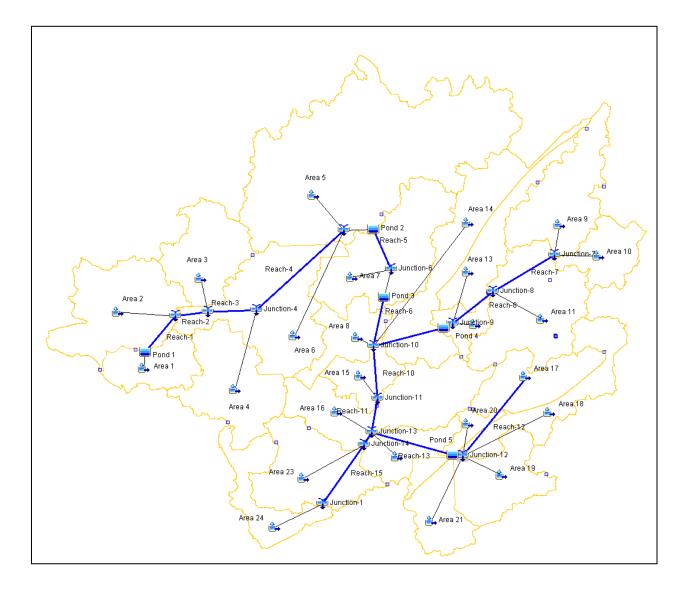
http://precip.eas.cornell.edu/data.php?1442686336229

25yr	0.46	0.71	0.88	1.25	1.65	1.98	25yr	1.42	1.94	2.21	2.80	3.57	5.08	5.79	25yr	4.49	5.57	6.42	7.57	8.34	25yr
50yr	0.51	0.77	0.96	1.39	1.87	2.26	50yr	1.61	2.21	2.50	3.12	3.98	5.83	6.63	50yr	5.16	6.37	7.37	8.66	9.70	50yr
100yr	0.57	0.86	1.07	1.55	2.13	2.56	100yr	1.84	2.51	2.82	3.49	4.42	6.69	7.59	100yr	5.92	7.29	8.46	9.92	11.01	100yr
200yr	0.63	0.95	1.20	1.74	2.42	2.92	200yr	2.09	2.86	3.19	3.88	4.89	7.70	8.71	200yr	6.81	8.38	9.73	11.36	12.46	200yr
500yr	0.73	1.08	1.39	2.02	2.88	3.48	500yr	2.48	3.40	3.76	4.47	5.61	9.30	10.47	500yr	8.23	10.07	11.73	13.63	14.69	500yr

Upper Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.30	0.46	0.56	0.75	0.93	1.08	1yr	0.80	1.06	1.34	1.72	2.21	2.99	3.35	1yr	2.65	3.22	3.71	4.34	5.18	1yr
2yr	0.35	0.54	0.67	0.90	1.11	1.33	2yr	0.96	1.30	1.53	2.02	2.59	3.40	3.78	2yr	3.01	3.63	4.17	4.98	5.63	2yr
5yr	0.42	0.65	0.81	1.11	1.42	1.74	5yr	1.22	1.70	2.00	2.65	3.39	4.49	5.04	5yr	3.97	4.85	5.52	6.51	7.31	5yr
10yr	0.51	0.78	0.96	1.35	1.74	2.14	10yr	1.50	2.09	2.45	3.27	4.16	5.55	6.31	10yr	4.91	6.07	6.87	8.04	8.97	10vr
25yr	0.64	0.98	1.22	1.74	2.29	2.82	25yr	1.98	2.76	3.22	4.33	5.48	7.34	8.52	25yr	6.49	8.19	9.18	10.60	11.77	25vr
50yr	0.77	1.17	1.46	2.09	2.82	3.49	50yr	2.43	3.41	3.96	5.36	6.77	9.06	10.70	50yr	8.01	10.29				50vr
100yr	0.93	1.40	1.76	2.54	3.48	4.30	100yr	3.00	4.20	4.87	6.64	8.37	11.17		100yr		12.93				100yr
200yr	1.11	1.67	2.12	3.07	4.28	5.32	200yr	3.70	5.20	6.00	8.24	10.34	13.75		200yr				20.00		200yr
500yr	1.43	2.12	2.73	3.96	5.64	7.02	500yr	4.87	6.86	7.91	10.98				500yr						500yr

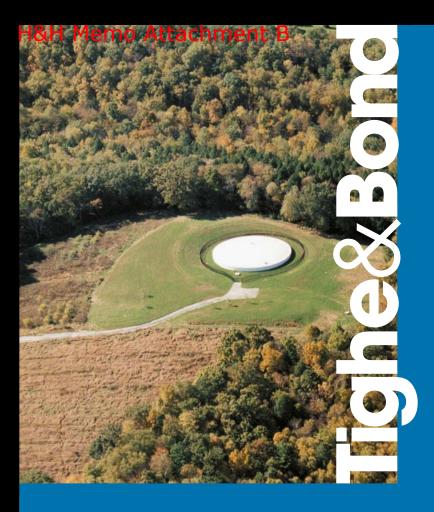
Powered by ACIS


Northeast Regional Climate Center

Project: MBTS

Basin Model : MBTS Watershed - Normal

Oct 09 13:58:03 EDT 2015



Project: MBTS Simulation Run: 20	15 - 025 yr
Start of Run: 19Sep2015, 00:00 f End of Run: 20Sep2015, 00:01	NOTE: The original report included multiple model runs, for simplicity only one example was included for this appendix (using precipitation values from the NRCC). The full report can be provided upon request

Hydrologic Element	Drainage Ai (MI2)	eaPeak Discha (CFS)	r G eme of Peak	Volume (IN)
Area 5	0.9149000	409.0	19Sep2015, 13:17	2.14
Area 2	0.2143070	146.6	19Sep2015, 12:52	2.52
Area 1	0.1202500	130.4	19Sep2015, 12:27	2.72
Pond 1	0.1202500	56.7	19Sep2015, 12:59	2.68
Reach-1	0.1202500	56.7	19Sep2015, 13:12	2.65
Junction-2	0.3345570	199.7	19Sep2015, 12:55	2.57
Reach-2	0.3345570	199.6	19Sep2015, 12:57	2.56
Area 3	0.1890000	114.7	19Sep2015, 12:43	2.00
Junction-3	0.5235570	304.5	19Sep2015, 12:51	2.36
Reach-3	0.5235570	304.4	19Sep2015, 12:53	2.35
Area 4	0.2384815	154.2	19Sep2015, 12:47	2.26
Junction-4	0.7620385	456.6	19Sep2015, 12:51	2.32
Reach-4	0.7620385	456.5	19Sep2015, 13:00	2.30
Area 6	0.3474700	215.2	19Sep2015, 13:11	2.78
Junction-5	2.0244085	1054.8	19Sep2015, 13:07	2.31
Pond 2	2.0244085	198.1	19Sep2015, 16:34	1.37
Reach-5	2.0244085	198.1	19Sep2015, 16:40	1.35
Area 7	0.3110400	294.5	19Sep2015, 12:35	2.72
Junction-6	2.3354485	349.4	19Sep2015, 12:44	1.53
Pond 3	2.3354485	212.7	19Sep2015, 17:34	1.39
Reach-6	2.3354485	212.7	19Sep2015, 17:38	1.38
Area 9	0.2393600	136.1	19Sep2015, 12:47	2.00
Area 10	0.1111700	85.5	19Sep2015, 12:31	2.09
Junction-7	0.3505300	207.7	19Sep2015, 12:40	2.03
Reach-7	0.3505300	207.5	19Sep2015, 12:49	2.00
Area 11	0.3052000	161.7	19Sep2015, 13:04	2.24
Junction-8	0.6557300	359.7	19Sep2015, 12:55	2.11

Hydrologic Element	Drainage Ar (MI2)	aPeak Discha (CFS)	rgēme of Peak	Volume (IN)
Reach-8	0.6557300	359.6	19Sep2015, 12:59	2.11
Area 13	0.0571908	45.1	19Sep2015, 12:44	2.62
Area 12	0.0548863	52.6	19Sep2015, 12:32	2.63
Junction-9	0.7678071	432.3	19Sep2015, 12:55	2.18
Pond 4	0.7678071	394.0	19Sep2015, 13:10	2.18
Reach-9	0.7678071	394.0	19Sep2015, 13:13	2.17
Area 14	0.2956000	203.8	19Sep2015, 12:57	2.70
Area 8	0.1103443	112.8	19Sep2015, 12:28	2.63
Junction-10	3.5091999	774.7	19Sep2015, 13:04	1.71
Reach-10	,3.5091999	774.7	19Sep2015, 13:08	1.69
Area 15	0.0890144	79.4	19Sep2015, 12:34	2.53
Junction-11	3.5982143	815.7	19Sep2015, 13:03	1.71
Reach-11	3.5982143	815.7	19Sep2015, 13:19	1.67
Area 19	0.1726400	146.4	19Sep2015, 12:32	2.36
Area 18	0.1713200	98.8	19Sep2015, 12:53	2.16
Area 17	0.1551600	97.1	19Sep2015, 12:50	2.25
Reach-12	0.1551600	97.0	19Sep2015, 12:56	2.24
Area 21	0.1163900	112.3	19Sep2015, 12:29	2.54
Area 20	0.0568027	62.9	19Sep2015, 12:38	3.38
Junction-12	0.6723127	465.5	19Sep2015, 12:39	2.40
Pond 5	0.6723127	211.4	19Sep2015, 13:31	2.40
Reach-13	0.6723127	211.4	19Sep2015, 13:33	2.39
Area 16	0.2959900	198.9	19Sep2015, 12:51	2.43
Area 22	0.1087000	128.1	19Sep2015, 12:33	3.29
Junction-13	4.6752170	1228.2	19Sep2015, 13:12	1.86
Reach-14	4.6752170	1227.8	19Sep2015, 13:20	1.84
Area 23	0.2300500	164.7	19Sep2015, 12:57	2.79
Junction-14	4.9052670	1363.5	19Sep2015, 13:19	1.88
Reach-15	4.9052670	1362.7	19Sep2015, 13:21	1.87
Area 24	0.1367700	128.0	19Sep2015, 12:46	3.18
Junction-1	5.0420370	1437.7	19Sep2015, 13:21	1.91

APPENDIX C

report this ad

H&H Memo Attachment B

Weather History for KBVY - May, 2006

Saturday, May 13, 2006

NOTE: The original report included additional tabular detail. Only the preliminary summary and figure summaries were included for this appendix.

The full report can be provided upon request

	the second s				
Daily	Weekly	Monthly	Custom		
			Actual	Average [KBOS]	Record (KBOS)
Temperatu	lre				
Mean Tem	perature		48 °F	57 ° F	
Max Temp	erature		51 ° F	65 °F	87 °F (1947)
Min Tempe	rature		44 °F	49 °F	38 °F (1882)
Degree Day	ys				
Heating De	gree Days		18	8	
Month to d	ate heating de	gree days		133	
Since 1 July	heating degree	e days		5514	
Cooling Deg	gree Days		0	0	
Month to da	ate cooling deg	ree days		0	
Year to dat	e cooling degre	ee days		3	
Moisture					
Dew Point			46 °F		
Average Hu	umidity		96		
Maximum H	lumidity		100		
Minimum H	umidity		93		
Precipitatio	n				
Precipitatio	n		4.32 in	0.10 in	3.84 in (2006)
Month to da	ate precipitatio	n		1.36	
lear to dat	e precipitation			16.03	

Sea Level Pressure

sel & He mo Attachment B 30.04 in

Wind	
Wind Speed	12 mph (NE)
Max Wind Speed	18 mph
Max Gust Speed	28 mph
Visibility	2 miles
Events	Fog , Rain
T = Trace of Precipitation, MM = Missing Value	

Source: NWS Daily Summary

Daily Weather History Graph

Search for Another Location

Airport or City:

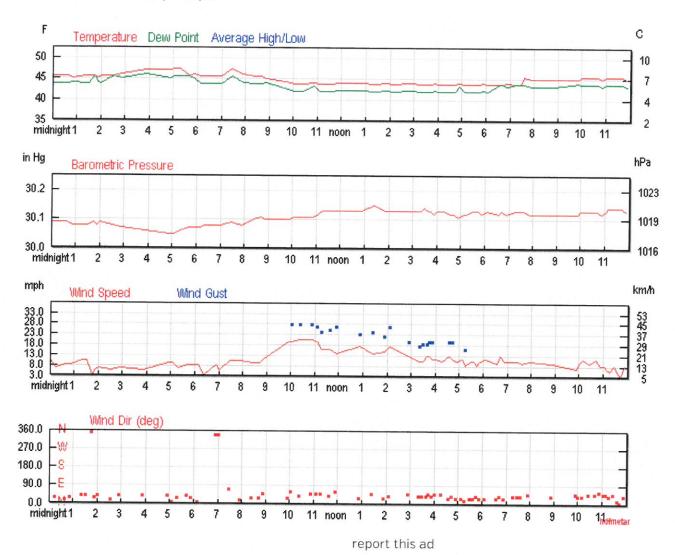
KBVY

report this ad

H&H Memo Attachment B

Weather History for KBVY - May, 2006

Sunday, May 14, 2006


Daily	Weekly	Monthly	Custom		
			Actual	Average	Record
Temperatu	ire				
Mean Tem	perature		46 °F	-	
Max Tempe	erature		48 °F	62 °F	79 °F (1981)
Min Tempe	rature		44 °F	42 °F	33 °F (1999)
Degree Day	/s				
Heating De	gree Days		19		
Moisture					
Dew Point			44 °F		
Average Hu	umidity		94		
Maximum H	lumidity		100		
Minimum H	umidity		93		
Precipitatio	on				
Precipitatio	n		4.95 in	-	- ()
Sea Level P	ressure				
Sea Level P	ressure	:	30.11 in		
Wind					
Wind Speed		1	IO mph (NE)		
Max Wind S	peed		21 mph		
Max Gust Sp	peed		28 mph		
Visibility			2 miles		

Averages and the out official NWS values.

T = Trace of Precipitation, MM = Missing Value

Source: NWS Daily Summary

Daily Weather History Graph

Search for Another Location

Airport or City:

KBVY

Submit

Trip Planner

Search our weather history database for the weather conditions in past years. The results will help you decide how hot, cold, wet, or windy it might be!

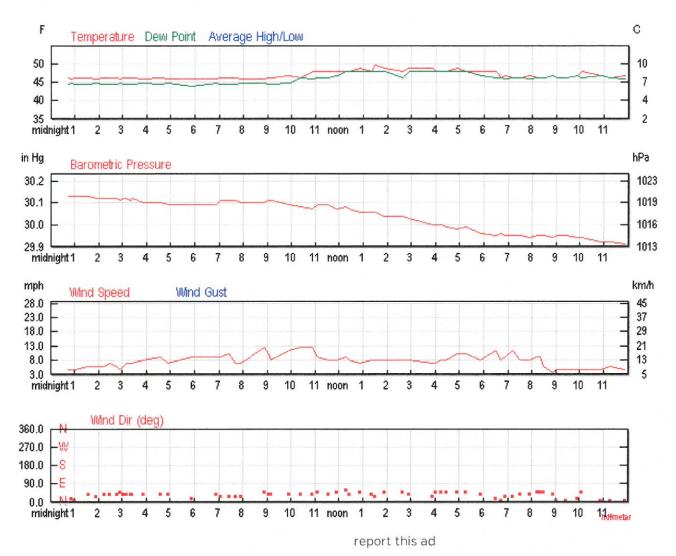
Date:

report this ad

H&H Memo Attachment B

Weather History for KBVY - May, 2006

Monday, May 15, 2006


and an other than the second se					
Daily	Weekly	Monthly	Custom		
		Actu	ual	Average	Record
Temperatu	ure				
Mean Tem	perature	48 °	°F	i .	
Max Temp	erature	50 °	F	62 °F	88 °F (2004)
Min Tempe	erature	46 °	F	42 °F	37 °F (2013)
Degree Da	ys				
Heating De	egree Days	17			
Moisture					
Dew Point		46 °	F		
		96			
Maximum Humidity		100			
Minimum Humidity		93			
Precipitatio	on				
Precipitatio	on	1.15 i	n		- []
Sea Level F	Pressure				
Sea Level F	Pressure	30.04	4 in		
Wind					
Wind Speed	Ł	7 mp	h (NE)		
Max Wind S	speed	13 mj	ph		
Max Gust S	peed	18 m	ph		
Visibility		2 mile	es		

Averlages Menreo Attaching eration are not official NWS values.

T = Trace of Precipitation, MM = Missing Value

Source: NWS Daily Summary

Daily Weather History Graph

Search for Another Location

Airport or City:

KBVY

Submit

Trip Planner

Search our weather history database for the weather conditions in past years. The results will help you decide how hot, cold, wet, or windy it might be!

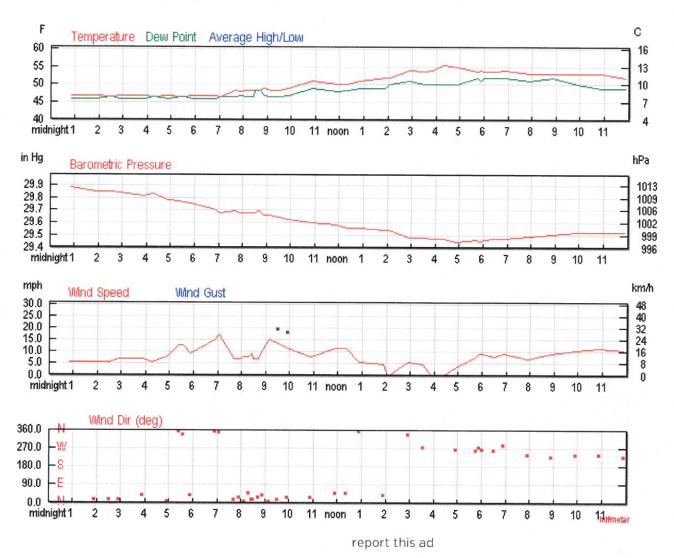
Date:

report this ad

H&H Memo Attachment B

Weather History for KBVY - May, 2006

Tuesday, May 16, 2006


In the second			and the second se		
Daily	Weekly	Monthly	Custom		
			Actual	Average	Record
Temperatu	ıre				
Mean Tem	perature		50 °F		
Max Temp	erature		55 °F	62 °F	84 °F (1980)
Min Tempe	rature		46 °F	42 °F	35 °F (1999)
Degree Da	ys				
Heating De	gree Days		14		
Moisture					
Dew Point			48 °F		
Average H	umidity		94		
Maximum I	Humidity		100		
Minimum H	umidity		82		
Precipitatio	on				
Precipitatio	on		0.56 in	-	- ()
Sea Level F	Pressure				
Sea Level F	Pressure		29.62 in		
Wind					
Wind Speed	1		8 mph (North)		
Max Wind S	peed		17 mph		
Max Gust S	peed		21 mph		
Visibility			6 miles		

Averages and records for this station are not official NWS values.

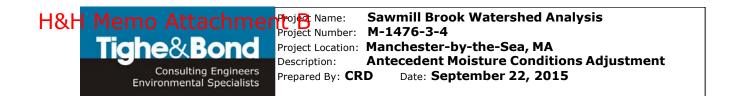
T = Trace of Precipitation, MM = Missing Value

Source: NWS Daily Summary

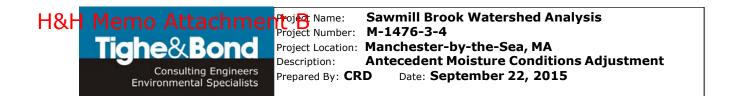
Daily Weather History Graph

Search for Another Location

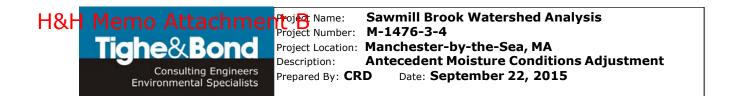
Airport or City:

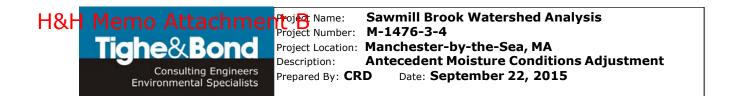

KBVY

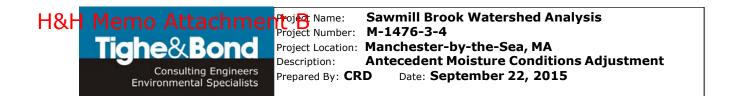
Submit

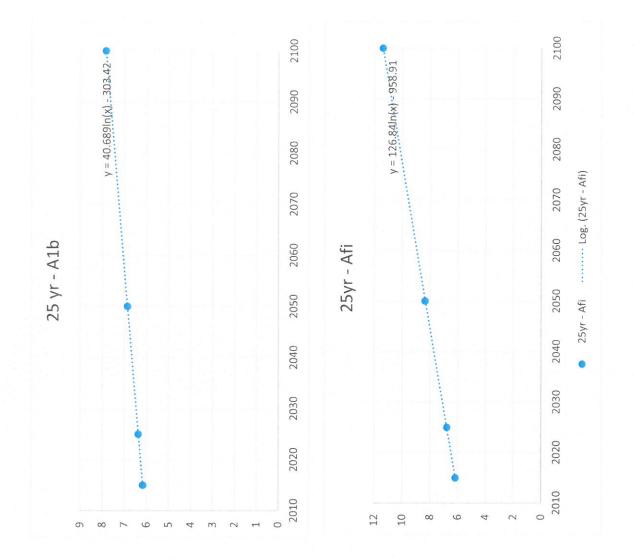

Trip Planner

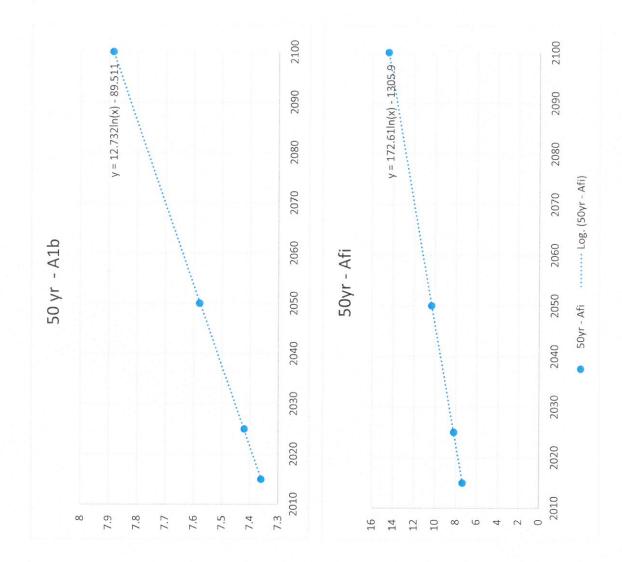
Search our weather history database for the weather conditions in past years. The results will help you decide how hot, cold, wet, or windy it might be!

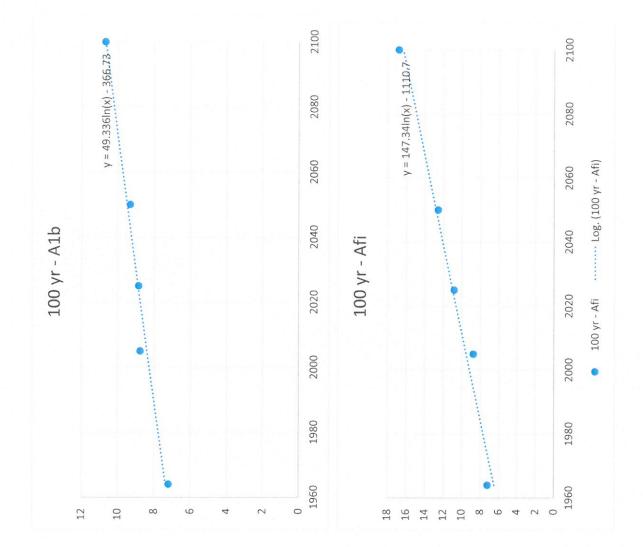

Date:


Designation:	Area 1	
Weighted CN:	68 (AMC ₂)	
RCN _{AMC3} =	23RCN _{AMC2} 10+0.13RCN _{AMC2}	
RCN _{AMC3} =	83	
Designation:	Area 2	
Weighted CN:	66 (AMC ₂)	
RCN _{AMC3} =	23RCN _{AMC2} 10+0.13RCN _{AMC2}	
RCN _{AMC3} =	82	
Designation:	Area 3	
Weighted CN:	60 (AMC ₂)	
RCN _{AMC3} =	23RCN _{AMC2} 10+0.13RCN _{AMC2}	
RCN _{AMC3} =	78	
Designation:	Area 4	
Weighted CN:	63 (AMC ₂)	
RCN _{AMC3} =	23RCN _{AMC2} 10+0.13RCN _{AMC2}	
RCN _{AMC3} =	80	
Designation:	Area 5	
Weighted CN:	62 (AMC ₂)	
RCN _{AMC3} =	23RCN _{AMC2} 10+0.13RCN _{AMC2}	
RCN _{AMC3} =	79	

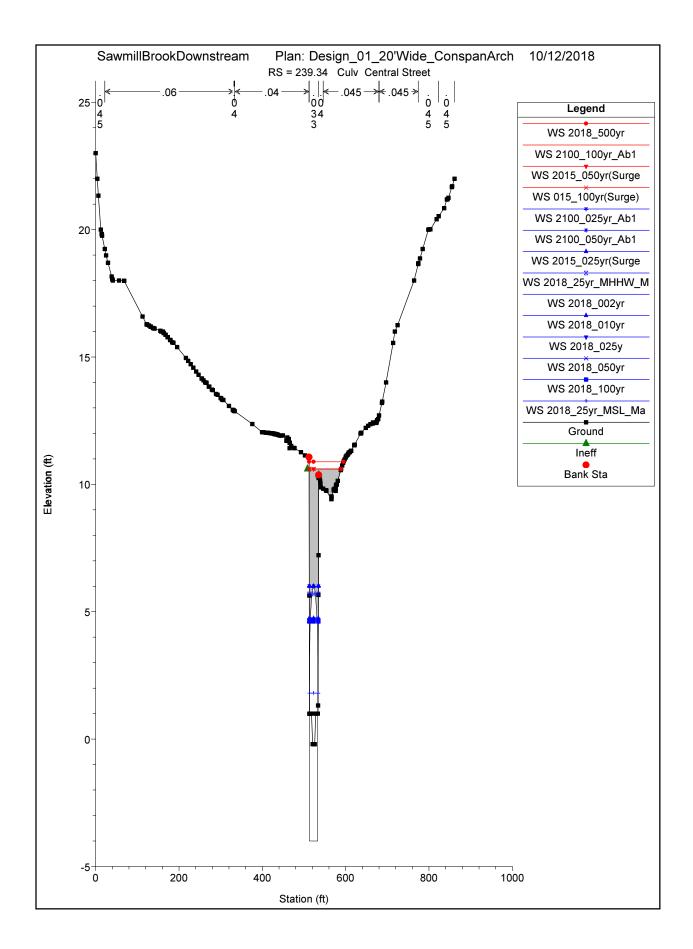

Designation:	Area 6	
Weighted CN:	69 (AMC ₂)	
RCN _{AMC3} =	23RCN _{AMC2} 10+0.13RCN _{AMC2}	
RCN _{AMC3} =	84	
Designation:	Area 7	
Weighted CN:	68 (AMC ₂)	
RCN _{AMC3} =	23RCN _{AMC2} 10+0.13RCN _{AMC2}	
RCN _{AMC3} =	83	
Designation:	Area 8	
Weighted CN:	67 (AMC ₂)	
RCN _{AMC3} =	23RCN _{AMC2} 10+0.13RCN _{AMC2}	
RCN _{AMC3} =	82	
Designation:	Area 9	
Weighted CN:	60 (AMC ₂)	
RCN _{AMC3} =	23RCN _{AMC2} 10+0.13RCN _{AMC2}	
RCN _{AMC3} =	78	
Designation:	Area 10	
Weighted CN:	61 (AMC ₂)	
RCN _{AMC3} =	23RCN _{AMC2} 10+0.13RCN _{AMC2}	
RCN _{AMC3} =	78	

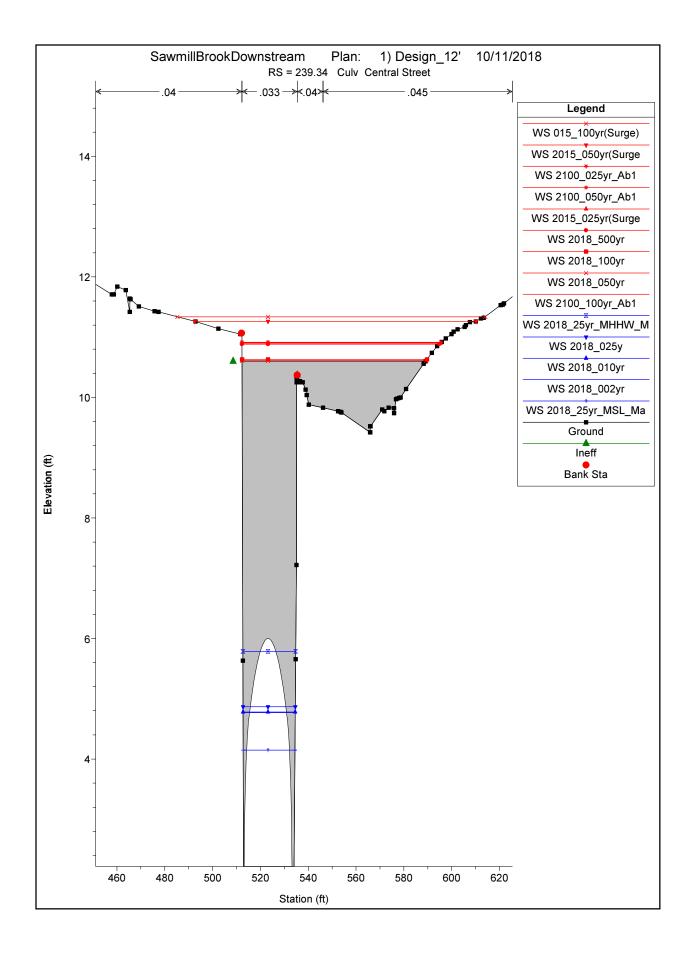

Designation:	Area 11	
Weighted CN:	63 (AMC ₂)	
RCN _{AMC3} =	23RCN _{AMC2} 10+0.13RCN _{AMC2}	
$RCN_{AMC3} =$	80	
Designation:	Area 12	
Weighted CN:	67 (AMC ₂)	
RCN _{AMC3} =	23RCN _{AMC2} 10+0.13RCN _{AMC2}	
RCN _{AMC3} =	82	
Designation:	Area 13	
Weighted CN:	67 (AMC ₂)	
RCN _{AMC3} =	23RCN _{AMC2} 10+0.13RCN _{AMC2}	
RCN _{AMC3} =	82	
Designation:	Area 14	
Weighted CN:	68 (AMC ₂)	
RCN _{AMC3} =	23RCN _{AMC2} 10+0.13RCN _{AMC2}	
RCN _{AMC3} =	83	

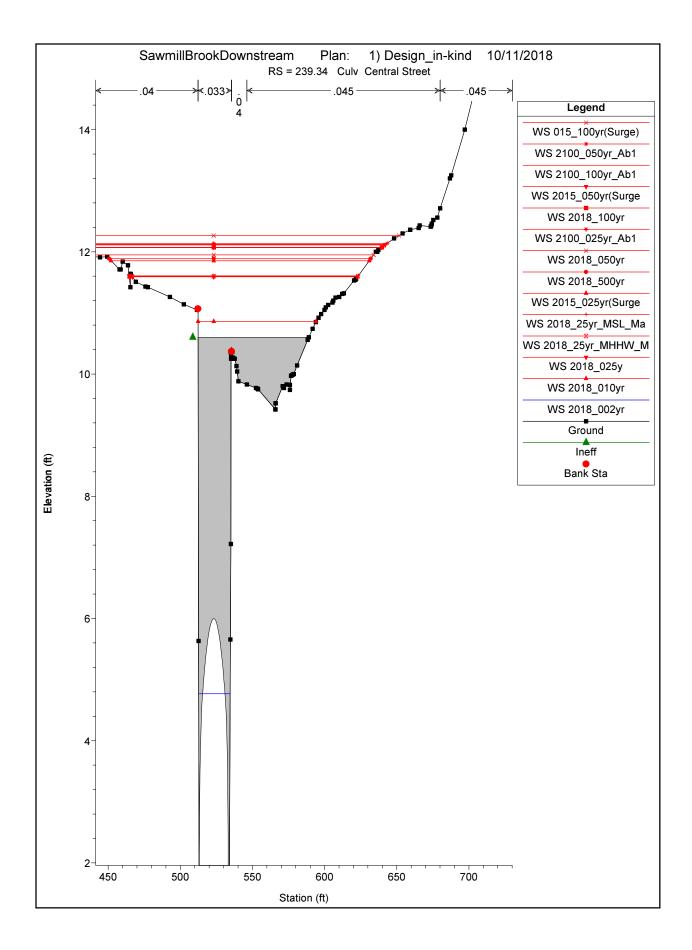

Designation:	Area 15	
Weighted CN:	66 (AMC ₂)	
RCN _{AMC3} =	23RCN _{AMC2} 10+0.13RCN _{AMC2}	
RCN _{AMC3} =	82	
Designation:	Area 16	
Weighted CN:	65 (AMC ₂)	
RCN _{AMC3} =	23RCN _{AMC2} 10+0.13RCN _{AMC2}	
RCN _{AMC3} =	81	
Designation:	Area 17	
Weighted CN:	63 (AMC ₂)	
RCN _{AMC3} =	23RCN _{AMC2} 10+0.13RCN _{AMC2}	
RCN _{AMC3} =	80	
Designation:	Area 18	
Weighted CN:	62 (AMC ₂)	
RCN _{AMC3} =	23RCN _{AMC2} 10+0.13RCN _{AMC2}	
RCN _{AMC3} =	79	
Designation:	Area 19	
Weighted CN:	64 (AMC ₂)	
RCN _{AMC3} =	23RCN _{AMC2} 10+0.13RCN _{AMC2}	
RCN _{AMC3} =	80	

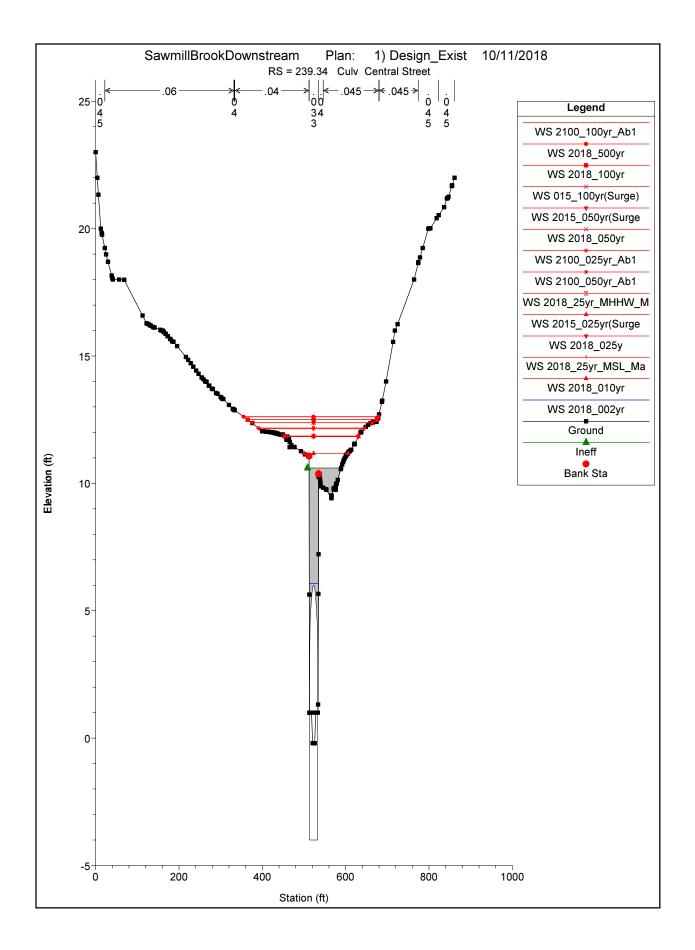

Designation:	Area 20
Weighted CN:	75 (AMC ₂)
RCN _{AMC3} =	23RCN _{AMC2} 10+0.13RCN _{AMC2}
$RCN_{AMC3} =$	87
Designation:	Area 21
Weighted CN:	66 (AMC ₂)
RCN _{AMC3} =	23RCN _{AMC2} 10+0.13RCN _{AMC2}
RCN _{AMC3} =	82
Designation:	Area 22
Weighted CN:	74 (AMC ₂)
RCN _{AMC3} =	23RCN _{AMC2} 10+0.13RCN _{AMC2}
$RCN_{AMC3} =$	87
Designation:	Area 23
Weighted CN:	69 (AMC ₂)
RCN _{AMC3} =	23RCN _{AMC2} 10+0.13RCN _{AMC2}
RCN _{AMC3} =	84
Designation:	Area 24
Weighted CN:	73 (AMC ₂)
RCN _{AMC3} =	23RCN _{AMC2} 10+0.13RCN _{AMC2}
RCN _{AMC3} =	86

Year	25 yr -A1b 25yr - Afi	25yr - Afi
2015	6.16	6.16
2025	6.36	6.77
2050	6.86	8.35
2100	7.84	11.39




Year	50 yr -A1b	50yr - Afi
2015	7.36	7.36
2025	7.42	8.19
2050	7.58	10.34
2100	7.88	14.48




Year	100 yr -A1b	100 yr - Afi
1964	7.2	7.2
2005	8.76	8.76
2025	8.85	10.82
2050	9.31	12.58
2100	10.69	16.82

ATTACHMENT C HEC-RAS Results

Reach	River Sta	Profile	Plan	Q Total	Min Ch El			E.G. Elev	E.G. Slope			-	Froude # Chl
	2044.002	2010.002	Desire 201	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	0.17
1		2018_002yr	Design_20'	232	7.12	12.0851	9.14	12.13	0.000529	1.85	200.94	166.43	0.17
1		2018_002yr	Design_12'	232	7.12	12.0851	9.14	12.13	0.000529	1.85	200.94	166.43	0.17
1		2018_002yr	Design_in-kind	232	7.12	12.0851	9.14	12.13	0.000529	1.85	200.94	166.43	0.17
1		2018_002yr	Design_Exist	232	7.12	12.0843	9.14	12.13	0.000529	1.85	200.81	166.41	0.17
1		2018_010yr	Design_20'	845	7.12	15.4289	11.7	15.45	0.000158	1.57	1068.18	357.02	0.1
1		2018_010yr	Design_12'	845	7.12	15.4289	11.7	15.45	0.000158	1.57	1068.18	357.02	0.1
1		2018_010yr	Design_in-kind	845	7.12	15.4138	11.7	15.43	0.000161	1.57	1062.78	356.61	0.11
1	2841.083	2018_010yr	Design_Exist	845	7.12	15.4322	11.7	15.45	0.000158	1.56	1069.34	357.11	0.1
1	2841.083	2018_025y	Design_20'	1228	7.12	15.7738	12.45	15.8	0.000249	2.03	1192.86	365.98	0.13
1	2841.083	2018_025y	Design_12'	1228	7.12	15.7698	12.45	15.8	0.000249	2.03	1191.41	365.88	0.13
1	2841.083	2018_025y	Design_in-kind	1228	7.12	15.7832	12.45	15.81	0.000247	2.02	1196.31	366.23	0.13
1	2841.083	2018_025y	Design_Exist	1228	7.12	15.8006	12.45	15.83	0.000243	2.01	1202.68	366.68	0.13
1	2841.083	2018_050yr	Design_20'	1565	7.12	16.219	12.76	16.26	0.000295	2.3	1369.34	432.19	0.15
1	2841.083	2018_050yr	Design_12'	1565	7.12	16.2411	12.76	16.28	0.00029	2.28	1378.89	433.44	0.14
1	2841.083	2018_050yr	Design_in-kind	1565	7.12	16.2343	12.76	16.27	0.000292	2.29	1375.95	433.05	0.14
1	. 2841.083	2018_050yr	Design_Exist	1565	7.12	16.2593	12.76	16.3	0.000286	2.27	1386.78	434.47	0.14
1	2841.083	2018_100yr	Design_20'	2000	7.12	16.7766	13.09	16.82	0.000312	2.47	1619.19	464.08	0.15
1	2841.083	2018_100yr	Design_12'	2000	7.12	16.8017	13.09	16.84	0.000306	2.46	1630.88	465.52	0.15
1	2841.083	2018_100yr	Design_in-kind	2000	7.12	16.775	13.09	16.82	0.000313	2.48	1618.44	463.98	0.15
1		2018_100yr	Design_Exist	2000	7.12	16.7826	13.09	16.82	0.000311	2.47	1621.99	464.42	0.15
1		2018_500yr	Design_20'	2671	7.12	17.4201	13.55	17.47	0.000344	2.73	1927.38	492.84	0.16
1		2018_500yr	Design_20 Design_12'	2671	7.12	17.4759	13.55	17.52	0.000331	2.69	1954.95	494.89	0.16
1		2018_500yr 2018 500yr	Design_12 Design_in-kind	2671	7.12	17.4398	13.55	17.32	0.000331	2.09	1934.93	494.89	0.16
1		2018_500yr 2018_500yr	Design_In-kind Design_Exist	2671	7.12	17.4398	13.55	17.49	0.000339	2.72	1959.19	495.46	0.16
1		_ ,	-										
1		_ /	Design_20'	1228	7.12	15.7738	12.45	15.8	0.000249	2.03	1192.86	365.98	0.13
1		-	Design_12'	1228	7.12	15.7716	12.45	15.8	0.000249	2.03	1192.04	365.92	0.13
1		2018_25yr_MHHW_M	-	1228	7.12	15.7933	12.45	15.82	0.000244	2.01	1200.02	366.49	0.13
1		2018_25yr_MHHW_M	Design_Exist	1228	7.12	15.7955	12.45	15.83	0.000244	2.01	1200.79	366.54	0.13
1		2018_25yr_MSL_Ma	Design_20'	1228	7.12	15.7738	12.45	15.8	0.000249	2.03	1192.86	365.98	0.13
1	. 2841.083	2018_25yr_MSL_Ma	Design_12'	1228	7.12	15.7736	12.45	15.8	0.000249	2.03	1192.79	365.98	0.13
1	. 2841.083	2018_25yr_MSL_Ma	Design_in-kind	1228	7.12	15.8002	12.45	15.83	0.000243	2.01	1202.51	366.67	0.13
1	2841.083	2018_25yr_MSL_Ma	Design_Exist	1228	7.12	15.8008	12.45	15.83	0.000243	2.01	1202.73	366.68	0.13
1	2841.083	2100_025yr_Ab1	Design_20'	1706	7.12	16.4194	12.87	16.46	0.000299	2.35	1457.1	443.6	0.15
1	2841.083	2100_025yr_Ab1	Design_12'	1706	7.12	16.4321	12.87	16.47	0.000296	2.34	1462.7	444.32	0.15
1	2841.083	2100_025yr_Ab1	Design_in-kind	1706	7.12	16.4296	12.87	16.47	0.000297	2.35	1461.63	444.18	0.15
1	2841.083	2100_025yr_Ab1	Design_Exist	1706	7.12	16.4146	12.87	16.45	0.0003	2.36	1454.96	443.32	0.15
1	2841.083	2100_050yr_Ab1	Design_20'	1717	7.12	16.436	12.88	16.48	0.000299	2.36	1464.45	444.55	0.15
1	2841.083	2100_050yr_Ab1	Design_12'	1717	7.12	16.4355	12.88	16.48	0.000299	2.36	1464.23	444.52	0.15
1	2841.083	2100_050yr_Ab1	Design_in-kind	1717	7.12	16.4312	12.88	16.47	0.0003	2.36	1462.32	444.27	0.15
1	2841.083	2100_050yr_Ab1	Design_Exist	1717	7.12	16.4322	12.88	16.47	0.0003	2.36	1462.78	444.33	0.15
1	2841.083	2100_100yr_Ab1	Design_20'	2562	7.12	17.348	13.48	17.4	0.000333	2.67	1891.94	489.27	0.16
1		2100_100yr_Ab1	Design 12'	2562	7.12	17.3199	13.48	17.37	0.00034	2.69	1878.21	488.34	0.16
1		2100_100yr_Ab1	Design_in-kind	2562	7.12	17.302	13.48	17.35	0.000345	2.71	1869.5	487.75	0.16
1		2100_100yr_Ab1	Design_Exist	2562	7.12	17.3406	13.48	17.39	0.000335	2.68	1888.32	489.03	0.16
1		2018_025yr(Surge	Design_20'	1228	7.12	15.7698	12.45	17.55	0.000249	2.00	1191.41	365.88	0.13
1				1228	7.12	15.775	12.45	15.81	0.000249	2.03	1193.31	366.01	0.13
		2015_025yr(Surge	Design_12'										
1		2015_025yr(Surge	Design_in-kind		7.12				0.000243	2.01	1202.44	366.66	0.13
1		2015_025yr(Surge	Design_Exist	1228	7.12		12.45		0.000243	2.01	1203.29	366.72	0.13
1		2018_050yr(Surge	Design_20'	1565	7.12				0.000294	2.29	1370.96	432.4	0.15
1		2015_050yr(Surge	Design_12'	1565	7.12	16.252	12.76	16.29	0.000288	2.27	1383.61	434.05	0.14
1		2015_050yr(Surge	Design_in-kind	1565	7.12		12.76	16.28	0.00029	2.28	1379.71	433.54	0.14
1		2015_050yr(Surge	Design_Exist	1565	7.12		12.76	16.29	0.000288	2.27	1383.05	433.98	0.14
1	2841.083	015_100yr(Surge)	Design_20'	2000	7.12		13.09	16.81	0.000314	2.48	1615.72	463.65	0.15
1	2841.083	015_100yr(Surge)	Design_12'	2000	7.12		13.09	16.81	0.000315	2.48	1613.41	463.36	0.15
1	2841.083	015_100yr(Surge)	Design_in-kind	2000	7.12	16.8114	13.09	16.85	0.000304	2.45	1635.38	466.07	0.15
1	2841.083	015_100yr(Surge)	Design_Exist	2000	7.12	16.7743	13.09	16.82	0.000313	2.48	1618.13	463.95	0.15
1	2788.571	2018_002yr	Design_20'	232	7.44	12.0082	9.07	12.09	0.000809	2.33	101.22	80.24	0.2
1		2018_002yr	Design_12'	232	7.44	12.0082	9.07	12.09	0.000809	2.33	101.22	80.24	0.2
1		2018_002yr	Design_in-kind	232	7.44		9.07	12.09	0.000809	2.33	101.22	80.24	0.2
1		2018_002yr	Design_Exist	232	7.44			12.09	0.000809	2.33	101.2	80.21	0.2
1		2018_010yr	Design_20'	845	7.44		11.19		0.000557	2.84		304.19	0.19
1		2018_010yr	Design_20 Design_12'	845	7.44			15.43	0.000557	2.84		304.19	0.19
		-											
1		2018_010yr	Design_in-kind		7.44				0.000566	2.85	625.49	303.51	0.19
1		2018_010yr	Design_Exist	845	7.44				0.000555	2.83	630.6	304.34	0.19
1		2018_025y	Design_20'	1228	7.44		12.31	15.78	0.0009	3.7	706.16	316.5	0.24
1		2018_025y	Design_12'	1228	7.44		12.31	15.77	0.000903	3.71	704.98	316.31	0.24
1	2788.571	2018_025y	Design_in-kind	1228	7.44	15.6546	12.31	15.78	0.000891	3.69	708.95	316.94	0.24
	2788.571	2018_025y	Design_Exist	1228	7.44	15.6744	12.31	15.8	0.000876	3.66	714.12	317.76	0.23
1			D : 001	1565	7.44	16.133	13.04	16.23	0.00074	3.5	987.41	371.21	0.22
1		2018_050yr	Design_20'	1565	7.44	10.155	15.04	10.25		5.5	507112	5/1.21	0.22
	2788.571	2018_050yr 2018_050yr	Design_20' Design_12'	1565	7.44		13.04	16.25	0.000725	3.47	996.4	373.09	0.22

1 2788.571 2018.050yr Design_Evist. 1565 7.44 16.177 13.04 16.27 0.000712 3.45 1 2788.571 2018.100yr Design_220 2000 7.44 16.6892 13.89 16.79 0.00076 3.75 1 2788.571 2018.100yr Design_212 2000 7.44 16.6892 13.89 16.79 0.000779 3.76 1 2788.571 2018.500yr Design_212 2000 7.44 16.6897 13.89 16.79 0.000773 3.74 1 2788.571 2018.500yr Design_212 2671 7.44 17.3355 15.06 17.46 0.000761 3.91 1 2788.571 2018.250yr Mesign_212 2671 7.44 17.3656 15.06 17.45 0.000753 3.91 1 2788.571 2018.25yr MHW Design_201 1228 7.44 15.6431 12.31 15.70 0.00092 3.71 1 2788.571 2018.25yr MHW Design_201 1228 7.44 15.6431		-	h Froude # Chi
I 1788 571 2018 3.00yr Design .20 2000 7.44 15 188 15.79 0.00078 3.72 I 2788 571 2018 3.00yr Design .n-kind 2000 7.44 15 188 15.79 0.00078 3.72 I 2788 571 2018 3.00yr Design_Exist 2000 7.44 15 6897 13.88 16.8 0.000773 3.76 I 2788 571 2018 3.00yr Design_Exist 2071 7.44 17.3381 15.06 17.44 0.00078 3.31 I 2788 571 2018 3.50yr Design_In-kind 2771 7.44 17.4480 15.06 17.44 0.00078 3.37 I 2788 571 2018 3.59yr, MHWH, Mesign_In-kind 1228 7.44 15.6431 12.31 15.77 0.00082 3.77 I 2788 571 2018 3.59yr, MHWH, Mesign_In-kind 1228 7.44 15.6431 12.31 15.78 0.00078 3.67 I 2788 571 2018 3.29yr, MLWH, Mesign_In-kind 1228 7.44 15.6437 12.31 15.80 0.00078) (sq ft)	(sq ft) (ft)	
1 2785 771 Dial Down Design_Lexit 2000 7.44 16.7165 13.89 16.62 0.000778 3.76 1 2788.571 Dials Story Dials Dials <t< td=""><td>3.45 1003</td><td>1003.8 374.5</td><td>4 0.21</td></t<>	3.45 1003	1003.8 374.5	4 0.21
1 2788.571 2018 0.00779 3.76 1 2788.571 2018 0.00077 3.74 1 2788.571 2018 0.00077 3.74 1 2788.571 2018 0.00077 3.74 1 2788.571 2018 0.00078 3.91 1 2788.571 2018 5007 Design_in-kind 2671 7.44 17.3565 15.06 17.46 0.000786 3.91 1 2788.571 2018 5007 Design_in-kind 2671 7.44 17.468 15.06 17.58 0.00090 3.71 1 2788.571 2018 2597 441 15.643 12.31 15.78 0.000982 3.67 1 2788.571 2018 2597 441 15.643 12.23 1.578 0.00098 3.77 1 2788.571 2018 2597 441 15.6437 12.31 15.88 0.00087 3.66 1	3.75 1204.4	1204.48 407.3	8 0.23
1 2788.571 2019.100yr Design_Exit. 2000 7.44 16.658 1.7.44 0.00073 3.74 1 2788.571 2018.500yr Design_In-Kint 2671 7.44 17.3355 15.06 17.44 0.000764 3.07 1 2788.571 2018.500yr Design_In-Kint 2671 7.44 17.3056 15.06 17.46 0.000776 3.07 1 2788.571 2018.25yr, MHHW, Weign_In-Kint 2727 7.44 15.6439 12.21 15.78 0.000786 3.07 1 2788.571 2018.25yr, MHHW, Weign_In-Kint 1228 7.44 15.6641 12.21 15.77 0.000802 3.67 1 2788.571 2018.25yr, MHW, Weign_In-Kint 1228 7.44 15.6641 12.31 15.78 0.00089 3.77 1 2788.571 2018.25yr, MSL, Ma Design_In-Kint 1228 7.44 15.6738 12.31 15.8 0.00097 3.66 1 2788.571 2010.025yr, MSL		1215.65 408.9	
1 2788.571 2018.500yr Design.20' 2671 7.44 17.355 15.06 17.45 0.0008 4 1 2788.571 2018.500yr Design.m-kind 2671 7.44 17.355 15.06 17.45 0.000736 3.91 1 2788.571 2018.500yr Design.m-kind 2671 7.44 17.446 15.06 17.45 0.000736 3.91 1 2788.571 2018.25yr.MHWW, Weigin.20' 1228 7.44 15.6461 12.31 15.79 0.000802 3.67 1 2788.571 2018.25yr.MHWW, Weigin.20' 1228 7.44 15.6489 12.31 15.79 0.00088 3.67 1 2788.571 2018.25yr.MHW, Weigin.20' 1228 7.44 15.6437 12.31 15.78 0.0009 3.71 1 2788.571 2018.25yr.MSL.Ma Design.12' 1706 7.44 15.6437 12.31 15.5 0.00073 3.56 1 2788.571 2010.05yr.Ma1 Desi		1203.77 407.2	
1 2788.571 2018.500yr Design, n-kind 2671 7.44 17.3565 15.06 17.5 0.000761 3.07 1 2788.571 2018.500yr Design, n-kind 2671 7.44 17.4046 15.06 17.46 0.000785 3.07 1 2788.571 2018.25yr, MHHW, Mesign, 12 1228 7.44 15.6439 12.231 15.77 0.00069 3.71 1 2788.571 2018.25yr, MHW, Mesign, In-kind 1228 7.44 15.6651 12.31 15.79 0.00098 3.67 1 2788.571 2018.25yr, MSL, Ma Design, 207 1228 7.44 15.6439 12.231 15.78 0.00097 3.71 1 2788.571 2018.25yr, MSL, Ma Design, In-kind 1228 7.44 15.6738 12.231 15.8 0.00097 3.66 1 2788.571 2010.25yr, MAI Design, In-kind 1226 7.44 15.631 13.33 16.43 0.00073 3.56 1 2788.57		1207.17 407.7	
1 2298.571 2012.500yr Design_In-kinc 2671 7.44 17.3865 15.06 17.51 0.000786 3.97 1 2298.571 2018.25yr_MHHW Mesign_20' 1228 7.44 15.6459 12.31 15.75 0.00009 3.71 1 2788.571 2018.25yr_MHHW Mesign_12' 1228 7.44 15.6641 12.31 15.77 0.000092 3.71 1 2788.571 2018.25yr_MHHW Mesign_20' 1228 7.44 15.6641 12.31 15.76 0.00008 3.87 1 2788.571 2018.25yr_MSL.Mb Design_20' 1228 7.44 15.6439 12.31 15.76 0.0009 3.7 1 2788.571 2018.25yr_MSL.Mb Design_20' 7.64 15.6439 12.33 15.45 0.00072 3.56 1 2788.571 2100.025yr_Ab1 Design_20' 7.74 16.3467 13.33 16.45 0.000728 3.56 1 2788.571 2100.005yr_Ab1<		1479.71 444.8	
1 2288.572 2018.500/r Design_Exist 2277 7.4 17.4446 15.06 17.578 0.000755 3.9 1 2788.571 2018.25yr_MHHW_MOesign_12' 1228 7.44 15.6459 12.31 15.77 0.000902 3.71 1 2788.571 2018.25yr_MHHW_MOesign_Exist 1228 7.44 15.6651 12.31 15.77 0.000902 3.67 1 2788.571 2018.25yr_MHHW_MOesign_Lexist 1228 7.44 15.6451 12.31 15.76 0.00090 3.7 1 2788.571 2018.25yr_MSL.Mo Design_Lexist 1228 7.44 15.6437 12.31 15.6 0.000976 3.66 1 2788.571 2018.25yr_MSL.Mo Design_Lexist 7.44 16.3435 13.33 16.44 0.00073 3.56 1 2788.571 210.00.25yr_Ab1 Design_Lexist 1706 7.44 16.335 13.33 16.44 0.00073 3.56 1 2788.571 210.00.07yr_Ab1		1506.71 448.3	
1 2788.571 2010.25yr. MHHW. M Gesign. 12' 1228 7.44 15.6439 12.31 15.78 0.00090 3.71 1 2788.571 2010.25yr. MHHW. M Gesign. Incit. 1228 7.44 15.641 12.31 15.77 0.000902 3.71 1 2788.571 2010.25yr. MHHW. M Gesign. Exist 1228 7.44 15.6451 12.31 15.78 0.00090 3.77 1 2788.571 2018.25yr. MSL. Mo. Besign. 20' 1228 7.44 15.6439 12.31 15.78 0.00097 3.66 1 2788.571 2018.25yr. MSL. Mo. Besign. Exist 1228 7.44 15.6439 12.31 15.8 0.000978 3.66 1 2788.571 2010.25yr. AbL Design. Dr. Mint 1706 7.44 16.3497 13.33 16.44 0.000738 3.56 1 2788.571 2100.05yr. AbL Design. Dr. Mint 1707 7.44 16.3491 13.33 16.44 0.000742 3.56 1 2788.571 2100.05yr. Ab		1489.25 446.0	
1 2268 571 2018. 25yr. MHW. M Design. r. kind 1228 7.44 15.6641 12.31 15.77 0.000902 3.87 1 2788.571 2018. 25yr. MHW. M Design. Exist 1228 7.44 15.6645 12.31 15.70 0.00080 3.67 1 2788.571 2018. 25yr. MSL Na Design. 20 1228 7.44 15.6439 12.31 15.76 0.00080 3.77 1 2788.571 2018. 25yr. MSL Na Design. 12" 1228 7.44 15.6437 12.31 15.8 0.000976 3.66 1 2788.571 2100. 025yr. MSL Na Design. 20" 1706 7.44 16.3427 13.33 16.44 0.000723 3.56 1 2788.571 2100. 025yr. AbL Design. r. kind 1706 7.44 16.3296 13.33 16.44 0.000728 3.56 1 2788.571 2100. 025yr. AbL Design. 20" 177 7.44 16.3296 13.33 16.44 0.000728 3.56 1		1510.86 448.8	
1 2788.571 2018.25yr_MHWW_M Design_In-kink 1228 7.44 15.6661 12.31 15.79 0.000822 3.67 1 2788.571 2018.25yr_MSL_Ma Design_a0 1228 7.44 15.6453 12.31 15.78 0.0009 3.7 1 2788.571 2018.25yr_MSL_Ma Design_in-kink 1228 7.44 15.6439 12.31 15.78 0.000970 3.76 1 2788.571 2018.25yr_MSL_Ma Design_in-kink 1228 7.44 15.6738 13.31 16.43 0.00073 3.56 1 2788.571 2010.25yr_Ab1 Design_12 1706 7.44 16.3461 13.33 16.44 0.00073 3.56 1 2786.571 2100.05yr_Ab1 Design_1kint 1706 7.44 16.3461 13.33 16.44 0.00073 3.56 1 2786.571 2100.05yr_Ab1 Design_1kint 1717 7.44 16.3461 13.35 16.45 0.000741 3.57 1 2786.571 2100.05yr_Ab1 Design_1.2i 1717 7.44 16.3477 13		706.16 316 705.48 316.3	
1 2788.571 2018.25yr, MHWW, Moesign, Exist 1228 7.44 15.6459 12.31 15.5 0.0008 3.67 1 2788.571 2018.25yr, MSL, Ma Design, 12 1228 7.44 15.6437 1218.57 0.000976 3.7 1 2788.571 2018.25yr, MSL, Ma Design, Exist 1228 7.44 15.6738 12.31 15.8 0.000976 3.66 1 2788.571 2100.025yr, MSL, Ma Design, Exist 1276 7.44 16.3451 13.33 16.445 0.000732 3.56 1 2788.571 2100.025yr, Ab1 Design, In-kind 1706 7.44 16.3451 13.33 16.445 0.000732 3.56 1 2788.571 2100.025yr, Ab1 Design, In-kind 1707 7.44 16.3451 13.35 16.45 0.000738 3.56 1 2788.571 2100.050yr, Ab1 Design, In-kind 1717 7.44 16.3456 13.35 16.45 0.000738 3.56 1 2788.571 2100.050yr, Ab1 Design, In-kind 1717 7.44 16.3466 <td></td> <td>711.96 317.4</td> <td></td>		711.96 317.4	
1 2788.571 2018.25yr_MSL_Ma Design_20 11228 7.44 15.6439 112.31 15.78 0.0009 3.7 1 2788.571 2018.25yr_MSL_Ma Design_Lexit 1228 7.44 15.6439 11.2.31 15.78 0.000776 3.66 1 2788.571 2018.25yr_MSL_Ma Design_020 1706 7.44 15.6755 11.2.31 15.6 0.000776 3.56 1 2788.571 2100.025yr_Ab1 Design_12 1706 7.44 16.3487 13.33 16.45 0.00073 3.56 1 2788.571 2100.025yr_Ab1 Design_120 1706 7.44 16.3487 13.33 16.44 0.000732 3.56 1 2788.571 2100.050yr_Ab1 Design_120 1717 7.44 16.3451 13.35 16.45 0.000741 3.57 1 2788.571 2100.050yr_Ab1 Design_121 1717 7.44 16.3461 13.35 16.45 0.000741 3.57 1 2788.571 2100.010yr_Ab1 Design_121 2562 7.44 17.2451		712.59 317.5	
1 2788.571 2018.25yr_MSL_Ma Design_L12 1228 7.44 15.6437 12.31 15.78 0.00096 3.7 1 2788.571 2018.25yr_MSL_Ma Design_Exist 1228 7.44 15.6435 12.31 15.8 0.000876 3.66 1 2788.571 2100.25yr_Ab1 Design_L2 1706 7.44 16.335 13.33 16.44 0.00073 3.54 1 2788.571 2100.025yr_Ab1 Design_Lixint 1706 7.44 16.3496 13.33 16.44 0.000738 3.56 1 2788.571 2100.059yr_Ab1 Design_D 1717 7.44 16.3298 13.33 16.44 0.000748 3.56 1 2788.571 2100.059yr_Ab1 Design_Dixit 1717 7.44 16.3477 13.35 16.45 0.000748 3.56 1 2788.571 2100.059yr_Ab1 Design_Dixit 1717 7.44 16.3477 13.35 16.45 0.000741 3.57 1		706.16 316	
1 2788.571 2018_25yr_MSL_Ma Design_Exist 1228 7.44 15.673 12.31 15.8 0.000876 3.66 1 2788.571 2100_25yr_Ab1 Design_20' 1706 7.44 16.5475 12.31 15.8 0.00073 3.56 1 2788.571 2100_025yr_Ab1 Design_L1' 1706 7.44 16.3497 13.33 16.45 0.00073 3.54 1 2788.571 2100_025yr_Ab1 Design_Exist 1706 7.44 16.3497 13.33 16.45 0.00073 3.56 1 2788.571 2100_050yr_Ab1 Design_L2' 1717 7.44 16.3518 13.35 16.45 0.000743 3.56 1 2788.571 2100_050yr_Ab1 Design_Lexist 1717 7.44 16.3477 13.35 16.45 0.000743 3.56 1 2788.571 2100_100yr_Ab1 Design_Lexist 1717 7.44 16.3467 14.38 17.33 0.000743 3.56 1		706.09 316.4	
1 2788.571 2101.25yr_MSL_Ma Design_20' 1706 7.44 16.335 12.31 15.6 0.00076 3.66 1 2788.571 2100.025yr_Ab1 Design_12' 1706 7.44 16.335 13.33 16.45 0.00073 3.56 1 2788.571 2100.025yr_Ab1 Design_1Exist 1706 7.44 16.3345 13.33 16.45 0.000732 3.56 1 2788.571 2100.050yr_Ab1 Design_20' 1717 7.44 16.3513 13.35 16.45 0.000742 3.56 1 2788.571 2100.050yr_Ab1 Design_12' 1717 7.44 16.3513 13.35 16.45 0.00074 3.56 1 2788.571 2100.100yr_Ab1 Design_12'' 12562 7.44 17.245 14.48 17.34 0.000814 4 1 2788.571 2100.100yr_Ab1 Design_12'' 1228 7.44 17.245 14.88 17.32 0.000814 4 1 1278.571		713.98 317.7	
1 2788.571 2100_025yr_Ab1 Design_in-kinc 1706 7.44 16.3467 13.33 16.45 0.00073 3.54 1 2788.571 2100_025yr_Ab1 Design_Exist 1706 7.44 16.3461 13.33 16.44 0.00073 3.54 1 2788.571 2100_050yr_Ab1 Design_20' 1717 7.44 16.3513 13.35 16.45 0.000738 3.56 1 2788.571 2100_050yr_Ab1 Design_in-'kinc 1717 7.44 16.3513 13.35 16.45 0.00074 3.56 1 2788.571 2100_050yr_Ab1 Design_in-'kinc 1717 7.44 16.3466 13.35 16.45 0.00074 3.56 1 2788.571 2100_100yr_Ab1 Design_in-'kinc 2562 7.44 17.245 14.88 17.32 0.000081 3.97 1 2788.571 2100_100yr_Ab1 Design_in-kinc 2562 7.44 17.245 14.88 17.32 0.000086 3.64		714.16 317.7	
1 2788.571 2100_025yr_Ab1 Design_Exist 1706 7.44 16.3461 13.33 16.44 0.000732 3.54 1 2788.571 2100_025yr_Ab1 Design_20'' 1717 7.44 16.3518 13.35 16.45 0.000738 3.56 1 2788.571 2100_050yr_Ab1 Design_12'' 1717 7.44 16.3513 13.35 16.45 0.000738 3.56 1 2788.571 2100_050yr_Ab1 Design_Exist 1717 7.44 16.3466 13.35 16.45 0.00074 3.56 1 2788.571 2100_050yr_Ab1 Design_20'' 2562 7.44 17.244 14.88 17.37 0.000781 3.93 1 2788.571 2100_100yr_Ab1 Design_12'' 2562 7.44 17.244 14.488 17.32 0.000786 3.94 1 2788.571 210.00yr/Ab1 Design_Exist 2562 7.44 17.234 14.88 17.36 0.000780 3.71 1	3.56 1063.8	1063.88 386.0	6 0.22
1 2788.571 2100_025yr_Ab1 Design_Exist 1706 7.44 16.3298 13.33 16.45 0.000742 3.56 1 2788.571 2100_050yr_Ab1 Design_12" 1717 7.44 16.3518 13.35 16.45 0.000738 3.556 1 2788.571 2100_050yr_Ab1 Design_In*kin 1717 7.44 16.3466 13.35 16.45 0.00074 3.557 1 2788.571 2100_00yr_Ab1 Design_I*kit 1717 7.44 16.3477 13.35 16.45 0.00074 3.56 1 2788.571 2100_100yr_Ab1 Design_I*kit 2562 7.44 17.245 14.488 17.37 0.000786 3.94 1 2788.571 2100_100yr_Ab1 Design_I*kind 2562 7.44 17.245 14.488 17.32 0.000814 4 1 2788.571 2100_00yr_Ab1 Design_I*kind 2562 7.44 17.245 14.488 17.30 0.000893 3.71 1 <td>3.54 1069.3</td> <td>1069.19 387.0</td> <td>6 0.22</td>	3.54 1069.3	1069.19 387.0	6 0.22
1 2786.571 2100_050yr_Ab1 Design_20' 1717 7.44 16.3518 13.35 16.45 0.000738 3.56 1 2786.571 2100_050yr_Ab1 Design_1rkind 1717 7.44 16.3513 13.35 16.45 0.000748 3.56 1 2786.571 2100_050yr_Ab1 Design_Lxist 1717 7.44 16.3466 13.35 16.45 0.000741 3.56 1 2786.571 2100_050yr_Ab1 Design_20' 2562 7.44 17.244 14.88 17.37 0.000781 3.93 1 2786.571 2100_100yr_Ab1 Design_20' 2562 7.44 17.245 14.48 17.34 0.000811 3.97 1 2786.571 2100_100yr_Ab1 Design_20' 1228 7.44 17.6394 12.31 15.78 0.000893 3.71 1 2786.571 2015_025yr(Surge Design_in-kind 1228 7.44 15.6453 12.31 15.8 0.000876 3.66 1 2786.571 2015_025yr(Surge Design_in-kind 1228 7.44 15.6762 </td <td>3.54 1068.3</td> <td>1068.18 386.8</td> <td>7 0.22</td>	3.54 1068.3	1068.18 386.8	7 0.22
1 2788.571 2100_050yr_Ab1 Design_12' 1717 7.44 16.3513 13.35 16.45 0.000738 3.56 1 2788.571 2100_050yr_Ab1 Design_in-kind 1717 7.44 16.3467 13.35 16.45 0.000741 3.57 1 2788.571 2100_00yr_Ab1 Design_2V 2562 7.44 17.234 14.88 17.37 0.000781 3.93 1 2788.571 2100_100yr_Ab1 Design_in-kind 2562 7.44 17.234 14.48 17.34 0.000814 4 1 2788.571 2100_100yr_Ab1 Design_in-kind 2562 7.44 17.234 14.48 17.35 0.000786 3.94 1 2788.571 2010_025yr(Surge Design_20' 1228 7.44 15.6394 12.31 15.78 0.000786 3.94 1 2788.571 2015_025yr(Surge Design_20' 1265 7.44 15.6762 12.31 15.8 0.000874 3.66 1 2788.571 2015_025yr(Surge Design_20' 1265 7.44 16.1371	3.56 1061.8	1061.87 385.6	8 0.22
1 2788.571 2100_050yr_Ab1 Design_in-kind 1717 7.44 16.3466 13.35 16.45 0.000741 3.57 1 2788.571 2100_050yr_Ab1 Design_20 2562 7.44 17.2645 14.88 17.37 0.000741 3.57 1 2788.571 2100_100yr_Ab1 Design_12' 2562 7.44 17.2445 14.88 17.33 0.000801 3.97 1 2788.571 2100_100yr_Ab1 Design_in-kind 2562 7.44 17.234 14.88 17.32 0.000801 3.97 1 2788.571 2010_00yr_Ab1 Design_in-kind 2562 7.44 17.2455 14.88 17.32 0.000814 4 1 2788.571 2015_025yr(Surge Design_in-kind 1228 7.44 15.6736 12.31 15.76 0.000876 3.66 1 2788.571 2015_025yr(Surge Design_in-kind 1228 7.44 15.6736 12.31 15.8 0.000737 3.55 <	3.56 1070.3	1070.38 387.2	8 0.22
1 2788.571 2100_050yr_Ab1 Design_20' 2562 7.44 17.2645 14.88 17.37 0.00074 3.56 1 2788.571 2100_100yr_Ab1 Design_12' 2562 7.44 17.2645 14.88 17.37 0.000781 3.93 1 2788.571 2100_100yr_Ab1 Design_1-kind 2562 7.44 17.2145 14.88 17.32 0.000814 4 1 2788.571 2010_010yr_Ab1 Design_i-kind 2562 7.44 17.2145 14.88 17.36 0.000786 3.94 1 2786.571 2015_025yr(Surge Design_i-kind 1228 7.44 15.6394 12.31 15.76 0.000876 3.66 1 2786.571 2015_025yr(Surge Design_20' 1565 7.44 15.6762 12.31 15.80 0.000777 3.56 1 2786.571 2015_05yr(Surge Design_1-kind 1565 7.44 16.1371 13.04 16.24 0.000717 3.46 1	3.56 1070.3	1070.18 387.2	5 0.22
1 2788.571 2100_100yr_Ab1 Design_12' 2562 7.44 17.2645 14.88 17.37 0.000781 3.93 1 2788.571 2100_100yr_Ab1 Design_1-kind 2562 7.44 17.2145 14.88 17.34 0.000811 4 1 2788.571 2100_100yr_Ab1 Design_in-kind 2562 7.44 17.2145 14.88 17.32 0.000786 3.94 1 2788.571 2100_100yr_Ab1 Design_in-kind 2562 7.44 17.2565 14.88 17.37 0.000786 3.94 1 2788.571 2015_025yr(Surge Design_12' 1228 7.44 15.6736 12.31 15.8 0.000876 3.66 1 2788.571 2015_025yr(Surge Design_20'' 1565 7.44 16.1676 11.30.4 16.26 0.000737 3.55 1 2788.571 2015_05yr(Surge Design_1n-kind 1565 7.44 16.1691 13.04 16.26 0.000713 3.46 1 2786.571 015_05yr(Surge Design_1kind 1565 7.44 16	3.57 1068.3	1068.37 386.9	1 0.22
1 2788.571 2100_100yr_Ab1 Design_1n-kind 2562 7.44 17.234 14.88 17.34 0.000801 3.97 1 2788.571 2100_100yr_Ab1 Design_in-kind 2562 7.44 17.2155 14.88 17.32 0.000814 4 1 2788.571 2016_025yr(Surge Design_20' 1228 7.44 15.6394 12.31 15.77 0.000803 3.71 1 2788.571 2015_025yr(Surge Design_12' 1228 7.44 15.6336 12.31 15.8 0.000876 3.66 1 2788.571 2015_025yr(Surge Design_1chint 1228 7.44 15.6736 12.31 15.8 0.000874 3.66 1 2788.571 2015_050yr(Surge Design_12' 1565 7.44 16.1371 13.04 16.24 0.000737 3.5 1 2788.571 2015_050yr(Surge Design_1chint 1565 7.44 16.1571 13.04 16.26 0.000737 3.76 <	3.56 1068	1068.8 386.9	9 0.22
1 2788.571 2100_100yr_Ab1 Design_Exist 2562 7.44 17.2145 14.88 17.32 0.000814 4 1 2788.571 2100_100yr_Ab1 Design_Exist 2562 7.44 17.2565 14.88 17.35 0.000786 3.94 1 2788.571 2015_025yr(Surge Design_20' 1228 7.44 15.6394 12.31 15.77 0.000903 3.71 1 2788.571 2015_025yr(Surge Design_In-kind 1228 7.44 15.6736 12.31 15.8 0.000874 3.66 1 2788.571 2015_025yr(Surge Design_Exist 1228 7.44 16.1371 13.04 16.26 0.000737 3.5 1 2788.571 2015_050yr(Surge Design_In-kind 1565 7.44 16.1591 13.04 16.26 0.000718 3.46 1 2788.571 1015_00yr(Surge Design_Exist 1565 7.44 16.61591 13.04 16.26 0.0007783 3.77		1448.46 440.7	
1 2788.571 2100_100yr_Ab1 Design_Exist 2562 7.44 17.2565 14.88 17.36 0.000786 3.94 1 2788.571 2018_025yr(Surge Design_12' 1228 7.44 15.6453 12.31 15.77 0.000903 3.71 1 2788.571 2015_025yr(Surge Design_in-kind 1228 7.44 15.6736 12.31 15.8 0.000876 3.66 1 2788.571 2015_025yr(Surge Design_in-kind 1555 7.44 15.6762 12.31 15.8 0.000876 3.66 1 2788.571 2015_050yr(Surge Design_10' 1565 7.44 16.1671 13.04 16.26 0.000713 3.46 1 2788.571 1015_100yr(Surge) Design_20' 2000 7.44 16.6177 13.04 16.26 0.000733 3.77 1 2788.571 1015_100yr(Surge) Design_1n-kind 2000 7.44 16.6756 13.89 16.78 0.000773 3.77		1435.02 438.9	
1 2788.571 2018_025yr(Surge Design_12' 1228 7.44 15.6394 12.31 15.77 0.000903 3.71 1 2788.571 2015_025yr(Surge Design_12' 1228 7.44 15.6453 12.31 15.78 0.000876 3.66 1 2788.571 2015_025yr(Surge Design_Exist 1228 7.44 15.6766 12.31 15.8 0.000874 3.66 1 2788.571 2015_025yr(Surge Design_Exist 1228 7.44 15.6766 12.31 15.8 0.000737 3.5 1 2788.571 2015_050yr(Surge Design_in-kind 1565 7.44 16.1691 13.04 16.26 0.000713 3.46 1 2788.571 2015_050yr(Surge Design_in-kind 1565 7.44 16.1677 13.04 16.26 0.000718 3.76 1 2788.571 2015_100yr(Surge) Design_in-kind 2000 7.44 16.6756 13.89 16.78 0.00078 3.77 1 2788.571 015_100yr(Surge) Design_in-kind 2000 7.44		1426.49 437.8	
1 2788.571 2015_025yr(Surge Design_12' 1228 7.44 15.6453 12.31 15.78 0.000899 3.7 1 2788.571 2015_025yr(Surge Design_Exist 1228 7.44 15.6736 12.31 15.8 0.000876 3.66 1 2788.571 2015_025yr(Surge Design_Exist 1228 7.44 15.6726 12.31 15.8 0.000874 3.66 1 2788.571 2015_050yr(Surge Design_12' 1565 7.44 16.1671 13.04 16.24 0.000717 3.46 1 2788.571 2015_050yr(Surge Design_Exist 1565 7.44 16.1677 13.04 16.26 0.000718 3.46 1 2788.571 015_100yr(Surge) Design_20' 2000 7.44 16.6675 13.89 16.79 0.000783 3.77 1 2788.571 015_100yr(Surge) Design_1n*kind 2000 7.44 16.6756 13.89 16.79 0.000773 3.76 1 2785.571 015_100yr(Surge) Design_20' 200 7.44 1		1444.91 440.2	
1 2788.571 2015_025yr(Surge Design_in-kind 1228 7.44 15.6736 12.31 15.8 0.000876 3.66 1 2788.571 2015_025yr(Surge Design_20' 1565 7.44 15.6762 12.31 15.8 0.000874 3.66 1 2788.571 2015_050yr(Surge Design_20' 1565 7.44 16.169 13.04 16.26 0.000737 3.5 1 2788.571 2015_050yr(Surge Design_in-kind 1565 7.44 16.169 13.04 16.26 0.000713 3.46 1 2788.571 2015_050yr(Surge Design_in-kind 1565 7.44 16.677 13.04 16.26 0.000718 3.46 1 2788.571 015_100yr(Surge) Design_20' 2000 7.44 16.687 13.89 16.78 0.000787 3.77 1 2785.571 015_100yr(Surge) Design_Exist 2000 7.44 16.6867 13.89 16.83 0.000779 3.76		704.98 316.3	
1 2788.571 2015_025yr(Surge Design_Exist 1228 7.44 15.6762 12.31 15.8 0.000874 3.66 1 2788.571 2015_050yr(Surge Design_20' 1565 7.44 16.1371 13.04 16.24 0.000737 3.5 1 2788.571 2015_050yr(Surge Design_In-kind 1565 7.44 16.169 13.04 16.26 0.000717 3.46 1 2788.571 2015_050yr(Surge Design_Exist 1565 7.44 16.1691 13.04 16.26 0.000718 3.46 1 2788.571 2015_050yr(Surge Design_Exist 1565 7.44 16.681 13.89 16.79 0.000783 3.76 1 2788.571 015_100yr(Surge) Design_Exist 2000 7.44 16.6867 13.89 16.78 0.000783 3.77 1 2788.571 015_100yr(Surge) Design_Exist 2000 7.44 16.6867 13.89 16.78 0.000779 3.76 1 2786.287 015_002yr Design_In-kind 200 7.44 1		706.52 316.5	
1 2788.571 2018_050yr(Surge Design_20' 1565 7.44 16.1371 13.04 16.24 0.000737 3.5 1 2788.571 2015_050yr(Surge Design_12' 1565 7.44 16.169 13.04 16.26 0.000737 3.46 1 2788.571 2015_050yr(Surge Design_in-kind 1565 7.44 16.1677 13.04 16.26 0.000718 3.47 1 2788.571 2015_050yr(Surge Design_Exist 1565 7.44 16.1677 13.04 16.26 0.000787 3.76 1 2788.571 015_100yr(Surge) Design_in-kind 2000 7.44 16.675 13.89 16.78 0.000787 3.77 1 2788.571 015_100yr(Surge) Design_in-kind 2000 7.44 16.675 13.89 16.79 0.000779 3.76 1 2785.571 015_100yr(Surge) Design_in-kind 2000 7.44 16.6867 13.89 16.79 0.000779 3.76 1 2767 Culvert		713.92 317.7	
1 2788.571 2015_050yr(Surge Design_12' 1555 7.44 16.169 13.04 16.26 0.000717 3.46 1 2788.571 2015_050yr(Surge Design_in-kind 1565 7.44 16.1591 13.04 16.26 0.000713 3.47 1 2788.571 2015_050yr(Surge Design_Exist 1565 7.44 16.1677 13.04 16.26 0.000718 3.46 1 2788.571 015_100yr(Surge) Design_20' 2000 7.44 16.675 13.89 16.79 0.000783 3.76 1 2788.571 015_100yr(Surge) Design_1in-kind 2000 7.44 16.675 13.89 16.79 0.000773 3.77 1 2785.571 015_100yr(Surge) Design_Exist 2000 7.44 16.6867 13.89 16.79 0.000779 3.76 1 2767 Culvert		714.61 317.8	
1 2788.571 2015_050yr(Surge Design_in-kind 1565 7.44 16.1591 13.04 16.26 0.000723 3.47 1 2788.571 2015_050yr(Surge Design_Exist 1565 7.44 16.1677 13.04 16.26 0.000718 3.46 1 2788.571 2015_100yr(Surge) Design_20' 2000 7.44 16.681 13.89 16.79 0.000783 3.76 1 2788.571 015_100yr(Surge) Design_12' 2000 7.44 16.681 13.89 16.79 0.000783 3.77 1 2788.571 015_100yr(Surge) Design_12' 2000 7.44 16.687 13.89 16.79 0.000779 3.76 1 2785.571 015_100yr(Surge) Design_Exist 2000 7.44 16.6867 13.89 16.79 0.000779 3.76 1 2786.571 015_100yr(Surge) Design_Exist 2000 7.44 16.6867 13.89 16.79 0.000779 3.76		988.92 371.5 1000.81 373.9	
1 2788.571 2015_050yr(Surge Design_Exist 1565 7.44 16.1677 13.04 16.26 0.000718 3.46 1 2788.571 015_100yr(Surge) Design_20' 2000 7.44 16.681 13.89 16.79 0.000783 3.76 1 2788.571 015_100yr(Surge) Design_12' 2000 7.44 16.6756 13.89 16.78 0.000787 3.77 1 2788.571 015_100yr(Surge) Design_in-kind 2000 7.44 16.6756 13.89 16.78 0.000773 3.76 1 2788.571 015_100yr(Surge) Design_Exist 2000 7.44 16.6867 13.89 16.79 0.000779 3.76 1 2767 Culvert		997.12 373.2	
1 2788.571 015_100yr(Surge) Design_20' 2000 7.44 16.681 13.89 16.79 0.000783 3.76 1 2788.571 015_100yr(Surge) Design_12' 2000 7.44 16.6756 13.89 16.78 0.000783 3.77 1 2788.571 015_100yr(Surge) Design_in-kind 2000 7.44 16.6756 13.89 16.78 0.000773 3.77 1 2788.571 015_100yr(Surge) Design_Exist 2000 7.44 16.6867 13.89 16.79 0.000779 3.76 1 2788.571 015_100yr(Surge) Design_Exist 2000 7.44 16.6867 13.89 16.79 0.000779 3.76 1 2767 Culvert		1000.31 373.8	
1 2788.571 015_100yr(Surge) Design_12' 2000 7.44 16.6756 13.89 16.78 0.000787 3.77 1 2788.571 015_100yr(Surge) Design_in-kind 2000 7.44 16.727 13.89 16.83 0.000753 3.7 1 2788.571 015_100yr(Surge) Design_Exist 2000 7.44 16.6867 13.89 16.79 0.000779 3.76 1 2786.571 015_100yr(Surge) Design_Exist 2000 7.44 16.6867 13.89 16.79 0.000779 3.76 1 2767 Culvert		1201.17 406.9	
1 2788.571 015_100yr(Surge) Design_in-kind 2000 7.44 16.727 13.89 16.83 0.000753 3.7 1 2788.571 015_100yr(Surge) Design_Exist 2000 7.44 16.6867 13.89 16.79 0.000779 3.76 1 2787 Culvert		1198.96 406.5	
1 2788.571 015_100yr(Surge) Design_Exist 2000 7.44 16.6867 13.89 16.79 0.000779 3.76 1 2767 Culvert		1219.95 409.5	
Image: Section of the sectio		1203.48 407.2	
1 2746.289 2018_002yr Design_20' 232 7.4 11.6705 11.77 0.00101 2.49 1 2746.289 2018_002yr Design_12' 232 7.4 11.6705 11.77 0.00101 2.49 1 2746.289 2018_002yr Design_12' 232 7.4 11.6705 11.77 0.00101 2.49 1 2746.289 2018_002yr Design_in-kind 232 7.4 11.6705 11.77 0.00101 2.49 1 2746.289 2018_002yr Design_Exist 232 7.4 11.6681 8.99 11.77 0.00101 2.49 1 2746.289 2018_010yr Design_Exist 232 7.4 11.6681 8.99 11.77 0.00101 2.49 1 2746.289 2018_010yr Design_20' 845 7.4 15.2811 15.34 0.000453 2.55 1 2746.289 2018_010yr Design_in-kind 845 7.4 15.2708 <td< td=""><td></td><td></td><td></td></td<>			
1 2746.289 2018_002yr Design_12' 232 7.4 11.6705 11.77 0.00101 2.49 1 2746.289 2018_002yr Design_in-kind 232 7.4 11.6705 11.77 0.00101 2.49 1 2746.289 2018_002yr Design_Exist 232 7.4 11.6705 11.77 0.00101 2.49 1 2746.289 2018_002yr Design_Exist 232 7.4 11.6681 8.99 11.77 0.001031 2.51 1 2746.289 2018_010yr Design_20' 845 7.4 15.2811 15.34 0.000453 2.55 1 2746.289 2018_010yr Design_in-kind 845 7.4 15.2811 15.34 0.000453 2.55 1 2746.289 2018_010yr Design_Exist 845 7.4 15.208 11.13 15.36 0.000453 2.55 1 2746.289 2018_010yr Design_Exist 845 7.4 15.3056 11.13 15.68 0.000713 3.29 1 2746.289			
1 2746.289 2018_002yr Design_12' 2.32 7.4 11.6705 11.77 0.00101 2.49 1 2746.289 2018_002yr Design_in-kind 232 7.4 11.6705 11.77 0.00101 2.49 1 2746.289 2018_002yr Design_Exist 232 7.4 11.6705 11.77 0.00101 2.49 1 2746.289 2018_002yr Design_Exist 232 7.4 11.6681 8.99 11.77 0.001031 2.51 1 2746.289 2018_010yr Design_20' 845 7.4 15.2811 15.34 0.000453 2.55 1 2746.289 2018_010yr Design_1n-kind 845 7.4 15.2811 15.34 0.000453 2.55 1 2746.289 2018_010yr Design_Exist 845 7.4 15.3056 11.13 15.36 0.000453 2.55 1 2746.289 2018_010yr Design_Exist 845 7.4 15.3056			
1 2746.289 2018_002yr Design_in-kind 232 7.4 11.6705 11.77 0.00101 2.49 1 2746.289 2018_002yr Design_Exist 232 7.4 11.6705 11.77 0.00101 2.49 1 2746.289 2018_002yr Design_Exist 232 7.4 11.6681 8.99 11.77 0.001031 2.51 1 2746.289 2018_010yr Design_20' 845 7.4 15.2811 15.34 0.000453 2.55 1 2746.289 2018_010yr Design_12' 845 7.4 15.2811 15.33 0.000453 2.55 1 2746.289 2018_010yr Design_in-kind 845 7.4 15.2708 15.33 0.000458 2.56 1 2746.289 2018_010yr Design_Exist 845 7.4 15.2708 15.33 0.00042 2.53 1 2746.289 2018_025y Design_20' 1228 7.4 15.5834 15.68	2.49 103.8	103.83 65.7	2 0.22
1 2746.289 2018_002yr Design_Exist 232 7.4 11.6681 8.99 11.77 0.001031 2.51 1 2746.289 2018_010yr Design_20' 845 7.4 15.2811 15.34 0.000453 2.55 1 2746.289 2018_010yr Design_12' 845 7.4 15.2811 15.34 0.000453 2.55 1 2746.289 2018_010yr Design_in-kind 845 7.4 15.2811 15.33 0.000453 2.55 1 2746.289 2018_010yr Design_in-kind 845 7.4 15.2708 15.33 0.000458 2.56 1 2746.289 2018_010yr Design_Exist 845 7.4 15.056 11.13 15.68 0.00042 2.53 1 2746.289 2018_025y Design_20' 1228 7.4 15.5834 15.68 0.000713 3.29 1 2746.289 2018_025y Design_1n-kind 1228 7.4 15.6018	2.49 103.8	103.83 65.7	2 0.22
1 2746.289 2018_010yr Design_20' 845 7.4 15.2811 15.34 0.000453 2.55 1 2746.289 2018_010yr Design_12' 845 7.4 15.2811 15.34 0.000453 2.55 1 2746.289 2018_010yr Design_12' 845 7.4 15.2811 15.34 0.000453 2.55 1 2746.289 2018_010yr Design_in-kind 845 7.4 15.2708 15.33 0.000458 2.56 1 2746.289 2018_010yr Design_Exist 845 7.4 15.3056 11.13 15.36 0.000452 2.53 1 2746.289 2018_025y Design_20' 1228 7.4 15.5834 15.68 0.000713 3.29 1 2746.289 2018_025y Design_12' 1228 7.4 15.5819 15.68 0.000714 3.29 1 2746.289 2018_025y Design_Exist 1228 7.4 15.6018 15.7	2.49 103.8	103.83 65.7	2 0.22
1 2746.289 2018_010yr Design_12' 845 7.4 15.2811 15.34 0.000453 2.55 1 2746.289 2018_010yr Design_in-kind 845 7.4 15.2708 15.33 0.000453 2.55 1 2746.289 2018_010yr Design_Exist 845 7.4 15.2708 15.33 0.000458 2.56 1 2746.289 2018_010yr Design_Exist 845 7.4 15.3056 11.13 15.36 0.000442 2.53 1 2746.289 2018_025y Design_20' 1228 7.4 15.5834 15.68 0.000713 3.29 1 2746.289 2018_025y Design_12' 1228 7.4 15.5819 15.68 0.000714 3.29 1 2746.289 2018_025y Design_in-kind 1228 7.4 15.6018 15.7 0.000701 3.27 1 2746.289 2018_025y Design_Exist 1228 7.4 15.6065 12.68	2.51 93	93.3 65.6	1 0.23
1 2746.289 2018_010yr Design_in-kind 845 7.4 15.2708 15.33 0.000458 2.56 1 2746.289 2018_010yr Design_Exist 845 7.4 15.3056 11.13 15.36 0.000458 2.56 1 2746.289 2018_010yr Design_Exist 845 7.4 15.3056 11.13 15.36 0.000442 2.53 1 2746.289 2018_025y Design_20' 1228 7.4 15.5834 15.68 0.000713 3.29 1 2746.289 2018_025y Design_12' 1228 7.4 15.5819 15.68 0.000714 3.29 1 2746.289 2018_025y Design_in-kind 1228 7.4 15.6018 15.7 0.000701 3.27 1 2746.289 2018_025y Design_Exist 1228 7.4 15.6065 12.68 15.7 0.000698 3.26 1 2746.289 2018_050yr Design_20' 1565 7.4	2.55 712.8	712.82 301.4	8 0.17
1 2746.289 2018_010yr Design_Exist 845 7.4 15.3056 11.13 15.36 0.000442 2.53 1 2746.289 2018_025y Design_20' 1228 7.4 15.5834 15.68 0.000113 3.29 1 2746.289 2018_025y Design_12' 1228 7.4 15.5819 15.68 0.000714 3.29 1 2746.289 2018_025y Design_in-kind 1228 7.4 15.6018 15.7 0.000701 3.27 1 2746.289 2018_025y Design_Exist 1228 7.4 15.6018 15.7 0.000701 3.27 1 2746.289 2018_025y Design_Exist 1228 7.4 15.6055 12.68 15.7 0.000698 3.26 1 2746.289 2018_050yr Design_20' 1565 7.4 16.0558 16.16 0.000785 3.59	2.55 712.8	712.82 301.4	8 0.17
1 2746.289 2018_025y Design_20' 1228 7.4 15.5834 15.68 0.000713 3.29 1 2746.289 2018_025y Design_12' 1228 7.4 15.5819 15.68 0.000714 3.29 1 2746.289 2018_025y Design_12' 1228 7.4 15.618 15.7 0.000701 3.27 1 2746.289 2018_025y Design_in-kind 1228 7.4 15.6018 15.7 0.000701 3.27 1 2746.289 2018_025y Design_Exist 1228 7.4 15.6055 12.68 15.7 0.000698 3.26 1 2746.289 2018_050yr Design_20' 1565 7.4 16.0558 16.16 0.000785 3.59		709.71 301.0	
1 2746.289 2018_025y Design_12' 1228 7.4 15.5819 15.68 0.000714 3.29 1 2746.289 2018_025y Design_in-kind 1228 7.4 15.6018 15.7 0.000701 3.27 1 2746.289 2018_025y Design_Exist 1228 7.4 15.6065 12.68 15.7 0.000698 3.26 1 2746.289 2018_050yr Design_20' 1565 7.4 16.0558 16.16 0.000785 3.59		720.21 302.4	
1 2746.289 2018_025y Design_in-kind 1228 7.4 15.6018 15.7 0.000701 3.27 1 2746.289 2018_025y Design_Exist 1228 7.4 15.6065 12.68 15.7 0.000701 3.27 1 2746.289 2018_025y Design_Exist 1228 7.4 15.6065 12.68 15.7 0.000698 3.26 1 2746.289 2018_050yr Design_20' 1565 7.4 16.0558 16.16 0.000785 3.59		805.84 313.9	
1 2746.289 2018_025y Design_Exist 1228 7.4 15.6065 12.68 15.7 0.000698 3.26 1 2746.289 2018_050yr Design_20' 1565 7.4 16.0558 16.16 0.000785 3.59		805.35 313.9	
1 2746.289 2018_050yr Design_20' 1565 7.4 16.0558 16.16 0.000785 3.59		811.62 314.7	
		813.11 314.9	
1 2/40.203 ZU18_USUVr Design_12 1505 /.4 16.054 16.16 0.000786 3.6		960.45 365.8	
1 2746.289 2018_050yr Design_in-kind 1565 7.4 16.0628 16.17 0.00078 3.59		959.78 365.6 963 366.2	
		963 366.2 968.32 367.2	
		968.32 367.2 1166.61 401.7	
		1166.61 401.7	
1 2746.289 2016_100yr Design_in-kind 2000 7.4 16.5343 16.71 0.000830 3.66 1 2746.289 2018_100yr Design_in-kind 2000 7.4 16.6023 16.71 0.000831 3.86		1170.8 402.3	
		1175.92 403.0	
		1462.91 442.4	
		1461.55 442.2	
		1465.36 442.7	
		1463.89 442.5	
1 2746.289 2018_25yr_MHHW_M Design_20' 1228 7.4 15.5834 15.68 0.000713 3.29		805.84 313.9	
1 2746.289 2018_25yr_MHHW_M Design_12' 1228 7.4 15.5837 15.68 0.000713 3.29		805.92 313.9	
1 2746.289 2018_25yr_MHHW_M Design_in-kind 1228 7.4 15.6027 15.7 0.000701 3.27		811.89 314.7	
1 2746.289 2018_25yr_MHHW_M Design_Exist 1228 7.4 15.6108 12.68 15.7 0.000695 3.26	3.26 814.4	814.45 315.1	2 0.21

Reach	River Sta	Profile	Plan	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
				(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1	2746.289	2018_25yr_MSL_Ma	Design_20'	1228	7.4	15.5834		15.68	0.000713	3.29	805.84	313.98	0.21
1	2746.289	2018_25yr_MSL_Ma	Design_12'	1228	7.4	15.5834		15.68	0.000713	3.29	805.85	313.98	0.21
1	1	2018_25yr_MSL_Ma	Design_in-kind	1228	7.4	15.6052		15.7	0.000699	3.26	812.68	314.88	0.21
1		2018_25yr_MSL_Ma	Design_Exist	1228	7.4	15.6059	12.68	15.7	0.000698	3.26	812.92	314.92	0.21
1		2100_025yr_Ab1	Design_20'	1706	7.4	16.2317		16.34	0.0008	3.68	1025.9	378.53	0.23
1		2100_025yr_Ab1	Design_12'	1706	7.4	16.248		16.35	0.000789	3.66	1032.06	379.71	0.23
1		2100_025yr_Ab1	Design_in-kind	1706	7.4	16.2533	12.46	16.36	0.000785	3.65	1034.09	380.1	0.23
1		2100_025yr_Ab1 2100 050yr Ab1	Design_Exist Design 20'	1706 1717	7.4	16.2544 16.2524	13.46	16.36 16.36	0.000784	3.65 3.68	1034.5 1033.74	380.18 380.03	0.22
1		2100_050yr_Ab1 2100_050yr_Ab1	Design_20 Design_12'	1717	7.4	16.2582		16.30	0.000790	3.67	1035.94	380.46	0.23
1		2100_050yr_Ab1	Design_12 Design_in-kind	1717	7.4	16.2695		16.38	0.000784	3.66	1035.54	381.28	0.23
1	2746.289	2100_050yr_Ab1	Design_Exist	1717	7.4	16.2722	13.47	16.38	0.000782	3.65	1041.29	381.48	0.22
1		2100 100yr Ab1	Design_20'	2562	7.4	17.1744		17.29	0.000837	4.05	1410.47	435.51	0.24
1	2746.289	2100_100yr_Ab1	Design_12'	2562	7.4	17.1818		17.29	0.000832	4.04	1413.69	435.93	0.24
1	2746.289	2100_100yr_Ab1	Design_in-kind	2562	7.4	17.1896		17.3	0.000826	4.03	1417.1	436.39	0.24
1	2746.289	2100_100yr_Ab1	Design_Exist	2562	7.4	17.1811	14.82	17.29	0.000832	4.04	1413.39	435.89	0.24
1	2746.289	2018_025yr(Surge	Design_20'	1228	7.4	15.5819		15.68	0.000714	3.29	805.35	313.92	0.21
1	2746.289	2015_025yr(Surge	Design_12'	1228	7.4	15.592		15.69	0.000708	3.28	808.54	314.34	0.21
1	2746.289	2015_025yr(Surge	Design_in-kind	1228	7.4	15.6049		15.7	0.000699	3.26	812.61	314.87	0.21
1	2746.289	2015_025yr(Surge	Design_Exist	1228	7.4	15.6118	12.68	15.7	0.000695	3.25	814.76	315.16	0.21
1	2746.289	2018_050yr(Surge	Design_20'	1565	7.4	16.0499		16.16	0.000789	3.6	958.29	365.42	0.22
1		2015_050yr(Surge	Design_12'	1565	7.4	16.055		16.16		3.6	960.17	365.76	0.22
1		2015_050yr(Surge	Design_in-kind	1565	7.4	16.0724		16.18	0.000773	3.57	966.52	366.91	0.22
1		2015_050yr(Surge	Design_Exist	1565	7.4	16.0759	13.11	16.18	0.000771	3.57	967.83	367.14	0.22
1		015_100yr(Surge)	Design_20'	2000	7.4	16.6009		16.71	0.000832	3.87	1170.25	402.28	0.23
1		015_100yr(Surge)	Design_12'	2000	7.4	16.5959		16.71	0.000835	3.87	1168.23	401.98	0.23
1		015_100yr(Surge)	Design_in-kind	2000	7.4	16.611		16.72	0.000825	3.85	1174.32	402.86	0.23
1	2746.289	015_100yr(Surge)	Design_Exist	2000	7.4	16.612	13.97	16.72	0.000824	3.85	1174.71	402.92	0.23
<u> </u>	2722 120	2018 002	Design 201	222	7.24	11 2416	0.07	11.60	0.00616	E 33	43 50	12.27	0.5
1		2018_002yr 2018_002yr	Design_20'	232 232	7.34 7.34	11.2416 11.2416	9.87 9.87	11.68 11.68	0.00616	5.32 5.32	43.58 43.58	12.37 12.37	0.5
1		2018_002yr 2018_002yr	Design_12'	232	7.34	11.2416	9.87	11.68	0.00616	5.32	43.58	12.37	0.5
1		2018_002yr 2018_002yr	Design_in-kind Design_Exist	232	7.34	11.2416	9.87	11.68	0.00616	5.32	43.58	12.37	0.5
1		2018_002yr	Design_20'	845	7.34	13.9544	13.86	15.19	0.011232	9.49	115.04	75.56	0.67
1		2018_010yr	Design_12'	845	7.34	13.9544	13.86	15.19	0.011232	9.49	115.04	75.56	0.67
1		2018_010yr	Design_in-kind	845	7.34	13.9964	13.86	15.19	0.011232	9.34	118.23	88.58	0.66
1		2018_010yr	Design_Exist	845	7.34	13.8649	13.86	15.21	0.012147	9.8	109.31	68.2	0.7
1		2018_025y	Design_20'	1228	7.34	15.2678	14.9	15.62	0.004021	6.27	346.01	240.78	0.41
1		2018_025y	Design_12'	1228	7.34	15.2644	14.9	15.62	0.00404	6.29	345.31	240.6	0.41
1	2723.129	2018_025y	Design_in-kind	1228	7.34	15.3059	14.9	15.64	0.003816	6.13	353.93	242.85	0.4
1	2723.129	2018_025y	Design_Exist	1228	7.34	15.3153	14.9	15.64	0.003768	6.1	355.88	243.35	0.39
1	2723.129	2018_050yr	Design_20'	1565	7.34	15.8501	15.16	16.11	0.00305	5.75	474.54	274.39	0.36
1	2723.129	2018_050yr	Design_12'	1565	7.34	15.8474	15.16	16.11	0.003061	5.76	473.91	274.25	0.36
1	2723.129	2018_050yr	Design_in-kind	1565	7.34	15.8603	15.16	16.12	0.003012	5.72	476.93	274.93	0.36
1	2723.129	2018_050yr	Design_Exist	1565	7.34	15.8808	15.16	16.13	0.002937	5.65	481.77	276.02	0.35
1	2723.129	2018_100yr	Design_20'	2000	7.34	16.4411	15.43	16.66	0.002451	5.4	618.59	298.21	0.33
1		2018_100yr	Design_12'	2000	7.34					5.4			0.32
1		2018_100yr	Design_in-kind	2000	7.34		15.43	16.67		5.37	621.8	298.74	0.32
1		2018_100yr	Design_Exist	2000	7.34		15.43			5.33	625.7	299.56	0.32
1		2018_500yr	Design_20'	2671	7.34	17.2124	15.79	17.37		4.75	939.26	323.35	0.27
1		2018_500yr	Design_12'	2671	7.34	17.2091	15.79	17.37		4.76	938.18	323.29	0.27
1		2018_500yr	Design_in-kind	2671	7.34	17.2184	15.79	17.38		4.74	941.17	323.45	0.27
1		2018_500yr	Design_Exist	2671 1228	7.34 7.34	17.2148 15.2678	15.79 14.9	17.37 15.62	0.001687	4.75 6.27	940.03 346.01	323.39 240.78	0.27
1		2018_25yr_MHHW_M 2018 25yr MHHW M		1228	7.34	15.2678	14.9	15.62	0.004021	6.27	346.01	240.78	0.41
1		2018_25yr_MHHW_M 2018_25yr_MHHW_M		1228	7.34	15.2684	14.9	15.62	0.004018	6.13	346.12	240.81	0.41
1		2018_25yr_MHHW_M		1228	7.34	15.3236	14.9	15.65		6.07	357.61	242.94	0.39
1		2018_25yr_MSL_Ma	Design_20'	1228	7.34	15.2678	14.9	15.62	0.003723	6.27	346.01	243.8	0.39
1		2018_25yr_MSL_Ma	Design_20 Design_12'	1228	7.34	15.2679	14.9	15.62	0.004021	6.27	346.02	240.78	0.41
1		2018_25yr_MSL_Ma	Design_in-kind	1228	7.34	15.3126	14.9	15.64		6.11	355.32	243.21	0.39
1		2018_25yr_MSL_Ma	Design_Exist	1228	7.34	15.3141	14.9	15.64		6.1	355.63	243.29	0.39
1		2100_025yr_Ab1	Design_20'	1706	7.34	16.045	15.26	16.29	0.002854	5.65	521.03	283.8	0.35
1		2100_025yr_Ab1	Design_12'	1706	7.34	16.0674	15.26	16.31	0.002775	5.58	526.45	284.54	0.34
1		2100_025yr_Ab1	Design_in-kind	1706	7.34	16.0746	15.26	16.31	0.00275	5.56	528.21	284.77	0.34
1	1	2100_025yr_Ab1	Design_Exist	1706	7.34	16.0761	15.26	16.31	0.002745	5.56	528.56	284.82	0.34
1	2723.129	2100_050yr_Ab1	Design_20'	1717	7.34	16.0699	15.26	16.31	0.002802	5.61	527.06	284.62	0.35
1		2100_050yr_Ab1	Design_12'	1717	7.34		15.26			5.59	528.98	284.88	0.34
1	2723.129	2100_050yr_Ab1	Design_in-kind	1717	7.34	16.0931	15.26	16.33	0.002722	5.54	532.7	285.38	0.34
1	2723.129	2100_050yr_Ab1	Design_Exist	1717	7.34	16.0968	15.26	16.33	0.00271	5.53	533.59	285.5	0.34
1	2723.129	2100_100yr_Ab1	Design_20'	2562	7.34	17.0916	15.74	17.25	0.001751	4.8	900.32	321.22	0.28
1	2723.129	2100_100yr_Ab1	Design_12'	2562	7.34	17.0996	15.74	17.26	0.001737	4.78	902.88	321.36	0.28
1	2723 129	2100_100yr_Ab1	Design_in-kind	2562	7.34	17.108	15.74	17.27	0.001723	4.76	905.59	321.5	0.28

Reach	R	River Sta	Profile	Plan	-		W.S. Elev			-			-	Froude # Chl
	1	2722 120	2100_100yr_Ab1	Design_Exist	(cfs) 2562	(ft) 7.34	(ft) 17.0989	(ft) 15.74	(ft) 17.26	(ft/ft) 0.001739	(ft/s) 4.78	(sq ft) 902.65	(ft) 321.34	0.28
1	1		2018_025yr(Surge	Design_Exist Design_20'	1228	7.34	17.0989	15.74	17.28	0.001739	4.78	345.31	240.6	0.28
	1		2015_025yr(Surge	Design 12'	1228	7.34	15.286	14.9	15.63	0.003922	6.23	349.78	240.0	0.4
1	1		2015_025yr(Surge	Design_12 Design_in-kind	1228	7.34	15.3122	14.9	15.64	0.003322	6.11	355.23	243.19	0.4
1	-		2015_025yr(Surge	Design_Exist	1228	7.34	15.3254	14.9	15.65	0.003716	6.06	358	243.91	0.39
1	_		2018_050yr(Surge	Design_20'	1565	7.34	15.8414	15.16	16.1	0.003084	5.78	472.49	273.93	0.36
1	1		2015_050yr(Surge	Design_12'	1565	7.34	15.849	15.16	16.11	0.003055	5.75	474.27	274.33	0.36
1	1		2015_050yr(Surge	Design_in-kind	1565	7.34	15.8739	15.16	16.13	0.002962	5.68	480.14	275.65	0.35
1	1	2723.129	2015_050yr(Surge	Design_Exist	1565	7.34	15.879	15.16	16.13	0.002944	5.66	481.32	275.92	0.35
1	1	2723.129	015_100yr(Surge)	Design_20'	2000	7.34	16.4521	15.43	16.67	0.002421	5.38	621.38	298.67	0.32
1	1	2723.129	015_100yr(Surge)	Design_12'	2000	7.34	16.446	15.43	16.66	0.002438	5.39	619.84	298.42	0.32
1	1	2723.129	015_100yr(Surge)	Design_in-kind	2000	7.34	16.4645	15.43	16.68	0.002388	5.34	624.48	299.27	0.32
1	1	2723.129	015_100yr(Surge)	Design_Exist	2000	7.34	16.4656	15.43	16.68	0.002385	5.34	624.78	299.34	0.32
1	1	2594.622	2018_002yr	Design_20'	232	6.84	11.1335		11.27	0.001295	2.97	89.89	43.86	0.29
1	1		2018_002yr	Design_12'	232	6.84	11.1335		11.27	0.001295	2.97	89.89	43.86	0.29
1	-		2018_002yr	Design_in-kind	232	6.84	11.1335		11.27	0.001295	2.97	89.89	43.86	0.29
1	-		2018_002yr	Design_Exist	232	6.84	11.1335		11.27	0.001295	2.97	89.89	43.86	0.29
1	-		2018_010yr	Design_20'	845	6.84	14.3182		14.54	0.00111	4.31	381.61	191.95	0.3
1	-		2018_010yr	Design_12'	845	6.84	14.3182		14.54	0.00111	4.31	381.61	191.95	0.3
1	-		2018_010yr	Design_in-kind	845	6.84	14.3474		14.56	0.001082	4.27	387.22	192.92	0.29
1	_		2018_010yr 2018 025y	Design_Exist	845 1228	6.84	14.3827	11.46		0.001049	4.22	394.05	194.09	0.29
	1		2018_025y 2018_025y	Design_20' Design_12'	1228	6.84 6.84	15.06 15.0562		15.32 15.31	0.001247	4.91 4.92	534.44 533.6	222.57 222.46	0.32
1	1		2018_025y 2018_025y	Design_12 Design in-kind	1228	6.84	15.1028		15.31	0.001251	4.92	533.6	222.46	0.32
1	-		2018_025y 2018_025y	Design_In-kind Design Exist	1228	6.84	15.1028		15.35	0.001203	4.84	543.99	223.74	0.32
	_		2018_023y 2018_050yr	Design_Exist Design 20'	1228	6.84	15.5784		15.85	0.001193	4.82	653.51	224.03	0.31
1	-		2018_050vr	Design 12'	1565	6.84	15.5752		15.85	0.001329	5.3	652.74	236.73	0.34
1	-		2018_050yr	Design_in-kind	1565	6.84	15.5906		15.86	0.001313	5.28	656.41	237.15	0.33
1	-		2018_050yr	Design_Exist	1565	6.84	15.6152		15.88	0.001287	5.24	662.25	237.83	0.33
1	1		2018_100yr	Design_20'	2000	6.84	16.0997		16.4	0.00145	5.79	781.47	259.19	0.35
1	1		2018 100yr	Design_12'	2000	6.84	16.104		16.41	0.001445	5.78	782.59	259.31	0.35
1	1	2594.622	2018_100yr	Design_in-kind	2000	6.84	16.117		16.42	0.001431	5.76	785.95	259.67	0.35
1	1	2594.622	2018_100yr	Design_Exist	2000	6.84	16.1378		16.43	0.001408	5.72	791.37	260.24	0.35
1	1	2594.622	2018_500yr	Design_20'	2671	6.84	16.8095		17.14	0.001539	6.3	972.19	277.81	0.37
1	1	2594.622	2018_500yr	Design_12'	2671	6.84	16.8048		17.14	0.001544	6.31	970.89	277.69	0.37
1	1	2594.622	2018_500yr	Design_in-kind	2671	6.84	16.8178		17.15	0.00153	6.29	974.51	278.02	0.37
1	1	2594.622	2018_500yr	Design_Exist	2671	6.84	16.8128		17.14	0.001536	6.29	973.12	277.9	0.37
1	1	2594.622	2018_25yr_MHHW_M	Design_20'	1228	6.84	15.06		15.32	0.001247	4.91	534.44	222.57	0.32
1	1	2594.622	2018_25yr_MHHW_M	Design_12'	1228	6.84	15.0606		15.32	0.001247	4.91	534.58	222.58	0.32
1	1	2594.622	2018_25yr_MHHW_M	Design_in-kind	1228	6.84	15.1047		15.35	0.001201	4.84	544.42	223.8	0.32
1	1		2018_25yr_MHHW_M	-	1228	6.84	15.1226		15.36	0.001183	4.81	548.42	224.29	0.31
1	-		2018_25yr_MSL_Ma	Design_20'	1228	6.84	15.06		15.32	0.001247	4.91	534.44	222.57	0.32
1	1		2018_25yr_MSL_Ma	Design_12'	1228	6.84	15.06		15.32	0.001247	4.91	534.45	222.57	0.32
1	1		2018_25yr_MSL_Ma	Design_in-kind	1228	6.84	15.1102		15.35	0.001196	4.83	545.66	223.95	0.32
1	1		2018_25yr_MSL_Ma	Design_Exist	1228	6.84	15.112		15.36	0.001194	4.83	546.04	223.99	0.32
	1		2100_025yr_Ab1	Design_20'	1706	6.84	15.7415		16.03				241.2	0.34
1	1		2100_025yr_Ab1	Design_12'	1706	6.84	15.7694		16.05	0.001356	5.45	699.25	241.94	0.34
	1		2100_025yr_Ab1 2100_025yr_Ab1	Design_in-kind Design Exist	1706	6.84	15.7785		16.06	0.001347	5.43	701.43	242.17 242.22	0.34
1	-		2100_025yr_Ab1 2100_050yr_Ab1	Design_Exist Design_20'	1706 1717	6.84 6.84	15.7803 15.7667		16.06 16.05	0.001345	5.43 5.49	701.87 698.59	242.22 241.86	0.34
1	-		2100_050yr_Ab1 2100_050yr_Ab1	Design_20 Design_12'	1717	6.84	15.7766		16.05	0.001377	5.49	700.99	241.86	0.34
1	-		2100_050yr_Ab1	Design_12 Design_in-kind	1717	6.84	15.7958		16.08	0.001300	5.44	705.63	242.63	0.34
1			2100_050yr_Ab1	Design_III-Killd	1717	6.84	15.8003		16.08	0.001340	5.43	705.03	242.05	0.34
1	-		2100_000yr_Ab1	Design_20'	2562	6.84	16.688		17.02	0.001542	6.25	938.64	274.75	0.37
1	1		2100_100yr_Ab1	Design_12'	2562	6.84	16.6993		17.02	0.00153	6.23	941.74	275.03	0.37
1	1		2100_100yr_Ab1	Design_in-kind	2562	6.84	16.7112	1	17.04	0.001517	6.21	945.01	275.33	0.37
1	1		2100_100yr_Ab1	Design_Exist	2562	6.84	16.6983	l	17.03	0.001531	6.23	941.45	275.01	0.37
1	1		2018_025yr(Surge	Design_20'	1228	6.84	15.0562		15.31	0.001251	4.92	533.6	222.46	0.32
1	1		2015_025yr(Surge	Design_12'	1228	6.84	15.0804		15.33	0.001226	4.88	538.99	223.13	0.32
1	1	2594.622	2015_025yr(Surge	Design_in-kind	1228	6.84	15.1098		15.35	0.001196	4.83	545.55	223.93	0.32
1	1	2594.622	2015_025yr(Surge	Design_Exist	1228	6.84	15.1247		15.37	0.001181	4.81	548.89	224.34	0.31
1	1	2594.622	2018_050yr(Surge	Design_20'	1565	6.84	15.5679		15.84	0.001336	5.32	651.03	236.53	0.34
1	1	2594.622	2015_050yr(Surge	Design_12'	1565	6.84	15.577		15.85	0.001327	5.3	653.18	236.78	0.34
1	1	2594.622	2015_050yr(Surge	Design_in-kind	1565	6.84	15.6069		15.88	0.001296	5.25	660.28	237.6	0.33
1	1	2594.622	2015_050yr(Surge	Design_Exist	1565	6.84	15.613		15.88	0.00129	5.24	661.71	237.77	0.33
1	1	2594.622	015_100yr(Surge)	Design_20'	2000	6.84	16.1147		16.42	0.001433	5.76	785.36	259.6	0.35
1	1	2594.622	015_100yr(Surge)	Design_12'	2000	6.84	16.1064		16.41	0.001442	5.78	783.21	259.38	0.35
1	1	2594.622	015_100yr(Surge)	Design_in-kind	2000	6.84	16.1313		16.43	0.001415	5.73	789.68	260.07	0.35
1	1	2594.622	015_100yr(Surge)	Design_Exist	2000	6.84	16.1329		16.43	0.001413	5.73	790.09	260.11	0.35
	1	2470.57	2018_002yr	Design_20'	232	6.6	10.9721		11.09	0.001394	3.04	138.47	98.95	0.29

Reach	River Sta	Profile	Plan	Q Total	Min Ch El				E.G. Slope	Vel Chnl		-	Froude # Chl
	0.470.57	2010.002		(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1		2018_002yr	Design_12'	232	6.6	10.9721		11.09	0.001394	3.04	138.47	98.95	0.29
1		2018_002yr 2018 002yr	Design_in-kind	232	6.6	10.9721		11.09	0.001394	3.04	138.47	98.95	0.29
1		2018_002yr 2018 010yr	Design_Exist Design 20'	232 845	6.6 6.6			11.09 14.4	0.001394	3.04 2.94	138.47 668.24	98.95 227.03	0.29
1		2018_010yr	Design 12'	845	6.6			14.4	0.000523	2.94	668.24	227.03	0.2
1		2018_010yr	Design_in-kind	845	6.6	14.3604		14.42	0.00051	2.91	674.79	227.73	0.2
1		2018_010yr	Design_Exist	845	6.6	14.3953		14.46	0.000495	2.88	682.74	228.57	0.19
1	2470.57	2018_025y	Design_20'	1228	6.6	15.0728		15.15	0.000604	3.39	843.19	245.05	0.22
1	2470.57	2018_025y	Design_12'	1228	6.6	15.0691		15.15	0.000606	3.39	842.28	244.96	0.22
1	2470.57	2018_025y	Design_in-kind	1228	6.6	15.1147		15.19	0.000585	3.34	853.46	246.06	0.21
1	. 2470.57	2018_025y	Design_Exist	1228	6.6	15.1249		15.2	0.00058	3.33	855.99	246.31	0.21
1	. 2470.57	2018_050yr	Design_20'	1565	6.6	15.5858		15.68	0.00067	3.73	972.08	257.4	0.23
1	2470.57	2018_050yr	Design_12'	1565	6.6	15.5827		15.67	0.000672	3.73	971.27	257.33	0.23
1		2018_050yr	Design_in-kind	1565	6.6	15.5979		15.69	0.000665	3.72	975.18	257.69	0.23
1		2018_050yr	Design_Exist	1565	6.6	15.622		15.71	0.000653	3.69	981.41	258.27	0.23
1		2018_100yr	Design_20'	2000	6.6	16.1007		16.21	0.000768	4.16	1107.77	269.68	0.25
1		2018_100yr	Design_12'	2000	6.6	16.1049		16.21	0.000766	4.15	1108.92	269.77	0.25
1		2018_100yr	Design_in-kind	2000	6.6	16.1176		16.22	0.000759	4.14	1112.35	270.07	0.25
1		2018_100yr	Design_Exist	2000	6.6			16.24	0.000749	4.12	1117.87	270.52	0.25
1		2018_500yr	Design_20'	2671 2671	6.6	16.7966 16.7919		16.93 16.92	0.00088	4.69 4.69	1300.9	285.62 285.51	0.27
1		2018_500yr	Design_12'	2671	6.6			16.92	0.000882	4.69	1299.57 1303.26	285.51	0.27
1		2018_500yr 2018_500yr	Design_in-kind Design Exist	2671	6.6 6.6	16.8048 16.7999		16.94	0.000875	4.68	1303.26	285.82	0.27
1			Design_Exist	1228	6.6	15.0728		15.15	0.000878	4.69	843.19	265.7	0.27
1		2018_25yr_MHHW_M	Design_20	1228	6.6	15.0728		15.15	0.000604	3.39	843.34	245.05	0.22
1		-	Design_12	1228	6.6	15.1166		15.19	0.000584	3.38	853.93	245.00	0.22
1		2018_25yr_MHHW_M	-	1228	6.6	15.134		15.21	0.000576	3.32	858.23	246.53	0.21
1		2018 25yr MSL Ma	Design 20'	1228	6.6	15.0728		15.15	0.000604	3.39	843.19	245.05	0.22
1	. 2470.57	2018_25yr_MSL_Ma	Design_12'	1228	6.6	15.0729		15.15	0.000604	3.39	843.2	245.05	0.22
1	2470.57	2018_25yr_MSL_Ma	Design_in-kind	1228	6.6	15.122		15.2	0.000582	3.34	855.26	246.24	0.21
1	. 2470.57	2018_25yr_MSL_Ma	Design_Exist	1228	6.6	15.1236		15.2	0.000581	3.33	855.67	246.28	0.21
1	. 2470.57	2100_025yr_Ab1	Design_20'	1706	6.6	15.7473		15.84	0.000711	3.89	1013.97	261.26	0.24
1	. 2470.57	2100_025yr_Ab1	Design_12'	1706	6.6	15.7748		15.87	0.000697	3.86	1021.15	261.92	0.24
1	. 2470.57	2100_025yr_Ab1	Design_in-kind	1706	6.6	15.7837		15.88	0.000693	3.85	1023.47	262.13	0.24
1	2470.57	2100_025yr_Ab1	Design_Exist	1706	6.6	15.7855		15.88	0.000692	3.85	1023.94	262.17	0.24
1		2100_050yr_Ab1	Design_20'	1717	6.6			15.87	0.000708	3.89	1020.47	261.86	0.24
1		2100_050yr_Ab1	Design_12'	1717	6.6			15.88	0.000703	3.88	1023.02	262.09	0.24
1		2100_050yr_Ab1	Design_in-kind	1717	6.6			15.9	0.000694	3.86	1027.96	262.54	0.24
1		2100_050yr_Ab1	Design_Exist	1717	6.6	15.8053		15.9	0.000692	3.85	1029.14	262.65	0.24
1		2100_100yr_Ab1	Design_20'	2562	6.6	16.6774		16.81	0.00087	4.62	1267.05	282.79	0.27
1		2100_100yr_Ab1	Design_12'	2562	6.6			16.82	0.000864	4.61	1270.21	283.06	0.27
1		2100_100yr_Ab1 2100_100yr_Ab1	Design_in-kind Design_Exist	2562 2562	6.6 6.6	16.7003 16.6876		16.83 16.81	0.000858	4.6 4.61	1273.53 1269.91	283.34 283.03	0.27
1		2018_025yr(Surge	Design_20'	1228	6.6			15.15	0.000606	3.39	842.28	244.96	0.22
1		2015_025yr(Surge	Design 12'	1228	6.6			15.17	0.000595	3.33	848.09	245.53	0.22
1		2015_025yr(Surge	Design_in-kind	1228	6.6			15.2	0.000582	3.34	855.14	246.23	0.21
1		2015_025yr(Surge	Design_Exist	1228	6.6			15.21	0.000575	3.32	858.73	246.58	0.21
1		2018_050yr(Surge	Design_20'	1565	6.6			15.67	0.000675	3.74	969.43	257.16	0.23
1		2015_050yr(Surge	Design_12'	1565	6.6			15.67	0.000671	3.73	971.74	257.37	0.23
1		2015_050yr(Surge	Design_in-kind	1565	6.6			15.7	0.000657	3.7	979.31	258.07	0.23
1		2015_050yr(Surge	Design_Exist	1565	6.6			15.71	0.000654	3.69	980.84	258.21	0.23
1	2470.57	015_100yr(Surge)	Design_20'	2000	6.6	16.1154		16.22	0.00076	4.14	1111.74	270.01	0.25
1	2470.57	015_100yr(Surge)	Design_12'	2000	6.6	16.1073		16.21	0.000765	4.15	1109.55	269.83	0.25
1		015_100yr(Surge)	Design_in-kind	2000	6.6			16.24	0.000752	4.12	1116.15	270.38	0.25
1	2470.57	015_100yr(Surge)	Design_Exist	2000	6.6	16.1333		16.24	0.000751	4.12	1116.57	270.42	0.25
	ļ												
1		2018_002yr	Design_20'	232	5.87	10.8477		10.91	0.000699	2.33	151.21	90.82	0.21
1		2018_002yr	Design_12'	232	5.87	10.8477		10.91	0.000699	2.33	151.21	90.82	0.21
1		2018_002yr	Design_in-kind	232	5.87	10.8477		10.91	0.000699	2.33	151.21	90.82	0.21
1		2018_002yr	Design_Exist	232	5.87	10.8477		10.91	0.000699	2.33	151.21	90.82	0.21
1		2018_010yr	Design_20'	845	5.87			14.32	0.000283	2.28	719.06	240.4	0.15
1		2018_010yr	Design_12'	845	5.87			14.32	0.000283	2.28	719.06	240.4	0.15
1		2018_010yr 2018_010yr	Design_in-kind	845 845	5.87 5.87	14.3154 14.3516		14.35 14.39	0.000275	2.26	726.29 735.05	241.22 242.21	0.15
1		2018_010yr 2018_025y	Design_Exist Design_20'	1228	5.87	14.3516		14.39	0.000267	2.23	902.75	242.21 260.43	0.15
1		2018_025y 2018_025y	Design_20 Design_12'	1228	5.87	15.0189		15.07	0.000329	2.63	902.75	260.43	0.16
1		2018_025y 2018_025y	Design_12 Design_in-kind	1228	5.87	15.0625		15.06	0.000319	2.63	901.75	260.33	0.16
1		2018_025y 2018_025y	Design_III-killd	1228	5.87	15.0732		15.11	0.000319	2.59	914.13	261.02	0.16
1		2018_050yr	Design_20'	1565	5.87	15.5252		15.58	0.00037	2.9	1038.12	274.5	0.18
		2018_050yr	Design_20 Design_12'	1565	5.87	15.5219		15.58	0.000371	2.91	1030.12	274.4	0.18
1	2300.276						1						5.10
1		2018_050yr	Design_in-kind	1565	5.87	15.5378		15.59	0.000367	2.89	1041.57	274.86	0.18

Reach	River Sta	Profile	Plan	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
				(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1	2308.278	2018_100yr	Design_20'	2000	5.87	16.03		16.1	0.000432	3.26	1180.4	289.33	0.19
1	2308.278	2018_100yr	Design_12'	2000	5.87	16.0344		16.1	0.000431	3.25	1181.69	289.48	0.19
1		2018_100yr	Design_in-kind	2000	5.87	16.0477		16.12	0.000427	3.24	1185.54	289.9	0.19
1		2018_100yr	Design_Exist	2000	5.87	16.0692		16.14	0.000421	3.23	1191.76	290.58	0.19
1		2018_500yr	Design_20'	2671	5.87	16.715		16.8	0.000502	3.69	1386.04	311.69	0.21
1		2018_500yr	Design_12'	2671	5.87	16.7101		16.8	0.000503	3.69	1384.52	311.51	0.21
1	2308.278	-	Design_in-kind	2671	5.87	16.7237		16.81	0.000499	3.68	1388.75	312.02	0.21
1	2308.278		Design_Exist	2671	5.87	16.7185		16.8	0.000501	3.69	1387.13	311.82	0.21
1			Design_20'	1228	5.87	15.0189		15.07	0.000329	2.63	902.75	260.43	0.16
1		-	Design_12'	1228	5.87	15.0196		15.07	0.000329	2.63	902.91	260.45	0.16
1		_ /	Design_in-kind	1228 1228	5.87	15.0645		15.11	0.000318	2.59 2.58	914.65	261.68 262.17	0.16
1		2018_25yr_MHHW_M	Design_Exist	1228	5.87	15.0827 15.0189		15.13 15.07	0.000314	2.58	919.42 902.75	262.17	0.16
1	2308.278		Design_20 Design_12'	1228	5.87 5.87	15.0189		15.07	0.000329	2.63	902.73	260.43	0.16
1		2018_25yr_MSL_Ma	Design_12 Design_in-kind	1228	5.87	15.0701		15.12	0.000317	2.59	916.12	261.83	0.16
1		2018_25yr_MSL_Ma	Design_Exist	1228	5.87	15.0719		15.12	0.000317	2.59	916.58	261.88	0.16
1		2100_025yr_Ab1	Design_20'	1706	5.87	15.6826		15.74	0.000395	3.04	1081.69	279.07	0.18
1		2100_025yr_Ab1	Design_12'	1706	5.87	15.7114		15.77	0.000388	3.01	1089.72	279.92	0.18
1		2100_025yr_Ab1	Design_in-kind	1706	5.87	15.7206		15.78	0.000385	3.01	1092.32	280.19	0.18
1		2100_025yr_Ab1	Design_Exist	1706	5.87	15.7225	l	15.78	0.000385	3	1092.84	280.24	0.18
1		2100_050yr_Ab1	Design_20'	1717	5.87	15.7078	l	15.77	0.000394	3.04	1088.72	279.81	0.18
1		2100_050yr_Ab1	Design_12'	1717	5.87	15.718	l	15.78	0.000391	3.03	1091.57	280.11	0.18
1	2308.278	2100_050yr_Ab1	Design_in-kind	1717	5.87	15.7376		15.8	0.000386	3.01	1097.09	280.69	0.18
1	2308.278	2100_050yr_Ab1	Design_Exist	1717	5.87	15.7423		15.8	0.000385	3.01	1098.41	280.82	0.18
1	2308.278	2100_100yr_Ab1	Design_20'	2562	5.87	16.5969		16.68	0.000495	3.63	1349.49	307.28	0.21
1	2308.278	2100_100yr_Ab1	Design_12'	2562	5.87	16.6086		16.69	0.000491	3.62	1353.11	307.72	0.21
1	2308.278	2100_100yr_Ab1	Design_in-kind	2562	5.87	16.621		16.7	0.000488	3.61	1356.91	308.18	0.21
1	1	2100_100yr_Ab1	Design_Exist	2562	5.87	16.6075		16.69	0.000492	3.62	1352.77	307.67	0.21
1	2308.278	2018_025yr(Surge	Design_20'	1228	5.87	15.0151		15.06	0.00033	2.63	901.75	260.33	0.16
1		2015_025yr(Surge	Design_12'	1228	5.87	15.0397		15.09	0.000324	2.61	908.18	261	0.16
1		2015_025yr(Surge	Design_in-kind	1228	5.87	15.0697		15.11	0.000317	2.59	916	261.82	0.16
1		2015_025yr(Surge	Design_Exist	1228	5.87	15.0848		15.13	0.000314	2.58	919.97	262.23	0.16
1		2018_050yr(Surge	Design_20'	1565	5.87	15.5145		15.57	0.000373	2.91	1035.17	274.18	0.18
1			Design_12'	1565	5.87	15.5238		15.58	0.000371	2.9	1037.73	274.46	0.18
1		2015_050yr(Surge	Design_in-kind	1565	5.87	15.5545		15.61	0.000363	2.88	1046.17	275.35	0.17
1		2015_050yr(Surge	Design_Exist	1565 2000	5.87	15.5607		15.62 16.11	0.000361	2.88 3.25	1047.87	275.53	0.17
1		015_100yr(Surge)	Design_20'		5.87	16.0454 16.0369			0.000428		1184.86	289.82	0.19
1		015_100yr(Surge) 015_100yr(Surge)	Design_12' Design_in-kind	2000 2000	5.87 5.87	16.0625		16.11 16.13	0.00043	3.25 3.23	1182.39 1189.82	289.55 290.37	0.19
1			Design_III-killa Design_Exist	2000	5.87	16.0641		16.13	0.000423	3.23	1189.82	290.37	0.19
	2300.270	015_10091(Suige)	Design_Exist	2000	5.07	10.0041		10.15	0.000423	5.25	1150.25	230.42	0.15
1	2105 615	2018_002yr	Design_20'	232	6.26	10.6379		10.73	0.000972	2.68	135.69	96.83	0.26
1		2018_002yr	Design 12'	232	6.26			10.73	0.000972	2.68	135.69	96.83	0.26
1		2018 002yr	Design_in-kind	232	6.26			10.73	0.000972	2.68	135.69	96.83	0.26
1	2105.615	_ ,	Design_Exist	232	6.26	10.6379		10.73	0.000972	2.68	135.69	96.83	0.26
1		2018_010yr	Design_20'	845	6.26	14.2039		14.26	0.000328	2.52	706.26	222.97	0.17
1		2018_010yr	Design_12'	845	6.26		1	14.26	0.000328	2.52	706.26		0.17
1	1	2018_010yr	Design_in-kind		6.26			14.29	0.000319	2.49	713.43		0.17
1		2018_010yr	Design_Exist	845	6.26			14.32	0.00031	2.46	722.11	225.09	0.16
1	2105.615	2018_025y	Design_20'	1228	6.26	14.9184		14.99	0.000398	2.96	873.25	244.32	0.19
1	2105.615	2018_025y	Design_12'	1228	6.26	14.9143		14.98	0.000399	2.96	872.24	244.22	0.19
1		2018_025y	Design_in-kind	1228	6.26	14.9654		15.03	0.000385	2.92	884.74	245.47	0.19
1		2018_025y	Design_Exist	1228	6.26			15.04	0.000381	2.91	887.56	245.75	0.18
1		2018_050yr	Design_20'	1565	6.26			15.49	0.000457	3.31	995.97	256.81	0.2
1		2018_050yr	Design_12'	1565	6.26			15.49	0.000458	3.31	995.05	256.7	0.2
1		2018_050yr	Design_in-kind	1565	6.26			15.5	0.000453	3.3	999.46	257.21	0.2
1		2018_050yr	Design_Exist	1565	6.26			15.53	0.000445	3.27	1006.5	258.03	0.2
1		2018_100yr	Design_20'	2000	6.26			15.99	0.000538	3.73	1122.82	268.44	0.22
1		2018_100yr	Design_12'	2000	6.26			16	0.000536	3.72	1124.14	268.55	0.22
1		2018_100yr	Design_in-kind	2000	6.26			16.01	0.000531	3.71	1128.07	268.89	0.22
1		2018_100yr	Design_Exist	2000	6.26			16.03	0.000522	3.69	1134.41	269.44	0.22
1		2018_500yr	Design_20'	2671	6.26			16.68	0.000624	4.22	1304.71	282.91	0.24
1		2018_500yr	Design_12'	2671	6.26			16.67	0.000626	4.22	1303.18	282.79	0.24
1		2018_500yr	Design_in-kind	2671	6.26			16.69	0.00062	4.21	1307.44	283.11	0.24
1	1	2018_500yr	Design_Exist	2671	6.26			16.68	0.000623	4.21	1305.81	282.99	0.24
1	1	2018_25yr_MHHW_M 2018_25yr_MHHW_M		1228 1228	6.26			14.99 14.99	0.000398	2.96	873.25 873.42	244.32 244.34	0.19
1			-	1228	6.26 6.26			14.99	0.000398	2.96 2.92	8/3.42 885.26	244.34 245.52	0.19
1		2018_25yr_MHHW_M 2018_25yr_MHHW_M		1228	6.26			15.03	0.000384	2.92	885.26		0.19
1		2018_25yr_MHHW_M 2018_25yr_MSL_Ma	-	1228	6.26			15.05	0.000379	2.91	890.06	246	0.18
1		2018_25yr_MSL_Ma 2018_25yr_MSL_Ma		1228	6.26			14.99	0.000398	2.96	873.25	244.32	0.19
1		2018_25yr_MSL_Ma			6.26			14.99	0.000398	2.96	886.75	244.33	0.19
I	2100.010		Scorgn_in-killu	1220	0.20	14.9733	I	13.04	0.000302	2.92	000.75	2-5.07	0.19

Reach	River Sta	Profile	Plan	-		W.S. Elev			-	Vel Chnl		-	Froude # Chl
-				(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1		2018_25yr_MSL_Ma	Design_Exist	1228	6.26	14.9754		15.04	0.000382	2.91	887.21	245.72 260.66	0.18
1		2100_025yr_Ab1	Design_20' Design_12'	1706 1706	6.26 6.26	15.5568 15.5881	-	15.65 15.68	0.000492	3.47 3.44	1034.35 1042.5	260.66	0.21
1		5 2100_025yr_Ab1	Design_12 Design_in-kind	1706	6.26	15.5982		15.69	0.000482	3.44	1042.3	261.63	0.21
1		5 2100_025yr_Ab1	Design_Exist	1706	6.26	15.6002		15.69	0.000478	3.43	1045.68	261.68	0.21
1		5 2100_050yr_Ab1	Design_20'	1717	6.26	15.5825		15.67	0.00049	3.47	1041.03	261.26	0.21
1	2105.61	5 2100_050yr_Ab1	Design_12'	1717	6.26	15.5936		15.68	0.000486	3.46	1043.93	261.52	0.21
1	2105.61	5 2100_050yr_Ab1	Design_in-kind	1717	6.26	15.6149		15.7	0.000479	3.44	1049.53	262.02	0.21
1		5 2100_050yr_Ab1	Design_Exist	1717	6.26	15.6201		15.71	0.000477	3.44	1050.87	262.14	0.21
1		5 2100_100yr_Ab1	Design_20'	2562	6.26	16.4352		16.56	0.000617	4.16	1272.12	280.4	0.24
1		5 2100_100yr_Ab1	Design_12'	2562 2562	6.26	16.4482 16.4619		16.57	0.000612	4.15	1275.77	280.68 280.98	0.24
1		2100_100yr_Ab1	Design_in-kind Design_Exist	2562	6.26 6.26	16.4619		16.58 16.57	0.000607	4.13	1279.61 1275.43	280.98	0.24
1		5 2018_025yr(Surge	Design_20'	1228	6.26	14.9143		14.98	0.000399	2.96	872.24	244.22	0.19
1		5 2015_025yr(Surge	Design_12'	1228	6.26	14.9409		15.01	0.000392	2.94	878.74	244.87	0.19
1	2105.61	5 2015_025yr(Surge	Design_in-kind	1228	6.26	14.973		15.04	0.000383	2.92	886.62	245.66	0.19
1	2105.61	5 2015_025yr(Surge	Design_Exist	1228	6.26	14.9893		15.05	0.000378	2.9	890.62	246.06	0.18
1	2105.61	5 2018_050yr(Surge	Design_20'	1565	6.26	15.3969		15.48	0.000461	3.32	992.97	256.46	0.2
1		5 2015_050yr(Surge	Design_12'	1565	6.26	15.4071		15.49	0.000458	3.31	995.58	256.77	0.2
1		5 2015_050yr(Surge	Design_in-kind	1565	6.26	15.4403		15.52	0.000448	3.28	1004.13	257.75	0.2
1		2015_050yr(Surge	Design_Exist	1565	6.26	15.447		15.53	0.000446	3.28	1005.85	257.95	0.2
1		015_100yr(Surge) 015_100yr(Surge)	Design_20' Design 12'	2000 2000	6.26 6.26	15.9082 15.8989		16.01 16	0.000532	3.71 3.72	1127.38 1124.86	268.83 268.62	0.22
1		015_100yr(Surge)	Design_12 Design_in-kind	2000	6.26	15.8989		16.03	0.000535	3.69	1124.86	268.62	0.22
1		5 015_100yr(Surge)	Design_Exist	2000	6.26			16.03	0.000524	3.69	1132.92	269.31	0.22
1	1967.19	5 2018_002yr	Design_20'	232	5.6	9.691	9.69	10.35	0.011412	6.91	45.17	41.27	0.67
1	1967.19	5 2018_002yr	Design_12'	232	5.6	9.691	9.69	10.35	0.011412	6.91	45.17	41.27	0.67
1		5 2018_002yr	Design_in-kind	232	5.6	9.691	9.69	10.35	0.011412	6.91	45.17	41.27	0.67
1		5 2018_002yr	Design_Exist	232	5.6	9.691	9.69	10.35	0.011412	6.91	45.17	41.27	0.67
1		5 2018_010yr 5 2018 010yr	Design_20'	845 845	5.6 5.6	14.1055 14.1055		14.19 14.19	0.000772	3.17 3.17	441.44 441.44	140.83 140.83	0.2
1		5 2018_010yr	Design_12' Design in-kind	845	5.6	14.1055		14.19	0.000772	3.17	441.44	140.85	0.2
1		5 2018_010yr	Design_In kind	845	5.6	14.1815		14.26	0.000727	3.1	452.19	142.08	0.2
1		5 2018_025y	Design_20'	1228	5.6	14.7881		14.9	0.00097	3.77	541.4	152.08	0.23
1	1967.19	5 2018_025y	Design_12'	1228	5.6	14.7836		14.9	0.000973	3.77	540.71	152.01	0.23
1	. 1967.19	5 2018_025y	Design_in-kind	1228	5.6	14.8394		14.95	0.000935	3.71	549.22	152.92	0.23
1	1967.19	5 2018_025y	Design_Exist	1228	5.6			14.96	0.000927	3.7	551.13	153.13	0.22
1		5 2018_050yr	Design_20'	1565	5.6			15.39	0.001141	4.23	613.44	159.86	0.25
1		5 2018_050yr	Design_12'	1565	5.6			15.39	0.001144	4.24	612.8	159.8	0.25
1		5 2018_050yr 5 2018_050yr	Design_in-kind Design_Exist	1565 1565	5.6 5.6	15.265 15.2952		15.4 15.43	0.001129	4.21 4.18	615.85 620.69	160.11 160.61	0.25
1		5 2018_050yr	Design_20'	2000	5.6			15.43	0.001100	4.13	685.54	167.13	0.23
1		5 2018 100yr	Design_12'	2000	5.6	15.6965		15.88	0.001387	4.82	686.47	167.23	0.28
1	1967.19	5 2018_100yr	Design_in-kind	2000	5.6	15.7131		15.89	0.001373	4.8	689.24	167.5	0.28
1	1967.19	5 2018_100yr	Design_Exist	2000	5.6	15.7396		15.92	0.00135	4.77	693.69	167.94	0.28
1	1967.19	5 2018_500yr	Design_20'	2671	5.6	16.2941		16.53	0.001771	5.68	792.31	192.57	0.32
1		5 2018_500yr	Design_12'	2671	5.6			16.53	0.001778	5.69	791.09	192.23	0.32
1		5 2018_500yr	Design_in-kind		5.6			16.54	0.00176	5.67	794.49	193.17	0.32
1		5 2018_500yr	Design_Exist	2671	5.6			16.53	0.001767	5.67	793.19	192.81	0.32
1		5 2018_25yr_MHHW_N 5 2018_25yr_MHHW_N		1228 1228	5.6 5.6			14.9 14.9	0.00097	3.77 3.76	541.4 541.52	152.08 152.09	0.23
1		2018_23yr_MHHW_N 2018_25yr_MHHW_N	-	1228	5.6	14.7889		14.9	0.00097	3.76	541.52	152.09	0.23
1		5 2018_25yr_MHHW_N	-	1228	5.6	14.8629		14.95	0.000919	3.69	552.83	153.31	0.22
1		5 2018_25yr_MSL_Ma	Design_20'	1228	5.6	14.7881		14.9	0.00097	3.77	541.4	152.08	0.23
1	1967.19	5 2018_25yr_MSL_Ma	Design_12'	1228	5.6	14.7882		14.9	0.00097	3.77	541.42	152.08	0.23
1		5 2018_25yr_MSL_Ma	Design_in-kind	1228	5.6			14.96	0.000929	3.7	550.58	153.07	0.22
1		5 2018_25yr_MSL_Ma	Design_Exist	1228	5.6		ļ	14.96	0.000928	3.7	550.89	153.1	0.22
1		5 2100_025yr_Ab1	Design_20'	1706	5.6			15.54	0.00124	4.45	634.8	162.05	0.26
1		5 2100_025yr_Ab1 5 2100_025yr_Ab1	Design_12'	1706	5.6 5.6			15.57	0.001211 0.001202	4.41	640.46 642.29	162.63 162.81	0.26
1		5 2100_025yr_Ab1 5 2100_025yr_Ab1	Design_in-kind Design_Exist	1706 1706	5.6			15.58 15.58	0.001202	4.4	642.29	162.81	0.26
1		5 2100_0259F_AD1	Design_20'	1708	5.6			15.56	0.0012	4.4	639.03	162.85	0.26
1		5 2100_050yr_Ab1	Design_20 Design_12'	1717	5.6			15.50	0.001224	4.44	641.05	162.69	0.26
1		5 2100_050yr_Ab1	Design_in-kind		5.6		İ	15.6	0.001205	4.41	644.93	163.08	0.26
1		5 2100_050yr_Ab1	Design_Exist	1717	5.6	15.4507		15.6	0.0012	4.41	645.86	163.17	0.26
1	1967.19	5 2100_100yr_Ab1	Design_20'	2562	5.6	16.1839		16.41	0.001731	5.57	771.41	186.71	0.31
1	1967.19	5 2100_100yr_Ab1	Design_12'	2562	5.6			16.43	0.001717	5.56	774.25	187.51	0.31
1		5 2100_100yr_Ab1	Design_in-kind	2562	5.6			16.44		5.54	777.24	188.36	0.31
1		5 2100_100yr_Ab1	Design_Exist	2562	5.6			16.43	0.001718	5.56	773.99	187.44	0.31
1		5 2018_025yr(Surge	Design_20'	1228	5.6			14.9	0.000973	3.77	540.71	152.01	0.23
1	1967.19	5 2015_025yr(Surge	Design_12'	1228	5.6	14.8126		14.92	0.000953	3.74	545.14	152.48	0.23

Reach	Rive	r Sta	Profile	Plan	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
					(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1	_		2015_025yr(Surge	Design_in-kind	1228	5.6	14.8477		14.96	0.000929	3.7	550.49	153.06	0.22
1			2015_025yr(Surge	Design_Exist	1228	5.6			14.97	0.000918	3.68	553.2	153.35	0.22
1	-		2018_050yr(Surge 2015_050yr(Surge	Design_20' Design 12'	1565 1565	5.6 5.6	15.237 15.2483		15.38 15.39	0.001151 0.001142	4.25 4.23	611.37 613.17	159.65 159.83	0.25
1	-		2015_050yr(Surge	Design_12 Design_in-kind	1565	5.6	15.2405		15.42	0.001142	4.19	619.06	160.44	0.25
1			2015_050yr(Surge	Design_Exist	1565	5.6	15.2925		15.43	0.001108	4.18	620.25	160.56	0.25
1	l 19	67.196	015_100yr(Surge)	Design_20'	2000	5.6	15.7102		15.89	0.001375	4.81	688.75	167.45	0.28
1	l 19	67.196	015_100yr(Surge)	Design_12'	2000	5.6	15.6996		15.88	0.001385	4.82	686.98	167.28	0.28
1	l 19	67.196	015_100yr(Surge)	Design_in-kind	2000	5.6	15.7314		15.91	0.001357	4.78	692.31	167.8	0.28
1	l 19	67.196	015_100yr(Surge)	Design_Exist	2000	5.6	15.7334		15.91	0.001355	4.78	692.65	167.83	0.28
			2010 002	D 1 D01			0.0000	5.00	0.70				20.24	
1			2018_002yr	Design_20'	232 232	4	8.6655	5.83 5.83	8.78	0.001011	2.74	84.8	20.21 20.21	0.24
1	-		2018_002yr 2018_002yr	Design_12' Design_in-kind	232	4	8.6664 8.6716	5.83	8.78 8.79	0.00101	2.74	84.82 84.92	20.21	0.24
1			2018_002yr	Design_Exist	232	4		5.83	8.87	0.000952	2.68	86.58	20.21	0.23
1			2018_010yr	Design_20'	845	4		8.23	14.07	0.000575	3.44	392.35	142.79	0.2
1	l 18	01.551	2018_010yr	Design_12'	845	4	13.9181	8.23	14.07	0.000575	3.44	392.35	142.79	0.2
1	l 18	01.551	2018_010yr	Design_in-kind	845	4	13.957	8.23	14.1	0.000561	3.41	397.95	145.2	0.2
1	l 18	01.551	2018_010yr	Design_Exist	845	4	14.0033	8.23	14.14	0.000547	3.38	404.74	148.61	0.19
1			2018_025y	Design_20'	1228	4		9.37	14.73	0.000853	4.37	486.41	173.18	0.24
1			2018_025y	Design_12'	1228	4	14.5039	9.37	14.73	0.000856	4.37	485.45	172.9	0.25
	-		2018_025y	Design_in-kind	1228	4	14.5716	9.37	14.79	0.000822	4.3	497.27	176.32	0.24
1	-		2018_025y 2018_050yr	Design_Exist Design_20'	1228 1565	4	14.5867 14.8952	9.37 10.42	14.8 15.18	0.000814	4.29 5.08	499.94 557	177.08 193.23	0.24
1	_		2018_050yr 2018_050yr	Design_20 Design_12'	1565	4	14.8952	10.42	15.18	0.001095	5.08	555.99	193.23	0.28
1	-		2018_050yr	Design_in-kind	1565	4	14.9149	10.42	15.10	0.001090	5.05	560.8	192.93	0.28
1			2018_050yr	Design_Exist	1565	4	14.954	10.42	15.23	0.001057	5.01	568.45	196.79	0.27
1			2018_100yr	Design_20'	2000	4	15.2204	11.67	15.61	0.001465	5.99	623.1	212.67	0.32
1	L 18	01.551	2018_100yr	Design_12'	2000	4	15.2288	11.67	15.61	0.001457	5.98	624.89	213.07	0.32
1	l 18	01.551	2018_100yr	Design_in-kind	2000	4	15.2536	11.67	15.63	0.001434	5.94	630.19	214.25	0.32
1		01.551	2018_100yr	Design_Exist	2000	4	15.293	11.67	15.66	0.001398	5.88	638.67	216.12	0.32
1			2018_500yr	Design_20'	2671	4	15.6648	12.82	16.18	0.001973	7.15	722.98	238.05	0.38
1			2018_500yr	Design_12'	2671	4	15.6535	12.82	16.17	0.001988	7.17	720.28	237.35	0.38
1	_		2018_500yr	Design_in-kind	2671	4	15.6848	12.82	16.19	0.001949	7.12	727.75	239.29	0.38
1			2018_500yr 2018_25yr_MHHW_M	Design_Exist Design_20'	2671 1228	4	15.6729 14.5094	12.82 9.37	16.19 14.73	0.001963	7.14	724.9 486.41	238.55 173.18	0.38
1				Design_20 Design_12'	1228	4	14.5103	9.37	14.73	0.000853	4.37	486.56	173.22	0.24
1	-			Design_in-kind	1228	4	14.5744	9.37	14.79	0.00082	4.3	497.76	176.46	0.24
1	1 18	01.551	2018_25yr_MHHW_M	Design_Exist	1228	4	14.6001	9.37	14.81	0.000808	4.28	502.31	177.76	0.24
1	l 18	01.551	2018_25yr_MSL_Ma	Design_20'	1228	4	14.5094	9.37	14.73	0.000853	4.37	486.41	173.18	0.24
1	l 18	01.551	2018_25yr_MSL_Ma	Design_12'	1228	4	14.5095	9.37	14.73	0.000853	4.37	486.42	173.18	0.24
1	l 18		2018_25yr_MSL_Ma	Design_in-kind	1228	4	14.5823	9.37	14.8	0.000816	4.29	499.17	176.86	0.24
1			_ ,	Design_Exist	1228	4		9.37	14.8	0.000815	4.29	499.61	176.98	0.24
1			2100_025yr_Ab1	Design_20'	1706	4		11.03	15.31	0.001233	5.42	574.31	198.54	0.3
1			2100_025yr_Ab1	Design_12'	1706	4		11.03 11.03	15.35 15.36	0.001199	5.36 5.34	583.71	201.59	0.29
1			2100_025yr_Ab1	Design_in-kind	1706	4	15.0456			0.001188		586.75	202.56 202.76	
1			2100_025yr_Ab1 2100_050yr_Ab1	Design_Exist Design_20'	1706 1717	4	15.0487 15.0118	11.03 11.05		0.001186	5.34 5.42	587.37 579.93	202.76	0.29
1			2100_050yr_Ab1	Design_20 Design_12'	1717	4		11.05		0.001220	5.4	583.29	200.37	0.29
1	-		2100_050yr_Ab1	Design_in-kind	1717	4	15.0606	11.05		0.001192	5.35	589.78	203.53	0.29
1			2100_050yr_Ab1	Design_Exist	1717	4	15.0682	11.05		0.001187	5.34	591.34	204.03	0.29
1	1 18	01.551	2100_100yr_Ab1	Design_20'	2562	4	15.5663	12.65	16.07	0.001932	7.03	699.82	231.97	0.37
1	_		2100_100yr_Ab1	Design_12'	2562	4	15.5926	12.65		0.0019	6.99	705.95	233.59	0.37
1			2100_100yr_Ab1	Design_in-kind	2562	4	15.6199	12.65		0.001868	6.94	712.34	235.28	0.37
1			2100_100yr_Ab1	Design_Exist	2562	4	15.5902	12.65		0.001903	6.99	705.38	233.44	0.37
	-		2018_025yr(Surge	Design_20'	1228	4	14.5039	9.37	14.73	0.000856	4.37	485.45	172.9	0.25
1			2015_025yr(Surge	Design_12'	1228 1228	4	14.5392	9.37 9.37	14.76 14.8	0.000838	4.34 4.29	491.59 499.05	174.68 176.83	0.24
	-		2015_025yr(Surge 2015_025yr(Surge	Design_in-kind Design_Exist	1228	4	14.5816 14.603	9.37	14.8	0.000817	4.29	499.05	176.83	0.24
	-		2013_023yr(Surge 2018_050yr(Surge	Design_Exist Design_20'	1228	4	14.8783	9.37		0.001106	4.27	553.73	177.91	0.24
1	-		2018_050yr(Surge	Design_20 Design_12'	1565	4	14.8783	10.42		0.001106	5.08	556.57	192.24	0.28
1	-		2015_050yr(Surge	Design_in-kind	1565	4	14.9409	10.42		0.001065	5.00	565.88	196.01	0.28
1	-		2015_050yr(Surge	Design_Exist	1565	4	14.9504	10.42		0.001059	5.01	567.75	196.59	0.27
1			015_100yr(Surge)	Design_20'	2000	4	15.2493	11.67		0.001438	5.95	629.26	214.04	0.32
1	-		015_100yr(Surge)	Design_12'	2000	4	15.2334	11.67	15.62	0.001453	5.97	625.86	213.29	0.32
1	l 18	01.551	015_100yr(Surge)	Design_in-kind	2000	4	15.2809	11.67	15.65	0.001409	5.9	636.04	215.54	0.32
1	18	01.551	015_100yr(Surge)	Design_Exist	2000	4	15.2838	11.67	15.65	0.001406	5.9	636.68	215.68	0.32
	1													
1	L	1776		ļ	Culvert									
			2010.055											-
1	-		2018_002yr	Design_20'	232	4.1	8.1271	6.61	8.33	0.002331	3.59	64.58	22.76	0.38
1		48 775	2018_002yr	Design_12'	232	4.1	8.1283	6.61	8.33	0.002328	3.59	64.61	22.76	0.38

Reach	River Sta	Profile	Plan	Q Total	Min Ch El	W.S. Elev	Crit W.S.		E.G. Slope	Vel Chnl		Top Width	Froude # Chl
				(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1	1	2018_002yr 2018_002yr	Design_in-kind	232 232	4.1	8.1363 8.2363	6.61 6.84	8.34 8.45	0.002309	3.58 3.7	64.79 62.74	22.77 22.96	0.37
1		2018_002yr	Design_Exist Design_20'	845	4.1	11.1604	8.83	11.67	0.002813	5.82	152.96	52.96	0.39
1		2018_010yr	Design_20 Design_12'	845	4.1	11.1604	8.83	11.67	0.002783	5.82	152.96	52.94	0.43
1		2018_010yr	Design_i2	845	4.1	11.341	8.83	11.81	0.002497	5.61	152.50	55.47	0.41
1	-	2018_010yr	Design_Exist	845	4.1	11.5198	9.03	11.98	0.002497	5.56	160.32	58.54	0.41
1	1748.775	2018_025y	Design_20'	1228	4.1	11.5151	9.97	12.44	0.004805	7.88	164.51	58.46	0.57
1	1748.775	2018_025y	Design_12'	1228	4.1	11.5154	9.97	12.44	0.004804	7.88	164.52	58.46	0.57
1	1748.775	2018_025y	Design_in-kind	1228	4.1	12.0361	9.97	12.77	0.003931	7.05	183.31	72.51	0.53
1	1748.775	2018_025y	Design_Exist	1228	4.1	12.1524	10.14	12.89	0.003969	7.05	183.33	81.13	0.53
1	1748.775	2018_050yr	Design_20'	1565	4.1	11.8487	10.7	13.14	0.007213	9.33	176.29	68.03	0.71
1	1748.775	2018_050yr	Design_12'	1565	4.1	11.8462	10.7	13.14	0.007225	9.34	176.2	67.99	0.71
1		2018_050yr	Design_in-kind	1565	4.1	12.3167	10.7	13.39	0.005357	8.5	193.84	104.53	0.62
1	-	2018_050yr	Design_Exist	1565	4.1	12.5304	10.85	13.56	0.005095	8.35	197.51	111.42	0.6
1		2018_100yr	Design_20'	2000	4.1	11.8844	11.74	13.96	0.011506	11.84	177.63	68.62	0.9
1		2018_100yr	Design_12'	2000	4.1	11.9987	11.74	13.98	0.01068	11.57	181.91	70.44	0.87
1		2018_100yr	Design_in-kind	2000	4.1	12.3637 12.5114	11.74 11.79	14.08 14.2	0.008503	10.77 10.7	195.6 196.8	106.89 110.92	0.78
1		2018_100yr 2018_500yr	Design_Exist Design_20'	2000	4.1	13.4089	13.21	14.2	0.005842	9.95	389.58	110.92	0.66
1		2018_500yr	Design_20 Design_12'	2671	4.1	13.4089	13.21	14.61	0.005842	9.95	389.58	162.4	0.66
1		2018_500yr	Design_12 Design_in-kind	2671	4.1	13.2068	13.21	14.01	0.005842	10.56	361.53	149.64	0.00
1		2018_500yr	Design_In kind	2671	4.1	13.3591	13.20	14.63	0.006424	10.30	378.21	159.25	0.69
1		2018_25yr_MHHW_M	-	1228	4.1	11.5151	9.97	12.44	0.004805	7.88	164.51	58.46	0.57
1		2018_25yr_MHHW_M	Design_12'	1228	4.1	11.5153	9.97	12.44	0.004804	7.88	164.52	58.46	0.57
1			Design_in-kind	1228	4.1	12.0407	9.97	12.78	0.003919	7.04	183.49	72.63	0.53
1	1748.775	2018_25yr_MHHW_M	Design_Exist	1228	4.1	12.1632	10.14	12.89	0.003942	7.03	183.74	82.53	0.53
1	1748.775	2018_25yr_MSL_Ma	Design_20'	1228	4.1	11.5151	9.97	12.44	0.004805	7.88	164.51	58.46	0.57
1	1748.775	2018_25yr_MSL_Ma	Design_12'	1228	4.1	11.5153	9.97	12.44	0.004804	7.88	164.52	58.46	0.57
1	1748.775	2018_25yr_MSL_Ma	Design_in-kind	1228	4.1	12.0434	9.97	12.78	0.003912	7.04	183.59	72.68	0.52
1		2018_25yr_MSL_Ma	Design_Exist	1228	4.1	12.1467	10.14	12.88	0.003983	7.06	183.12	80.4	0.53
1		2100_025yr_Ab1	Design_20'	1706	4.1	11.915	10.97	13.41	0.008205	10.04	178.77	69.13	0.76
1		_ / _	Design_12'	1706	4.1	12.0332	10.97	13.46	0.0076	9.8	183.2	72.44	0.73
1	-	2100_025yr_Ab1	Design_in-kind	1706	4.1	12.3918	10.97	13.63	0.006083	9.14	196.65	107.75	0.66
1	1748.775	-	Design_Exist	1706	4.1	12.4038	11.11	13.69	0.006539	9.32	192.76	108.07	0.68
1		2100_050yr_Ab1	Design_20'	1717	4.1	11.9196	10.99 10.99	13.43	0.008287	10.09	178.94	69.21	0.76
1		2100_050yr_Ab1 2100_050yr_Ab1	Design_12' Design_in-kind	1717 1717	4.1	12.0359 12.4274	10.99	13.47 13.66	0.007686	9.86 9.13	183.3 197.99	72.51	0.74
1		2100_050yr_Ab1	Design_III-kild	1717	4.1	12.3852	10.99	13.69	0.00032	9.13	197.99	100.72	0.69
1		2100_000yr_Ab1	Design_20'	2562	4.1	13.2217	13.11	14.49	0.006224	10.08	363.56	150.55	0.68
1	-	2100_100yr_Ab1	Design_12'	2562	4.1	13.2213	13.11	14.49	0.006226	10.09	363.51	150.52	0.68
1		2100_100yr_Ab1	Design in-kind	2562	4.1	13.1583	13.11	14.48	0.006549	10.28	354.95	146.69	0.7
1		2100_100yr_Ab1	Design_Exist	2562	4.1	13.3003	13.15	14.52	0.006191	9.98	370.03	155.33	0.68
1	1748.775	2018_025yr(Surge	Design_20'	1228	4.1	11.5154	9.97	12.44	0.004804	7.88	164.52	58.46	0.57
1	1748.775	2015_025yr(Surge	Design_12'	1228	4.1	11.7163	9.97	12.56	0.004771	7.53	171.39	64.77	0.57
1	1748.775	2015_025yr(Surge	Design_in-kind	1228	4.1	12.1769	9.97	12.87	0.003596	6.85	188.59	84.3	0.5
1	1748.775	2015_025yr(Surge	Design_Exist	1228	4.1	12.1569	10.14	12.89	0.003958	7.04	183.5	81.71	0.53
1		2018_050yr(Surge	Design_20'	1565	4.1	11.7979		13.12	0.007461	9.43			0.72
1		2015_050yr(Surge	Design_12'	1565	4.1	12.0782	10.7	13.25	0.006215	8.91	184.89	74.14	0.66
1	1	2015_050yr(Surge	Design_in-kind		4.1	12.4034	10.7	13.44	0.005084	8.36	197.09	108.06	0.6
1	1	2015_050yr(Surge	Design_Exist	1565	4.1	12.5332	10.85	13.56	0.005087	8.34	197.62	111.49	0.6
1	1	015_100yr(Surge)	Design_20'	2000	4.1	11.9251	11.74	13.97	0.011202	11.74	179.15	69.3	0.88
1	1	015_100yr(Surge) 015 100yr(Surge)	Design_12'	2000	4.1	12.1579	11.74	14.02	0.009652	11.21	187.88	81.85	0.83
1	-	015_100yr(Surge) 015_100yr(Surge)	Design_in-kind Design_Exist	2000 2000	4.1	12.4512 12.5093	11.74 11.79	14.11 14.2	0.008069	10.59 10.71	198.88 196.72	109.36 110.87	0.76
	/-0.//3	sis_isuige)	Design_EXISt	2000	4.1	12.3093	11.79	14.2	0.000420	10.71	190.72	110.07	0.78
1	1600.008	2018_002yr	Design_20'	232	4.45	7.148		7.69	0.008013	5.9	39.31	15.31	0.65
1	1	2018_002yr	Design_20 Design_12'	232	4.45	7.1532		7.69	0.007965	5.89	39.39	15.31	0.65
1	-	2018_002yr	Design_i2	232	4.45	7.1856		7.71	0.007675	5.82	39.89	15.33	0.64
1		2018_002yr	Design_Exist	232	4.45	7.3782		7.83	0.00621	5.41	42.85	15.44	0.57
1	-	2018_010yr	Design_20'	845	4.45	9.6979	9.7	10.89	0.009119	9.29	117.11	61.29	0.74
1		2018_010yr	Design_12'	845	4.45	9.6979	9.7	10.89	0.009119	9.29	117.11	61.29	0.74
1	1600.008	2018_010yr	Design_in-kind	845	4.45	11.1984		11.43	0.001695	4.78	314.67	181.55	0.33
1	1600.008	2018_010yr	Design_Exist	845	4.45	11.4627		11.63	0.001248	4.21	364.44	195.09	0.29
1	1600.008	2018_025y	Design_20'	1228	4.45	10.7924	10.79	11.59	0.005839	8.49	245.07	161.31	0.61
1	-	2018_025y	Design_12'	1228	4.45	10.7924	10.79	11.59	0.005839	8.49	245.07	161.31	0.61
1	1600.008	2018_025y	Design_in-kind	1228	4.45	12.0711		12.26	0.001448	4.81	498.78	266.44	0.31
1		2018_025y	Design_Exist	1228	4.45	12.2616		12.41	0.00115	4.36	549.96	270.99	0.28
1		2018_050yr	Design_20'	1565	4.45	11.1437	11.14	11.98	0.006203	9.09	304.81	178.81	0.63
1		2018_050yr	Design_12'	1565	4.45	11.7834		12.19	0.003034	6.77	430.39	218.49	0.45
1		2018_050yr	Design_in-kind	1565	4.45	12.5901		12.76	0.001284	4.74	640.38	279.38	0.3
1		2018_050yr	Design_Exist	1565	4.45	12.877		13	0.000946	4.16	721.57	286.61	0.26
1	1600.008	2018_100yr	Design_20'	2000	4.45	11.9277	I	12.49	0.004268	8.14	462.79	230.7	0.54

Reach	R	liver Sta	Profile	Plan	Q Total		W.S. Elev			-			-	Froude # Chl
		1600.000	2010 100	Decise 12	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	0.20
1	_		2018_100yr	Design_12'	2000 2000	4.45 4.45	12.5355 13.0157	-	12.83 13.19	0.002228	6.21 5.02	625.14 761.55	277.99 290.06	0.39
	1		2018_100yr	Design_in-kind									290.08	
	1		2018_100yr	Design_Exist	2000	4.45	13.2293		13.38	0.001089	4.6	824.08	295.37 309.41	0.28
	1		2018_500yr	Design_20'	2671	4.45	13.7936		13.96	0.001168	4.97	994.74		
1	1		2018_500yr 2018_500yr	Design_12'	2671 2671	4.45 4.45	13.7936	11.89	13.96	0.001168	4.97 5.22	994.73	309.41 305.95	0.29
	_			Design_in-kind			13.6547	11.09	13.84		5.22	951.98		
	_		2018_500yr	Design_Exist	2671 1228	4.45 4.45	13.7746	10.70	13.94	0.001187	8.49	988.86	308.93 161.31	0.29
	1			Design_20'			10.7924	10.79	11.59	0.005839	8.49	245.07		
	1		2018_25yr_MHHW_M	_	1228	4.45	10.7924	10.79	11.59	0.005839		245.07	161.31	0.61
	1		2018_25yr_MHHW_M		1228	4.45	12.0783		12.27	0.001435	4.79	500.72	266.6	0.31
	1		2018_25yr_MHHW_M		1228	4.45	12.2759	10.70	12.43	0.00113	4.32	553.85	271.36	0.28
1			2018_25yr_MSL_Ma	Design_20'	1228	4.45	10.7924	10.79	11.59	0.005839	8.49	245.07	161.31	0.61
1	_		2018_25yr_MSL_Ma	Design_12'	1228	4.45	10.7924	10.79	11.59	0.005839	8.49	245.07	161.31	0.61
1	_		2018_25yr_MSL_Ma	Design_in-kind	1228	4.45			12.27	0.001428	4.78	501.83	266.7	0.31
1	_			Design_Exist	1228	4.45			12.41	0.00116	4.37	547.92	270.8	0.28
1	_		2100_025yr_Ab1	Design_20'	1706	4.45		11.29	12.12	0.006178	9.21	332.23	186.44	0.63
1	_		2100_025yr_Ab1	Design_12'	1706	4.45	12.2124		12.52	0.002352	6.2	536.67	269.74	0.4
1	_		2100_025yr_Ab1	Design_in-kind	1706	4.45	12.7738		12.94	0.001252	4.75	692.12	284.04	0.3
1	1	1600.008	2100_025yr_Ab1	Design_Exist	1706	4.45	12.8335		12.99	0.001176	4.63	709.14	285.53	0.29
1	_		2100_050yr_Ab1	Design_20'	1717	4.45	11.3042	11.3	12.13	0.006183	9.23	334.17	186.97	0.63
1	1	1600.008	2100_050yr_Ab1	Design_12'	1717	4.45	12.2277		12.54	0.002339	6.2	540.79	270.13	0.4
1	1		2100_050yr_Ab1	Design_in-kind	1717	4.45	12.8238		12.98	0.001204	4.68	706.36	285.29	0.29
1	1	1600.008	2100_050yr_Ab1	Design_Exist	1717	4.45	12.8255	L	12.98	0.001202	4.67	706.85	285.33	0.29
1	1	1600.008	2100_100yr_Ab1	Design_20'	2562	4.45	13.6183		13.79	0.001251	5.08	940.85	305.05	0.3
1	1	1600.008	2100_100yr_Ab1	Design_12'	2562	4.45	13.618		13.79	0.001251	5.08	940.76	305.04	0.3
1	1	1600.008	2100_100yr_Ab1	Design_in-kind	2562	4.45	13.5759		13.75	0.001299	5.15	927.97	303.99	0.31
1	1	1600.008	2100_100yr_Ab1	Design_Exist	2562	4.45	13.6876		13.85	0.001177	4.95	962.08	306.77	0.29
1	1	1600.008	2018_025yr(Surge	Design_20'	1228	4.45	10.7924	10.79	11.59	0.005839	8.49	245.07	161.31	0.61
1	1	1600.008	2015_025yr(Surge	Design_12'	1228	4.45	11.6168		11.91	0.002222	5.71	395.15	204.47	0.38
1	1	1600.008	2015_025yr(Surge	Design_in-kind	1228	4.45	12.2726		12.42	0.001135	4.33	552.96	271.28	0.28
1	1	1600.008	2015_025yr(Surge	Design_Exist	1228	4.45	12.2675		12.42	0.001141	4.34	551.58	271.15	0.28
1	1	1600.008	2018_050yr(Surge	Design_20'	1565	4.45	11.3366	11.15	12	0.004947	8.28	340.25	188.63	0.57
1	1	1600.008	2015_050yr(Surge	Design_12'	1565	4.45	12.23		12.49	0.001938	5.64	541.42	270.19	0.36
1	1	1600.008	2015_050yr(Surge	Design_in-kind	1565	4.45	12.6977		12.85	0.001143	4.51	670.57	282.11	0.28
1	1	1600.008	2015_050yr(Surge	Design_Exist	1565	4.45	12.8801		13	0.000943	4.16	722.46	286.69	0.26
1	1		015_100yr(Surge)	Design_20'	2000	4.45	12.1647		12.62	0.003424	7.45	523.83	268.6	0.48
1	1		015_100yr(Surge)	Design_12'	2000	4.45	12.7795		13	0.001711	5.56	693.76	284.19	0.35
1	1		015_100yr(Surge)	Design_in-kind	2000	4.45	13.1061		13.27	0.001227	4.83	787.88	292.31	0.29
1	1		015_100yr(Surge)	Design_Exist	2000	4.45			13.37	0.001091	4.6	823.51	295.32	0.28
						-					-			
1	1	1456 522	2018_002yr	Design_20'	232	3.05	6.4314		6.79	0.004281	4.78	48.52	16.66	0.49
1	_		2018_002yr	Design_12'	232	3.05			6.8	0.004209	4.75	48.8	16.67	0.49
1	_		2018_002yr	Design_in-kind	232	3.05			6.87	0.003835	4.6	50.38	16.74	0.47
1	_		2018_002yr	Design Exist	232	3.05	6.9401		7.2	0.002672	4.06	57.08	17.01	0.39
	_		2018_010yr	Design_20'	845	3.05	9.0051	8.25	9.61	0.004367	6.96	162.88	65.28	0.53
1	_		2018_010yr	Design_12'	845	3.05	9.0051	8.25	9.61	0.004367	6.96	162.88	65.28	0.53
			2018_010yr	Design_12 Design_in-kind					11.26	0.0004307	2.8		304.9	0.18
1	_		2018_010yr 2018_010yr	Design_III-kind Design_Exist	845	3.05			11.26	0.000448	2.8	669.12	304.9	0.18
1	_		2018_010yr 2018_025y	Design_Exist Design_20'	1228	3.05			11.51	0.000337	7.72	236.09	126.8	0.18
	_		2018_025y 2018_025y	Design_20 Design_12'	1228	3.05			10.49	0.004464	6.33	340.81	256.8	0.55
1	_		_ /		1228	3.05			10.73	0.002703	2.8	878.71	371.9	0.43
	_		2018_025y	Design_in-kind	1228	3.05			12.12	0.000388	2.8	948.66	371.9	0.17
	-		2018_025y	Design_Exist										
1	1		2018_050yr	Design_20'	1565	3.05			11.25	0.002024	5.83	514.46	288.56	0.38
1	1		2018_050yr	Design_12'	1565	3.05		<u> </u>	11.89	0.000837	4.02	771.93	343.14	0.25
1	1		2018_050yr	Design_in-kind	1565	3.05		<u> </u>	12.63	0.000376	2.87	1069.93	379.87	0.17
1	_		2018_050yr	Design_Exist	1565	3.05	12.8638	 	12.91	0.000288	2.57	1179.83	384.32	0.15
1	1		2018_100yr	Design_20'	2000	3.05		<u> </u>	12.07	0.001192	4.85	819.02	352.2	0.3
1	1		2018_100yr	Design_12'	2000	3.05			12.61	0.000654	3.77	1045.12	378.85	0.22
1	1		2018_100yr	Design_in-kind	2000	3.05			13.06	0.000418	3.12	1230.19	386.35	0.18
1	1		2018_100yr	Design_Exist	2000	3.05			13.26	0.000348	2.89	1313.97	389.82	0.17
1	_		2018_500yr	Design_20'	2671	3.05		ļ	13.83	0.000399	3.22	1534.37	399.15	0.18
1	_		2018_500yr	Design_12'	2671	3.05			13.83	0.000399	3.22	1534.37	399.15	0.18
1	_		2018_500yr	Design_in-kind	2671	3.05			13.7	0.000445	3.36	1478.09	396.79	0.19
1	_		2018_500yr	Design_Exist	2671	3.05			13.81	0.000405	3.24	1526.66	398.82	0.18
1	_		2018_25yr_MHHW_M		1228	3.05			10.49	0.004464	7.72	236.09	126.8	0.55
1	_		2018_25yr_MHHW_M		1228	3.05			10.91	0.001799	5.34		270.88	0.36
1	_		2018_25yr_MHHW_M		1228	3.05			12.13	0.000385	2.8		372.02	0.17
1	1	1456.522	2018_25yr_MHHW_M	Design_Exist	1228	3.05	12.269		12.31	0.000314	2.56	953.97	375.1	0.15
1	1	1456.522	2018_25yr_MSL_Ma	Design_20'	1228	3.05	9.8078		10.49	0.004464	7.72	236.09	126.8	0.55
1	1	1456.522	2018_25yr_MSL_Ma	Design_12'	1228	3.05	10.6278	8.98	10.9	0.00183	5.38	424.15	270.28	0.36
1	1	1456.522	2018_25yr_MSL_Ma	Design_in-kind	1228	3.05	12.0787		12.13	0.000383	2.79	882.86	372.08	0.17
	1	4 45 6 500	2018_25yr_MSL_Ma	Design Exist	1228	3.05	12.2474		12.29	0.000321	2.59	945.85	374.76	0.16

Reach	River Sta	Profile	Plan	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
				(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1	1456.522	-	Design_20'	1706	3.05	11.1824	9.78			5.7	582.69	304.01	0.37
1		_ , _	Design_12'	1706 1706	3.05	12.1987 12.7574		12.29 12.81	0.000651	3.67 2.91	927.64 1139.01	374.01 382.67	0.22
1		2100_025yr_Ab1 2100_025yr_Ab1	Design_in-kind Design_Exist	1706	3.05 3.05	12.7574		12.81	0.000377	2.91	1159.01	383.6	0.17
1		_ / _	Design 20'	1700	3.05	11.2118	9.79	11.48	0.001818	5.65	591.64	305.97	0.36
1	1456.522	_ / _	Design_12'	1717	3.05	12.2134		12.31	0.00065	3.67	933.14	374.24	0.22
1	1456.522	2100_050yr_Ab1	Design_in-kind	1717	3.05	12.8074		12.86	0.000364	2.88	1158.18	383.45	0.17
1	1456.522	2100_050yr_Ab1	Design_Exist	1717	3.05	12.8092		12.86	0.000364	2.88	1158.83	383.47	0.17
1		_ , _	Design_20'	2562	3.05	13.593		13.66		3.26	1464.33	396.21	0.18
1		2100_100yr_Ab1	Design_12'	2562	3.05	13.5927		13.66		3.26	1464.21	396.2	0.18
1		_ , _	Design_in-kind	2562	3.05	13.55		13.62	0.000434	3.31	1447.29	395.49	0.19
1		2100_100yr_Ab1 2018_025yr(Surge	Design_Exist Design 20'	2562 1228	3.05 3.05	13.6636 10.3252	8.98	13.73 10.74		3.19 6.29	1492.33 344.32	397.39 257.38	0.18
1			Design_20 Design_12'	1228	3.05	11.6064	0.90	10.74	0.002638	3.38	717.59	332.38	0.43
1	-		Design_in-kind	1228	3.05	12.2658		12.31	0.000315	2.57	952.76	375.05	0.15
1			Design_Exist	1228	3.05	12.2608		12.31	0.000316	2.57	950.87	374.97	0.15
1	1456.522	2018_050yr(Surge	Design_20'	1565	3.05	11.3181		11.51	0.001344	4.91	624.54	313.09	0.31
1	1456.522	2015_050yr(Surge	Design_12'	1565	3.05	12.2188		12.3	0.000537	3.34	935.13	374.32	0.2
1	1456.522	2015_050yr(Surge	Design_in-kind	1565	3.05	12.6839		12.73	0.000339	2.75	1110.92	381.53	0.16
1			Design_Exist	1565	3.05	12.867		12.91	0.000287	2.56	1181.03	384.37	0.15
1			Design_20'	2000	3.05	12.1446		12.28	0.000947	4.41	907.41	373.14	0.27
1			Design_12' Design in-kind	2000 2000	3.05 3.05	12.7562 13.0859		12.83 13.14	0.000518	3.42 3.02	1138.53 1265.56	382.65 387.76	0.2
1			Design_III-kind Design Exist	2000	3.05	13.2085		13.14		2.9	1205.50	389.79	0.17
-					5.05					2.5			0.17
1	1331.074	2018_002yr	Design_20'	232	1.92	6.0011		6.29	0.003158	4.34	53.45	15.56	0.41
1	1331.074	2018_002yr	Design_12'	232	1.92	6.0277		6.32	0.003086	4.31	53.87	15.86	0.4
1	1331.074	2018_002yr	Design_in-kind	232	1.92	6.1647		6.43	0.002807	4.14	56.55	23.38	0.38
1		_ /	Design_Exist	232	1.92	6.7325		6.91	0.001596	3.44	78.09	52.57	0.3
1		_ /	Design_20'	845	1.92	8.8162		9.12	0.002262	5.37	237.73	97.05	0.38
1	1331.074	_ ,	Design_12'	845	1.92	8.8162 11.1799		9.12 11.21	0.002262	5.37 2.09	237.73 757.18	97.05 356.78	0.38
1	1331.074 1331.074	_ /	Design_in-kind Design_Exist	845 845	1.92	11.1/99		11.21	0.000223	1.87	854.03	372.49	0.13
1		_ /	Design_20'	1228	1.92	9.6956		11.17		5.6	336.13	127.69	0.37
1	_	2018_025y	Design_12'	1228	1.92	10.2451		10.43	0.001259	4.6	449.79	299.61	0.29
1	1331.074	2018_025y	Design_in-kind	1228	1.92	12.0509		12.08	0.000205	2.13	1090.31	405.93	0.12
1	1331.074	2018_025y	Design_Exist	1228	1.92	12.2403		12.27	0.000172	1.98	1167.41	408.29	0.11
1	1331.074	2018_050yr	Design_20'	1565	1.92	10.8743		11.02	0.001051	4.42	650.91	338.7	0.27
1			Design_12'	1565	1.92	11.7306		11.79		3.08	962.61	389.36	0.18
1		2018_050yr	Design_in-kind	1565	1.92	12.5571		12.59	0.000211	2.24	1297.38	412.21	0.13
1		2018_050yr 2018_100yr	Design_Exist Design_20'	1565 2000	1.92 1.92	12.8483 11.8465		12.87 11.94	0.000166	2.03 3.76	1417.96 1008.14	415.82 396.22	0.11
1		2018_100yr 2018_100yr	Design_20 Design_12'	2000	1.92	12.4772		12.53	0.000369	2.95	1264.49	411.22	0.22
1	1331.074	_ ,	Design_in-kind	2000	1.92	12.9712		13.01	0.000246	2.49	1469.12	417.34	0.14
1	1331.074	-	Design_Exist	2000	1.92	13.1904		13.22	0.000208	2.32	1560.93	420.06	0.13
1	1331.074	2018_500yr	Design_20'	2671	1.92	13.7446		13.79	0.000249	2.62	1795.51	426.42	0.14
1		2018_500yr	Design_12'	2671	1.92	13.7446		13.79	0.000249	2.62	1795.51	426.42	0.14
1		2018_500yr	Design_in-kind	2671	1.92	13.6007		13.65		2.73	1734.26	424.83	0.15
1		2018_500yr	Design_Exist	2671	1.92	13.7249		13.77	0.000252	2.64	1787.13	426.2	0.14
1		2018_25yr_MHHW_M		1228	1.92	9.6956		10 71		5.6	336.13	127.69	0.37
1		2018_25yr_MHHW_M 2018_25yr_MHHW_M		1228 1228	1.92 1.92	10.5865 12.0581		10.71 12.09	0.000877	3.95 2.13	555.87 1093.23	321.66 406.02	0.25
1		2018_25yr_MHHW_M 2018_25yr_MHHW_M		1228	1.92	12.0581		12.09		1.97	1173.25	408.02	0.12
1		2018_25yr_MSL_Ma	Design_20'	1228	1.92	9.6956		12.20		5.6	336.13	127.69	0.37
1		2018_25yr_MSL_Ma	Design_12'	1228	1.92	10.572		10.7	0.000891	3.98	551.21	320.81	0.25
1	1331.074	2018_25yr_MSL_Ma	Design_in-kind	1228	1.92	12.0622		12.09	0.000202	2.12	1094.9	406.07	0.12
1	1331.074	2018_25yr_MSL_Ma	Design_Exist	1228	1.92	12.2327		12.26		1.99	1164.32	408.19	0.11
1	1	2100_025yr_Ab1	Design_20'	1706	1.92	11.1059		11.24	0.000982	4.36	730.94	352.4	0.26
1	1	2100_025yr_Ab1	Design_12'	1706	1.92	12.1685		12.22	0.000354	2.83	1138.11	407.39	0.16
1		2100_025yr_Ab1	Design_in-kind	1706	1.92	12.7374		12.77	0.000216	2.3	1371.9	414.45	0.13
1	-	2100_025yr_Ab1 2100_050yr_Ab1	Design_Exist Design_20'	1706 1717	1.92 1.92	12.7983 11.1363		12.83 11.27	0.000205	2.25	1397.17 741.68	415.2 354.2	0.12
1		2100_050yr_Ab1	Design_20 Design_12'	1717	1.92	12.1831		12.23		2.83	1144.07	407.58	0.20
1		2100_050yr_Ab1	Design_in-kind	1717	1.92	12.7879		12.23	0.00021	2.03	1392.85	415.07	0.13
1		2100_050yr_Ab1	Design_Exist	1717	1.92	12.7897		12.82	0.00021	2.27	1393.57	415.09	0.13
1		2100_100yr_Ab1	Design_20'	2562	1.92	13.5676		13.61	0.000259	2.65	1720.21	424.46	0.14
1	1331.074	2100_100yr_Ab1	Design_12'	2562	1.92	13.5673		13.61	0.000259	2.65	1720.08	424.46	0.14
1	1331.074	2100_100yr_Ab1	Design_in-kind	2562	1.92	13.5238		13.57	0.000267	2.68	1701.62	423.98	0.14
1		2100_100yr_Ab1	Design_Exist	2562	1.92	13.6394		13.68		2.59	1750.7	425.26	0.14
1		2018_025yr(Surge	Design_20'	1228	1.92	10.2591		10.44		4.57	454	300.52	0.29
1		2015_025yr(Surge	Design_12'	1228	1.92	11.5815		11.63	0.000317	2.57	905.2	380.53	0.15
1	1331.074	2015_025yr(Surge	Design_in-kind	1228	1.92	12.2513		12.28	0.00017	1.97	1171.92	408.43	0.11

	River Sta	Profile	Plan	-		W.S. Elev			-			-	Froude # Chl
				(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1		2015_025yr(Surge	Design_Exist	1228	1.92 1.92	12.2463 11.2625		12.27	0.000171	1.98	1169.84	408.36	0.11
1		2018_050yr(Surge 2015_050yr(Surge	Design_20' Design_12'	1565 1565	1.92	12.1939	-	11.36 12.24	0.000705	3.74 2.57	786.86 1148.49	361.67 407.71	0.22
1		2015_050yr(Surge 2015_050yr(Surge	Design_12 Design_in-kind	1565	1.92	12.1939		12.24	0.000291	2.57	1342.43	407.71	0.13
1		2015_050yr(Surge	Design_Exist	1565	1.92	12.8515		12.88	0.000155	2.02	1419.28	415.86	0.11
1		015_100yr(Surge)	Design_20'	2000	1.92	12.1		12.17	0.000518	3.41	1110.23	406.54	0.19
1	1331.074	015_100yr(Surge)	Design_12'	2000	1.92	12.7283		12.77	0.000299	2.7	1368.12	414.33	0.15
1	1331.074	015_100yr(Surge)	Design_in-kind	2000	1.92	13.0641		13.1	0.000229	2.41	1507.95	418.49	0.13
1	1331.074	015_100yr(Surge)	Design_Exist	2000	1.92	13.1885		13.22	0.000208	2.32	1560.1	420.03	0.13
1		2018_002yr	Design_20'	232	1.66	5.3612		5.91	0.007194	5.95	39.02	12.34	0.59
1		2018_002yr	Design_12'	232	1.66	5.4142		5.95	0.006875	5.85	39.68	12.41	0.58
1		2018_002yr	Design_in-kind	232	1.66	5.6513	 	6.11	0.005653	5.43	42.94	16.57 48.23	0.53
1		2018_002yr 2018_010yr	Design_Exist Design_20'	232 845	1.66	6.5411 8.4464	-	6.76 8.9	0.002164	3.92 6.44	72.53 188.99	48.23	0.34
1		2018_010yr	Design_20 Design_12'	845	1.66	8.4464		8.9	0.003527	6.44	188.99	71.54	0.46
1		2018_010yr	Design_in-kind	845	1.66	11.1422		11.19	0.000345	2.57	682.82	352.4	0.15
1		2018_010yr	Design_Exist	845	1.66	11.4201		11.45	0.000248	2.23	782.2	362.05	0.13
1	1255.24	2018_025y	Design_20'	1228	1.66	9.2539		9.77	0.003655	7.12	248.86	76.79	0.48
1		2018_025y	Design_12'	1228	1.66	9.9634	8.23	10.29	0.002125	5.8	305.34	82.43	0.37
1	1255.24	2018_025y	Design_in-kind	1228	1.66	12.025		12.06	0.000273	2.44	1006.92	380.3	0.14
1		2018_025y	Design_Exist	1228	1.66	12.2193	ļ	12.25	0.000225	2.25	1081.05	382.78	0.13
1		2018_050yr	Design_20'	1565	1.66	10.327	8.67	10.85	0.003471	7.65	409.63	315	0.48
1		2018_050yr	Design_12'	1565	1.66	11.665		11.75	0.000647	3.66	871.84	369.86	0.21
1		2018_050yr	Design_in-kind	1565	1.66	12.5319		12.57	0.000272	2.52	1201.35	386.78	0.14
1		2018_050yr 2018_100yr	Design_Exist Design_20'	1565 2000	1.66	12.8291 11.7475		12.86 11.88	0.00021	2.26 4.5	1316.88 902.44	390.58 372.35	0.12
1		2018_100yr 2018_100yr	Design_20 Design_12'	2000	1.66	12.4313		11.88	0.000900	3.35	1162.49	372.33	0.19
1		2018_100yr	Design_in-kind	2000	1.66	12.9425		12.99	0.000311	2.77	1361.23	392.03	0.15
1		2018_100yr	Design_Exist	2000	1.66	13.1666		13.21	0.00026	2.56	1449.43	394.9	0.14
1	1255.24	2018_500yr	Design_20'	2671	1.66	13.7162		13.77	0.000307	2.88	1668.46	402.64	0.15
1	1255.24	2018_500yr	Design_12'	2671	1.66	13.7162		13.77	0.000307	2.88	1668.46	402.64	0.15
1	1255.24	2018_500yr	Design_in-kind	2671	1.66	13.5691		13.62	0.000341	3.01	1609.43	400.29	0.16
1		2018_500yr	Design_Exist	2671	1.66	13.6961		13.75	0.000311	2.9	1660.39	402.21	0.15
1		-	Design_20'	1228	1.66	9.2539		9.77	0.003655	7.12	248.86	76.79	0.48
1		2018_25yr_MHHW_M	Design_12'	1228	1.66	10.1237	8.23	10.57	0.002831	6.79	346.75	303.78	0.43
1		-	Design_in-kind Design_Exist	1228 1228	1.66	12.0324 12.2339		12.07 12.26	0.000271	2.43	1009.73 1086.65	380.39 382.97	0.14
1		-	Design_20'	1228	1.66	9.2539		9.77	0.003655	7.12	248.86	76.79	0.13
1			Design_12'	1228	1.66	10.0133	8.23	10.54	0.003286	7.25	313.58	293.86	0.46
1		2018_25yr_MSL_Ma	Design_in-kind	1228	1.66	12.0366		12.07	0.00027	2.43	1011.35	380.45	0.14
1	1255.24	2018_25yr_MSL_Ma	Design_Exist	1228	1.66	12.2115		12.24	0.000227	2.25	1078.09	382.69	0.13
1	1255.24	2100_025yr_Ab1	Design_20'	1706	1.66	10.8371		11.12	0.002068	6.15	577.31	340.33	0.37
1	1255.24	2100_025yr_Ab1	Design_12'	1706	1.66	12.1227		12.19	0.000478	3.25	1044.16	381.55	0.18
1		2100_025yr_Ab1	Design_in-kind	1706	1.66	12.712		12.75	0.000275	2.57	1271.22	389.09	0.14
1		2100_025yr_Ab1	Design_Exist	1706	1.66	12.7743	-	12.81	0.000261	2.51	1295.48	389.88	0.14
1		2100_050yr_Ab1	Design_20'	1717 1717	1.66	10.8822		11.16 12.2	0.001975	6.04 3.25	592.71 1049.79	341.82 381.74	0.37
1		2100_050yr_Ab1 2100_050yr_Ab1	Design_12' Design_in-kind		1.66	12.1375 12.7633		12.2	0.000477	2.54	1049.79	381.74	0.18
1		2100_050yr_Ab1	Design_Exist	1717	1.66	12.7651	ł	12.8	0.000266	2.54	1291.21	389.76	0.14
1		2100_100yr_Ab1	Design_20'	2562	1.66	13.5379	1	13.59	0.000321	2.92	1596.95	399.85	0.15
1		2100_100yr_Ab1	Design_12'	2562	1.66	13.5376		13.59	0.000321	2.92	1596.83	399.84	0.15
1		2100_100yr_Ab1	Design_in-kind	2562	1.66	13.4931		13.55	0.000332	2.96	1579.05	399.21	0.16
1	1255.24	2100_100yr_Ab1	Design_Exist	2562	1.66	13.6113		13.66	0.000304	2.85	1626.31	400.89	0.15
1		2018_025yr(Surge	Design_20'	1228	1.66	9.9791	8.23	10.3	0.002101	5.78	306.64	82.56	0.37
1		2015_025yr(Surge	Design_12'	1228	1.66	11.5345		11.6	0.00046	3.06	823.83	365.72	0.18
1		2015_025yr(Surge	Design_in-kind	1228	1.66	12.2306		12.26	0.000222	2.24	1085.38	382.93	0.13
1		2015_025yr(Surge 2018_050yr(Surge	Design_Exist Design_20'	1228 1565	1.66	12.2254 11.1215	1	12.26 11.29	0.000224	2.24 4.82	1083.38 675.51	382.86 351.42	0.13
1		2018_050yr(Surge 2015_050yr(Surge	Design_20 Design_12'	1565	1.66	12.1571		11.29	0.001214	2.94	1057.26	381.99	0.29
1		2015_050yr(Surge	Design_12 Design_in-kind	1565	1.66	12.1371	ł	12.21	0.000388	2.94	1244.61	381.99	0.13
1		2015_050yr(Surge	Design_Exist	1565	1.66	12.8324		12.86	0.000209	2.25	1318.14	390.62	0.12
1		015_100yr(Surge)	Design_20'	2000	1.66	12.0292	t	12.13	0.000721	3.97	1008.54	380.35	0.23
1		015_100yr(Surge)	Design_12'	2000	1.66	12.6925		12.75	0.000385	3.03	1263.63	388.84	0.17
1	1255.24	015_100yr(Surge)	Design_in-kind	2000	1.66	13.0376		13.08	0.000288	2.68	1398.58	393.25	0.14
1	1255.24	015_100yr(Surge)	Design_Exist	2000	1.66	13.1646		13.2	0.00026	2.57	1448.62	394.87	0.14
L													
1		2018_002yr	Design_20'	232	1	4.792		5.3	0.006351	5.73	40.47	13.3	0.57
1		2018_002yr	Design_12'	232	1	4.8937		5.37	0.005811	5.55	41.88	14.19	0.54
1		2018_002yr 2018_002yr	Design_in-kind Design_Exist	232 232	1	5.2839 6.3998		5.66 6.58	0.004144 0.001697	4.93 3.53	47.89 78.18	16.34 45.88	0.46
		2018_002yr 2018_010yr	Design_20'	845	1	7.2412		8.36		9.27	122.07	58.46	0.72

Reach	River Sta	Profile	Plan	Q Total	Min Ch El	W.S. Elev	Crit W.S.		-	Vel Chnl		Top Width	Froude # Chl
				(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1		8 2018_010yr	Design_12'	845	1	7.2412	7.24	8.36	0.009238	9.27	122.07	58.46	0.72
1		8 2018_010yr 8 2018 010yr	Design_in-kind Design_Exist	845 845	1	11.1197		11.16 11.43	0.000279	2.34	684.25 779.82	332.43 344.16	0.14
1		8 2018_010yi	Design 20'	1228	1	8.6155		9.36	0.005344	8.26	216.13	77.74	0.12
1		8 2018_025y	Design_12'	1228	1	9.7611		10.1	0.002176	5.87	313.71	93.37	0.37
1		8 2018_025y	Design_in-kind	1228	1	12.0016		12.04	0.000256	2.39	993.58	369.05	0.13
1	1169.73	8 2018_025y	Design_Exist	1228	1	12.1992		12.23	0.000215	2.22	1067.22	376.8	0.12
1	1169.73	8 2018_050yr	Design_20'	1565	1	10.1498		10.55	0.002586	6.61	381.61	292.15	0.41
1	1169.73	8 2018_050yr	Design_12'	1565	1	11.6118		11.7	0.000593	3.54	852.87	352.87	0.2
1		8 2018_050yr	Design_in-kind	1565	1	12.5059		12.55	0.00027	2.53	1184.61	388.77	0.14
1	1169.73	_ ,	Design_Exist	1565 2000	1	12.8084		12.84 11.79	0.000212	2.29	1304 870.03	400.55 354.88	0.12
1		8 2018_100yr 8 2018_100yr	Design_20' Design 12'	2000	1	12.3837		11.79	0.000925	3.38	1137.39	354.88	0.23
1		8 2018_100yr	Design_12 Design_in-kind	2000	1			12.40	0.000407	2.83	1345.2	404.83	0.15
1		8 2018_100yr	Design_Exist	2000	1			13.18	0.000269	2.63	1438.98	414.09	0.14
1	1169.73	8 2018_500yr	Design_20'	2671	1	13.6829		13.74	0.000328	3	1669.82	435.96	0.16
1	1169.73	8 2018_500yr	Design_12'	2671	1	13.6829		13.74	0.000328	3	1669.81	435.96	0.16
1	1169.73	8 2018_500yr	Design_in-kind	2671	1	13.5323		13.59	0.000363	3.13	1604.57	429.85	0.16
1	1169.73	8 2018_500yr	Design_Exist	2671	1	13.6624		13.72	0.000332	3.01	1660.87	435.21	0.16
1		8 2018_25yr_MHHW_N		1228	1			9.36	0.005344	8.26	216.13	77.74	0.57
1		8 2018_25yr_MHHW_N	Design_12'	1228	1	10.0469		10.33	0.00175	5.39	351.71	289.23	0.34
1		8 2018_25yr_MHHW_N	Design_in-kind	1228 1228	1			12.05 12.25	0.000254	2.38	996.36 1072.82	369.32 377.39	0.13
1		8 2018_25yr_MHHW_N 8 2018_25yr_MSL_Ma	Design_Exist Design_20'	1228	1			9.36	0.000212	8.26	216.13	377.39	0.12
1		8 2018_25yr_MSL_Ma	Design 12'	1228	1	9.8204		10.15	0.003344	5.78	319.39	98.18	0.37
1		8 2018_25yr_MSL_Ma	Design_in-kind	1228	1	12.0135		12.05	0.000253	2.37	997.96	369.47	0.13
1		8 2018_25yr_MSL_Ma	Design_Exist	1228	1	12.1913		12.22	0.000216	2.22	1064.26	376.42	0.12
1	1169.73	8 2100_025yr_Ab1	Design_20'	1706	1	10.6882		10.95	0.001778	5.72	544.67	314.47	0.34
1	1169.73	8 2100_025yr_Ab1	Design_12'	1706	1	12.0792		12.15	0.000461	3.22	1022.32	371.84	0.18
1	-	8 2100_025yr_Ab1	Design_in-kind	1706	1	12.6849		12.73	0.000277	2.6	1254.82	395.7	0.14
1		8 2100_025yr_Ab1	Design_Exist	1706	1	12.7484		12.79	0.000264	2.54	1280.05	398.16	0.14
1		_ / _	Design_20'	1717	1	10.7379		10.99	0.00171	5.63	560.35	316.56	0.34
1		8 2100_050yr_Ab1	Design_12'	1717	1	12.0939		12.16	0.000461	3.22	1027.78	372.37	0.18
1		8 2100_050yr_Ab1 8 2100_050yr_Ab1	Design_in-kind Design_Exist	1717 1717	1	12.7369		12.78 12.78	0.00027	2.57 2.57	1275.46 1276.18	397.72 397.79	0.14
1		8 2100_030yr_Ab1 8 2100_100yr_Ab1	Design_Exist Design_20'	2562	1	13.5034		12.78	0.000269	3.02	1592.19	428.65	0.14
1		8 2100_100yr_Ab1	Design_20 Design_12'	2562	1	13.5034		13.56	0.000341	3.02	1592.05	428.64	0.16
1		8 2100_100yr_Ab1	Design_in-kind	2562	1	13.4575		13.51	0.000352	3.06	1572.54	426.74	0.16
1		8 2100_100yr_Ab1	Design_Exist	2562	1			13.63	0.000324	2.96	1624.48	431.77	0.15
1	1169.73	8 2018_025yr(Surge	Design_20'	1228	1	9.9189		10.23	0.001942	5.62	329.24	100.92	0.35
1	1169.73	8 2015_025yr(Surge	Design_12'	1228	1	11.499		11.56	0.000406	2.9	813.33	348.18	0.17
1	1169.73	8 2015_025yr(Surge	Design_in-kind	1228	1	12.2107		12.24	0.000213	2.21	1071.54	377.26	0.12
1		8 2015_025yr(Surge	Design_Exist	1228	1			12.24	0.000214	2.21	1069.55	377.05	0.12
1			Design_20'	1565	1	11.0316		11.18	0.001048	4.51	655.12	328.77	0.27
1	1169.73		Design_12'	1565	1	12.1219		12.18	0.000373	2.9	1038.24	373.38	0.16
1		8 2015_050yr(Surge	Design_in-kind Design_Exist	1565 1565	1	12.6196		12.66	0.000246	2.43 2.28	1229.1 1305.31	393.17	0.13
1	1	8 2015_050yr(Surge 8 015_100yr(Surge)	Design_20'	2000	1	-		12.84 12.06		3.94	978.99	400.68 367.41	0.12
1		8 015_100yr(Surge) 8 015_100yr(Surge)	Design_20 Design_12'	2000	1			12.00	0.000391	3.94	1242.61	394.5	0.22
1		8 015_100yr(Surge)	Design_12 Design_in-kind	2000	1	13.008		13.05	0.000297	2.74	1384.79	408.76	0.15
1		8 015_100yr(Surge)	Design_Exist	2000	1	13.1377		13.18	0.00027	2.63	1438.12	414.01	0.14
1		4 2018_002yr	Design_20'	232	1.11	4.9233		5		2.19	105.71	34.28	0.22
1	1	4 2018_002yr	Design_12'	232	1.11	5.0219		5.09	0.000657	2.13	109.09	34.28	0.21
1		4 2018_002yr	Design_in-kind	232	1.11	5.3909		5.45	0.000495	1.9	122.32	36.82	0.18
1		4 2018_002yr	Design_Exist	232	1.11	6.4568		6.49	0.000206	1.43	164.78	63.41	0.12
1		4 2018_010yr 4 2018_010yr	Design_20' Design 12'	845 845	1.11	1	4.49 4.49	7.33 7.59	0.001688	4.44 4.05	213.79 246.73	96.96 109.84	0.36
1		4 2018_010yr 4 2018_010yr	Design_12 Design in-kind	845	1.11	11.1206	4.49	7.59	0.001289	4.05	1019.03	319.03	0.32
1	1	4 2018_010yr	Design_III-kind Design_Exist	845	1.11			11.14	0.000073	1.39	1109.79	319.03	0.08
1		4 2018_025y	Design_20'	1228	1.11			9.01	0.000828	3.84	452.07	168.27	0.26
1		4 2018_025y	Design_12'	1228	1.11		1	9.95	0.000389	2.9	648.29	212.68	0.18
1		4 2018_025y	Design_in-kind		1.11			12.02	0.000084	1.59	1310.39	346.04	0.09
1	1065.80	4 2018_025y	Design_Exist	1228	1.11	12.1942		12.21	0.000074	1.51	1379.68	356.49	0.08
1	1065.80	4 2018_050yr	Design_20'	1565	1.11	10.2402		10.37	0.000496	3.38	750.14	291.7	0.21
1	1065.80	4 2018_050yr	Design_12'	1565	1.11	11.6061		11.65	0.000177	2.24	1177.52	333.91	0.13
1		4 2018_050yr	Design_in-kind		1.11			12.53	0.0001	1.79	1490.35	372.44	0.1
1		4 2018_050yr	Design_Exist	1565	1.11			12.82	0.000083	1.67	1605.53	387.46	0.09
1		4 2018_100yr	Design_20'	2000	1.11	11.6501		11.72	0.00028	2.83	1192.24	335.29	0.16
1		4 2018_100yr	Design_12'	2000	1.11	12.3702		12.42	0.000176	2.36	1443.26	365.88	0.13
1		4 2018_100yr	Design_in-kind	2000	1.11	12.8987		12.94	0.000128	2.08	1643.68	392.08	0.11
1	1065.80	4 2018_100yr	Design_Exist	2000	1.11	13.1287		13.16	0.000112	1.98	1735.09	402.93	0.11

Reach	River Sta	Profile	Plan	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			-	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1	1065.804	2018_500yr	Design_20'	2671	1.11	13.6671		13.71	0.000148	2.35	1958.88	428.33	0.12
1	1065.804	2018_500yr	Design_12'	2671	1.11	13.6671		13.71	0.000148	2.35	1958.88	428.33	0.12
1		2018_500yr	Design_in-kind	2671	1.11	13.5154		13.56	0.000161	2.42	1894.42	421.17	0.13
1		2018_500yr	Design_Exist	2671	1.11	13.6465		13.69	0.00015	2.36	1950.04	427.36	0.12
1		2018_25yr_MHHW_M	_	1228	1.11	8.8213		9.01	0.000828	3.84	452.08	168.27	0.26
1	1065.804 1065.804	-	Design_12' Design_in-kind	1228 1228	1.11	10.1108 12.0045		10.2 12.03	0.00034	2.77 1.58	712.64 1312.99	287.62 346.37	0.17
1	1065.804		Design_III-killd Design_Exist	1228	1.11	12.2091		12.03	0.000073	1.58	1312.99	340.37	0.09
1		2018 25yr MSL Ma	Design 20'	1228	1.11	8.8213		9.01	0.000828	3.84	452.07	168.27	0.26
1		2018_25yr_MSL_Ma	Design_12'	1228	1.11	9.9074		10	0.000373	2.85	660.47	215.11	0.18
1	1065.804	2018_25yr_MSL_Ma	Design_in-kind	1228	1.11	12.0088		12.03	0.000083	1.58	1314.49	346.6	0.09
1	1065.804	2018_25yr_MSL_Ma	Design_Exist	1228	1.11	12.1864		12.21	0.000074	1.51	1376.89	356.08	0.08
1	1065.804	2100_025yr_Ab1	Design_20'	1706	1.11	10.7189		10.82	0.000403	3.17	893.36	306.65	0.19
1	1	2100_025yr_Ab1	Design_12'	1706	1.11	12.0698		12.11	0.000154	2.16	1335.74	349.85	0.12
1		2100_025yr_Ab1	Design_in-kind	1706	1.11	12.6756		12.71	0.000107	1.87	1557.37	381.46	0.1
1		2100_025yr_Ab1 2100_050yr_Ab1	Design_Exist Design_20'	1706 1717	1.11	12.7393 10.7646		12.77 10.87	0.000103	1.84 3.14	1581.77 907.43	384.56 308.05	0.1
1		2100_050yr_Ab1	Design_20 Design_12'	1717	1.11	12.0843		10.87	0.000394	2.17	1340.82	350.63	0.19
1		2100_050yr_Ab1	Design_in-kind	1717	1.11	12.7276		12.76	0.000105	1.86	1577.28	384.01	0.1
1		2100_050yr_Ab1	Design_Exist	1717	1.11	12.7294		12.76	0.000105	1.86	1577.98	384.09	0.1
1	1065.804	2100_100yr_Ab1	Design_20'	2562	1.11	13.4877		13.53	0.000151	2.34	1882.78	419.87	0.12
1	1065.804	2100_100yr_Ab1	Design_12'	2562	1.11	13.4874		13.53	0.000151	2.34	1882.64	419.85	0.12
1		2100_100yr_Ab1	Design_in-kind	2562	1.11	13.4414		13.49	0.000155	2.36	1863.41	417.68	0.12
1		2100_100yr_Ab1	Design_Exist	2562	1.11	13.5632		13.61	0.000145	2.3	1914.64	423.43	0.12
1		2018_025yr(Surge	Design_20'	1228	1.11	9.9915		10.09	0.000375	2.88	678.79	255.55	0.18
1		2015_025yr(Surge 2015_025yr(Surge	Design_12'	1228 1228	1.11	11.4963 12.2057		11.53 12.23	0.000118	1.82	1141.03 1383.77	330.46 357.11	0.11
1		2015_025yr(Surge	Design_in-kind Design_Exist	1228	1.11	12.2037		12.23	0.000074	1.51	1383.77	356.82	0.08
1		2013_025yr(Surge 2018_050yr(Surge	Design_20'	1565	1.11	11.0377		11.11	0.000266	2.64	992.68	316.46	0.16
1		2015_050yr(Surge	Design_12'	1565	1.11	12.114		12.15	0.000126	1.96	1351.23	352.21	0.11
1	1065.804	2015_050yr(Surge	Design_in-kind	1565	1.11	12.6117		12.64	0.000093	1.74	1533.11	378.22	0.1
1	1065.804	2015_050yr(Surge	Design_Exist	1565	1.11	12.8041		12.83	0.000083	1.67	1606.8	387.62	0.09
1		015_100yr(Surge)	Design_20'	2000	1.11	11.9495		12.01	0.000229	2.62	1294.01	344.57	0.15
1		015_100yr(Surge)	Design_12'	2000	1.11	12.6411		12.68	0.00015	2.21	1544.23	379.71	0.12
1		015_100yr(Surge)	Design_in-kind	2000	1.11	12.9964		13.03	0.000121	2.04	1682.21	396.69	0.11
1	1065.804	015_100yr(Surge)	Design_Exist	2000	1.11	13.1266		13.16	0.000113	1.98	1734.25	402.83	0.11
1	950 2366	2018_002yr	Design_20'	232	1.6	4.9548		4.96	0.000056	0.65	359.38	116.19	0.06
1		2018_002yr	Design_12'	232	1.6	5.052		5.06	0.000051	0.63	370.68	116.34	0.06
1		2018_002yr	Design_in-kind	232	1.6	5.4158		5.42	0.000036	0.56	413.1	116.86	0.05
1	950.2366	2018_002yr	Design_Exist	232	1.6	6.4723		6.48	0.000015	0.43	545.75	147.09	0.04
1	950.2366	2018_010yr	Design_20'	845	1.6	7.1863		7.21	0.000121	1.34	663.77	179.93	0.1
1	950.2366	2018_010yr	Design_12'	845	1.6	7.475		7.5	0.0001	1.26	717.19	190.15	0.09
1		2018_010yr	Design_in-kind	845	1.6	11.127		11.13	0.000013	0.64	1708.77	349.67	0.04
1	950.2366	2018_010yr	Design_Exist	845	1.6	11.4062		11.41	0.000012	0.61	1807.97	361.49	0.04
1		2018_025y	Design_20'	1228	1.6	8.909		8.94	0.000088	1.38	1034.05	252.88	0.09
1	1	2018_025y 2018_025y	Design_12' Design_in-kind	1228 1228	1.6	9.8912 12.0028		9.91 12.01	0.000052	1.16 0.81	1304.93 2029.12	296.1 423.07	0.07
1		2018_025y 2018_025y	Design_III-kind Design Exist	1228	1.6			12.01	0.000019	0.81	2029.12	423.07	0.03
1		2018_050yr	Design_20'	1565	1.6			10.32	0.000069	1.37	1429.75	320.2	0.08
1		2018_050yr	Design_12'	1565	1.6			11.64	0.000036	1.09	1885.99	368.02	0.06
1		2018_050yr	Design_in-kind	1565	1.6	12.5041		12.52	0.000024	0.96	2244.97	438	0.05
1		2018_050yr	Design_Exist	1565	1.6			12.82	0.000021	0.91	2378.45	446.93	0.05
1		2018_100yr	Design_20'	2000	1.6			11.7	0.000057	1.39	1905.13	369.57	0.08
1		2018_100yr	Design_12'	2000	1.6			12.4	0.000042	1.25	2191.6	434.36	0.07
1		2018_100yr	Design_in-kind	2000	1.6	12.9062		12.92	0.000033	1.15	2423.5	449.92	0.06
1		2018_100yr 2018_500yr	Design_Exist Design_20'	2000 2671	1.6	13.1348 13.6742		13.15 13.7	0.00003	1.11	2527.13 2777.97	456.77 473.43	0.06
1		2018_500yr 2018_500yr	Design_20 Design_12'	2671	1.6	13.6742		13.7	0.000043	1.37	2777.97	473.43	0.07
1		2018_500yr	Design_12 Design_in-kind	2671	1.6			13.55	0.000045	1.57	2706.93	468.61	0.07
1		2018_500yr	Design_Exist	2671	1.6			13.68	0.000044	1.37	2768.24	472.78	0.07
1		2018_25yr_MHHW_M	-	1228	1.6			8.94	0.000088	1.38	1034.05	252.88	0.09
1		2018_25yr_MHHW_M		1228	1.6	10.1476		10.16	0.000046	1.11	1383.54	315.34	0.07
1	950.2366	2018_25yr_MHHW_M	Design_in-kind	1228	1.6			12.02	0.000019	0.81	2032.29	423.3	0.05
1	950.2366	2018_25yr_MHHW_M	Design_Exist	1228	1.6			12.22	0.000017	0.79	2119.16		0.04
1			Design_20'	1228	1.6			8.94	0.000088	1.38	1034.05	252.88	0.09
1		-	Design_12'	1228	1.6			9.96	0.00005	1.14	1321.36		0.07
1			Design_in-kind	1228	1.6			12.02	0.000019	0.81	2034.11	423.43	0.05
1		2018_25yr_MSL_Ma		1228	1.6			12.2	0.000017	0.79	2109.46		0.04
1		2100_025yr_Ab1 2100_025yr_Ab1	Design_20' Design_12'	1706 1706	1.6			10.78 12.1	0.000064	1.38	1582.25 2062.09	336.02 425.41	0.08
1		2100_025yr_Ab1 2100_025yr_Ab1	Design_12 Design_in-kind		1.6			12.1	0.000027	1.12	2323.39		0.05
1	555.2500	-100_02091_AD1	Sesign_III-Killu	1700	1.0	12.0021		12.09	0.000027	1.02	2020.09	J.2/	0.05

Reach	F	River Sta	Profile	Plan	-		W.S. Elev		E.G. Elev (ft)	-	Vel Chnl		-	Froude # Chl
		050 2266	2100_025yr_Ab1	Design_Exist	(cfs) 1706	(ft) 1.6	(ft) 12.7454	(ft)	12.76	(ft/ft) 0.000026	(ft/s) 1.01	(sq ft) 2351.54	(ft) 445.14	0.05
	-		2100_02391_AD1 2100_050yr_Ab1	Design_20'	1700	1.6	-		12.70	0.000020	1.01	1597.25	337.58	0.03
-	1		2100_050yr_Ab1 2100_050yr_Ab1	Design_20 Design_12'	1717	1.6	10.8024		10.85	0.000035	1.38	2068.27	425.84	0.06
	1		2100_050yr_Ab1	Design_12 Design_in-kind	1717	1.6			12.11	0.000027	1.12	2346.41	444.8	0.05
	1		2100_050yr_Ab1	Design_III-killd	1717	1.6	12.7359		12.75	0.000027	1.01	2340.41	444.86	0.05
	1		2100_050yr_Ab1	Design_20'	2562	1.6	13.4953		13.52	0.000027	1.01	2693.75	467.74	0.07
	_		2100_100yr_Ab1	Design_20 Design_12'	2562	1.6			13.52	0.000043	1.35	2693.6	467.73	0.07
	-		2100_100yr_Ab1	Design_12 Design_in-kind	2562	1.6			13.32	0.000043	1.35	2672.28	466.34	0.07
	1		2100_100yr_Ab1	Design_In-kind	2562	1.6			13.59	0.000044	1.33	2728.96	470.12	0.07
	1		2018_025yr(Surge	Design_20'	1228	1.6			10.05	0.000042	1.55	1346.2	311.49	0.07
	_		2018_025yr(Surge	Design_20 Design_12'	1228	1.6			11.52	0.000049	0.87	1844.12	364.61	0.07
	_		2015_025yr(Surge	Design_12 Design_in-kind	1228	1.6			12.22	0.000023	0.07	2117.71	429.28	0.04
	_		2015_025yr(Surge	-	1228	1.6			12.22	0.000017	0.79		429.28	0.04
1	_		2013_023yr(Surge 2018_050yr(Surge	Design_Exist Design_20'	1228	1.6			12.21	0.000017	1.2	1685.9	347.4	0.04
	_		2015_050yr(Surge	Design_20 Design_12'	1565	1.6			12.14	0.000029	1.2	2080.04	426.67	0.06
1	_		2015_050yr(Surge	Design_12 Design_in-kind	1565	1.6			12.14	0.000023	0.94	2294.82	441.36	0.05
1	_		2015_050yr(Surge	Design_III-killd	1565	1.6			12.03	0.000023	0.94	2294.82	447.03	0.05
1	_		015_100yr(Surge)	-	2000	1.6			12.82	0.000021	1.32	2379.92	378.32	0.03
	-			Design_20'										
1	_		015_100yr(Surge)	Design_12'	2000	1.6	12.6503		12.67	0.000037	1.2	2309.32	442.33	0.06
1	-		015_100yr(Surge)	Design_in-kind Design Exist	2000 2000	1.6	13.0033 13.1328		13.02 13.15	0.000032	1.13	2467.33 2526.18	452.8 456.71	0.06
	-	9 0.2306	015_100yr(Surge)	DesigII_EXIST	2000	1.6	13.1328		13.15	0.00003	1.11	2320.18	430./1	0.06
<u> </u>	+	002 500 4	2019 002	Decian 201		1.22	4.052		4.00	0.000.47	0.55	422.07	154.00	0.00
1	_		2018_002yr	Design_20'	232	1.22	4.953		4.96	0.000047	0.55	422.07	154.09	0.06
1	-		2018_002yr	Design_12'	232	1.22	5.0505		5.05	0.000042	0.53	437.09	154.23	0.06
1	-		2018_002yr	Design_in-kind	232	1.22	5.4149		5.42	0.000028	0.47	493.4	154.73	0.05
1	-		2018_002yr	Design_Exist	232 845	1.22	6.4722 7.1864		6.47 7.21	0.000011	0.35	657.87 779.41	156.72 190.7	0.03
	1		2018_010yr	Design_20'										
	1		2018_010yr	Design_12'	845	1.22	7.4753		7.49	0.000072	1.03	836.65	205.47	0.08
	1		2018_010yr	Design_in-kind	845	1.22	11.1269		11.13	0.000011	0.56	1774.46	352.53	0.03
1	_		2018_010yr	Design_Exist	845 1228	1.22	11.4061		11.41 8.93	0.000009	0.54	1874.11	361 227.39	0.03
	_		2018_025y	Design_20'		1.22	8.9099			0.000065	1.15	1153.76		
1	_		2018_025y	Design_12'	1228 1228	1.22	9.8915	-	9.91 12.01	0.000039	0.98	1380.48	238.68 457.21	0.06
1	_		2018_025y	Design_in-kind		1.22	12.0025 12.1989		12.01	0.000015	0.72	2094.76 2184.93	457.21	0.04
	+		2018_025y	Design_Exist	1228									
1	-		2018_050yr	Design_20'	1565	1.22	10.2931	-	10.31	0.000053	1.18	1497.11	307.88	0.07
1	_		2018_050yr	Design_12'	1565	1.22	11.6196		11.63	0.000029	0.97	1951.88	367.32	0.06
1	-		2018_050yr	Design_in-kind	1565	1.22	12.5037		12.51	0.00002	0.86	2326.19	466.3	0.05
1	_		2018_050yr	Design_Exist	1565	1.22	12.8054		12.81	0.000018	0.82	2467.71	471.77	0.04
1	_		2018_100yr	Design_20'	2000	1.22	11.6713		11.69	0.000046	1.23	1970.88	368.7	0.07
1	-		2018_100yr	Design_12'	2000	1.22	12.3811		12.4	0.000035	1.12	2269.15	464.08	0.06
1	_		2018_100yr	Design_in-kind	2000	1.22	12.9056		12.92	0.000028	1.03	2515.08	473.59	0.06
1	_		2018_100yr	Design_Exist	2000	1.22	13.1343		13.15	0.000025	1	2623.84	477.77	0.05
1	-		2018_500yr	Design_20'	2671	1.22	13.6734		13.69	0.000036	1.23	2884.16	487.88	0.06
1	_		2018_500yr	Design_12'	2671	1.22	13.6734		13.69	0.000036	1.23	2884.15	487.88	0.06
1	_		2018_500yr	Design_in-kind	2671	1.22	13.5226		13.54	0.000038	1.26	2810.76	485.05	0.07
1	1		2018_500yr	Design_Exist	2671	1.22	13.6529		13.67	0.000036	1.24	2874.13	487.5	0.06
1	1		2018_25yr_MHHW_M		1228	1.22	8.9099		8.93	0.000065	1.15		227.39	0.08
1	-		2018_25yr_MHHW_M	-	1228	1.22	10.1477		10.16	0.000035	0.95		299.28	0.06
1	-		2018_25yr_MHHW_M		1228	1.22	12.01		12.02	0.000015	0.72	2098.18	457.34	0.04
1	-		2018_25yr_MHHW_M		1228	1.22	12.2137		12.22	0.000014	0.7	2191.75	461.04	0.04
1	-		2018_25yr_MSL_Ma		1228	1.22	8.9099		8.93	0.000065	1.15		227.39	0.08
1	1		2018_25yr_MSL_Ma		1228	1.22	9.9467		9.96	0.000038	0.98		273.4	0.06
1	1		-	Design_in-kind	1228	1.22	12.0143		12.02	0.000015	0.72	2100.15	457.42	0.04
1	1		-	Design_Exist	1228	1.22	12.1911		12.2	0.000014	0.7	2181.33	460.63	0.04
1	1		2100_025yr_Ab1	Design_20'	1706	1.22	10.7575		10.78	0.000051	1.2	1646.83	336.77	0.07
1	1		2100_025yr_Ab1	Design_12'	1706	1.22	12.08		12.09	0.000029	1	2130.24	458.61	0.06
1	1		2100_025yr_Ab1	Design_in-kind	1706	1.22	12.6816		12.69	0.000022	0.91	2409.44	469.53	0.05
1	1		2100_025yr_Ab1	Design_Exist	1706	1.22		<u> </u>	12.76	0.000022	0.9		470.68	0.05
1	1		2100_050yr_Ab1	Design_20'	1717	1.22			10.82	0.00005	1.2	1661.88	339.31	0.07
1	1		2100_050yr_Ab1	Design_12'	1717	1.22	12.0945		12.11	0.000029	1	2136.9	458.88	0.06
1	_		2100_050yr_Ab1	Design_in-kind	1717	1.22	12.7334		12.74	0.000022	0.91	2433.81	470.47	0.05
1	-		2100_050yr_Ab1	Design_Exist	1717	1.22	12.7353		12.75	0.000022	0.91	2434.66	470.5	0.05
1	_		2100_100yr_Ab1	Design_20'	2562	1.22	13.4945		13.51	0.000036	1.21	2797.15	484.53	0.06
1	_		2100_100yr_Ab1	Design_12'	2562	1.22	13.4941		13.51	0.000036	1.21	2796.99	484.52	0.06
1	-		2100_100yr_Ab1	Design_in-kind	2562	1.22			13.47	0.000036	1.22		483.66	0.06
1	_		2100_100yr_Ab1	Design_Exist	2562	1.22	13.5696		13.59	0.000035	1.2		485.94	0.06
1	_		2018_025yr(Surge	Design_20'	1228	1.22	10.0286		10.04	0.000037	0.97	1417.76	291.83	0.06
1	-		2015_025yr(Surge	Design_12'	1228	1.22	11.5055		11.51	0.000019	0.77	1910.14	364.13	0.04
1	_		2015_025yr(Surge	Design_in-kind	1228	1.22	12.2104		12.22	0.000014	0.7	2190.19	460.98	0.04
1	_		2015_025yr(Surge	Design_Exist	1228	1.22	12.2051		12.21	0.000014	0.7	2187.77	460.89	0.04
1	-		2018_050yr(Surge	Design_20'	1565	1.22	11.061	ļ	11.08	0.000037	1.05		350.44	0.06
	1	892.5984	2015_050yr(Surge	Design_12'	1565	1.22	12.1222		12.13	0.000024	0.91	2149.61	459.38	0.05

Reach	F	River Sta	Profile	Plan	Q Total (cfs)	Min Ch El (ft)	W.S. Elev (ft)	Crit W.S. (ft)	E.G. Elev (ft)	E.G. Slope (ft/ft)	Vel Chnl (ft/s)	Flow Area (sq ft)	Top Width (ft)	Froude # Chl
1	1	892.5984	2015_050yr(Surge	Design_in-kind	1565	1.22	12.6171	(-/	12.63	0.000019	0.84	2379.19	468.36	0.05
1	1		2015_050yr(Surge	Design_Exist	1565	1.22	12.8087		12.82	0.000018	0.82	2469.25	471.83	0.04
1	1	892.5984	015_100yr(Surge)	Design_20'	2000	1.22	11.9654		11.98	0.000041	1.18	2080.48	376.36	0.07
1	1	892.5984	015_100yr(Surge)	Design_12'	2000	1.22	12.6497		12.67	0.000031	1.07	2394.46	468.95	0.06
1	1	892.5984	015_100yr(Surge)	Design_in-kind	2000	1.22	13.0028		13.02	0.000027	1.02	2561.17	475.35	0.05
1	1	892.5984	015_100yr(Surge)	Design_Exist	2000	1.22	13.1322		13.15	0.000025	1	2622.85	477.73	0.05
1	1	816.2677	2018_002yr	Design_20'	232	1.23	4.9512		4.95	0.00003	0.44	522.64	185.84	0.05
1	1	816.2677	2018_002yr	Design_12'	232	1.23	5.0489		5.05	0.000027	0.43	540.81	186.11	0.04
1	1	816.2677	2018_002yr	Design_in-kind	232	1.23	5.414		5.42	0.000018	0.38	608.94	187.12	0.04
1	1	816.2677	2018_002yr	Design_Exist	232	1.23	6.472		6.47	0.000007	0.29	808.22	190.56	0.02
1	1	816.2677	2018_010yr	Design_20'	845	1.23	7.1853		7.2	0.000057	0.89	956.05	225.69	0.07
1	1	816.2677	2018_010yr	Design_12'	845	1.23	7.4746		7.49	0.000047	0.84	1022.42	233.07	0.07
1	1	816.2677	2018_010yr	Design_in-kind	845	1.23	11.1272		11.13	0.000007	0.46	2110.23	386.77	0.03
1	1	816.2677	2018_010yr	Design_Exist	845	1.23	11.4064		11.41	0.000006	0.45	2220.56	403.63	0.03
1	1	816.2677	2018_025y	Design_20'	1228	1.23	8.9103		8.92	0.000043	0.94	1387.42	278.46	0.06
1	1	816.2677	2018_025y	Design_12'	1228	1.23	9.8922		9.9	0.000026	0.81	1677.28	313.63	0.05
1	1	816.2677	2018_025y	Design_in-kind	1228	1.23	12.0031		12.01	0.00001	0.6	2478.17	481.56	0.03
1	1	816.2677	2018_025y	Design_Exist	1228	1.23	12.1995		12.2	0.00001	0.58	2573.18	485.96	0.03
1	1	816.2677	2018_050yr	Design_20'	1565	1.23	10.2944		10.31	0.000035	0.97	1808.9	337.93	0.06
1	1	816.2677	2018_050yr	Design_12'	1565	1.23	11.6206		11.63	0.00002	0.8	2308.59	423.42	0.05
1	1	816.2677	2018_050yr	Design_in-kind	1565	1.23	12.5046		12.51	0.000014	0.71	2722.46	492.78	0.04
1	1	816.2677	2018_050yr	Design_Exist	1565	1.23	12.8062		12.81	0.000012	0.68	2872.11	499.53	0.04
1	1	816.2677	2018_100yr	Design_20'	2000	1.23	11.6728		11.69	0.000032	1.02	2330.84	428.79	0.06
1	1	816.2677	2018_100yr	Design_12'	2000	1.23	12.3825		12.39	0.000024	0.92	2662.49	490.05	0.05
1	1	816.2677	2018_100yr	Design_in-kind	2000	1.23	12.9069		12.92	0.000019	0.85	2922.52	501.79	0.05
1	1	816.2677	2018_100yr	Design_Exist	2000	1.23	13.1354		13.14	0.000017	0.83	3037.8	506.92	0.04
1	1	816.2677	2018_500yr	Design_20'	2671	1.23	13.6751		13.69	0.000025	1.03	3314.66	519.03	0.05
1	1	816.2677	2018_500yr	Design_12'	2671	1.23	13.6751		13.69	0.000025	1.03	3314.65	519.03	0.05
1	1	816.2677	2018_500yr	Design_in-kind	2671	1.23	13.5244		13.54	0.000026	1.05	3236.65	515.65	0.06
1	1	816.2677	2018_500yr	Design_Exist	2671	1.23	13.6546		13.67	0.000025	1.03	3304	518.57	0.05
1	1	816.2677	2018_25yr_MHHW_M	Design_20'	1228	1.23	8.9103		8.92	0.000043	0.94	1387.43	278.46	0.06
1	1	816.2677	2018_25yr_MHHW_M	Design_12'	1228	1.23	10.1485		10.16	0.000023	0.78	1760.07	331.67	0.05
1	1	816.2677	2018_25yr_MHHW_M	Design_in-kind	1228	1.23	12.0106		12.02	0.00001	0.6	2481.77	481.73	0.03
1	1	816.2677	2018_25yr_MHHW_M	Design_Exist	1228	1.23	12.2143		12.22	0.00001	0.58	2580.37	486.29	0.03
1	1	816.2677	2018_25yr_MSL_Ma	Design_20'	1228	1.23	8.9103		8.92	0.000043	0.94	1387.42	278.46	0.06
1	1	816.2677	2018_25yr_MSL_Ma	Design_12'	1228	1.23	9.9475		9.96	0.000026	0.8	1694.68	315.54	0.05
1	1	816.2677	2018_25yr_MSL_Ma	Design_in-kind	1228	1.23	12.0149		12.02	0.00001	0.6	2483.84	481.82	0.03
1	1	816.2677	2018_25yr_MSL_Ma	Design_Exist	1228	1.23	12.1917		12.2	0.00001	0.58	2569.39	485.78	0.03
1	1	816.2677	2100_025yr_Ab1	Design_20'	1706	1.23	10.759		10.77	0.000034	0.99	1971.89	364.67	0.06
1	1	816.2677	2100_025yr_Ab1	Design_12'	1706	1.23	12.0811		12.09	0.000019	0.82	2515.8	483.31	0.05
1	_		2100_025yr_Ab1	Design_in-kind	1706	1.23	12.6826		12.69	0.000015	0.75	2810.54	496.77	0.04
1	_		2100_025yr_Ab1	Design_Exist	1706	1.23	12.7459		12.75	0.000015	0.75	2842.06	498.18	0.04
1	_		2100_050yr_Ab1	Design_20'	1717	1.23	10.8035		10.82	0.000034	0.99	1988.18	367.34	0.06
1	_		2100_050yr_Ab1	Design_12'	1717	1.23	12.0956		12.11	0.00002	0.83	2522.83	483.63	0.05
1	1		2100_050yr_Ab1	Design_in-kind	1717	1.23	12.7344		12.74	0.000015	0.75	2836.32	497.93	0.04
1	_		2100_050yr_Ab1	Design_Exist	1717	1.23	12.7362		12.74		0.75	2837.22	497.97	0.04
1	-		2100_100yr_Ab1	Design_20'	2562	1.23	13.4961		13.51	0.000025	1.01	3222.11	515.02	0.05
1	-		2100_100yr_Ab1	Design_12'	2562	1.23	13.4958		13.51	0.000025	1.01	3221.95	515.01	0.05
1	-		2100_100yr_Ab1	Design_in-kind	2562	1.23	13.4502		13.46	0.000025	1.02	3198.47	513.99	0.05
1	-		2100_100yr_Ab1	Design_Exist	2562	1.23	13.5712		13.58	0.000024	0.70	3260.84	516.7	0.05
1	4		2018_025yr(Surge	Design_20'	1228	1.23	10.0294		10.04	0.000025	0.79	1720.89	326.22	0.05
1	1		2015_025yr(Surge	Design_12'	1228	1.23	11.5061		11.51	0.000013	0.64	2261.13	409.99	0.04
1	1		2015_025yr(Surge	Design_in-kind	1228 1228	1.23	12.2109 12.2057	ł	12.22	0.00001	0.58	2578.73 2576.18	486.21 486.09	0.03
1	1		2015_025yr(Surge 2018_050yr(Surge	Design_Exist	1228	1.23	12.2057		12.21 11.07	0.00001	0.58	2576.18	486.09 382.87	0.03
1	_			Design_20'				ł						
1	1		2015_050yr(Surge 2015_050yr(Surge	Design_12'	1565 1565	1.23	12.1231 12.6179	ł	12.13 12.62	0.000016	0.75	2536.13 2778.46	484.25 495.32	0.04
	1		2015_050yr(Surge 2015_050yr(Surge	Design_in-kind Design_Exist	1565	1.23	12.8095		12.62	0.000013	0.7	2778.46	495.32	0.04
	1		015_100yr(Surge)	Design_20'	2000	1.23	11.9669		12.82	0.000012	0.88	2461.36	499.81	0.04
1	1		015_100yr(Surge)	Design_20 Design_12'	2000	1.23	12.651		11.98	0.000028	0.98	2461.36	496.06	0.06
1	1		015_100yr(Surge)	Design_12 Design_in-kind	2000	1.23	13.004		12.00	0.000021	0.89	2971.35	503.96	0.05
	-		015_100yr(Surge)	Design_III-kind	2000	1.23	13.1334		13.14	0.000017	0.83	3036.75	505.90	0.04
	╉	010.20//		co.gii_LAiot	2000	1.23	13.1334	<u> </u>	13.14	5.000017	0.05	5656.75	500.07	0.04
1	1	742.3986	2018_002yr	Design_20'	232	0.93	4.9462	<u> </u>	4.95	0.000044	0.58	402.92	128.34	0.06
1	_		2018_002yr 2018_002yr	Design_20 Design_12'	232	0.93	5.0443		4.95	0.000044	0.58	402.92	128.54	0.05
1	_		2018_002yr 2018_002yr	Design_12 Design_in-kind		0.93	5.4105		5.41	0.000028	0.50	462.75	128.53	0.05
1	_		2018_002yr	Design_In-kind	232	0.93	6.4702		6.47	0.000012	0.38	603.02	135.08	0.03
1	-		2018_002yr 2018_010yr	Design_20'	845	0.93	7.1682		7.19	0.00012	1.21	704.04	155.08	0.03
1	_		2018_010yr	Design_20 Design_12'	845	0.93	7.4598		7.48	0.000105	1.21	751.7	168.19	0.09
1	-		2018_010yr	Design_12 Design_in-kind		0.93	11.1246		11.13	0.000012	0.6	1792.94	467.96	0.03
1	-		2018_010yr	Design_III-kind	845	0.93	11.4042		11.15	0.000012	0.57	1927.53	493.8	0.03
	÷1	,	-010_01091	Scolgh_EXISt	045	0.95	11.4042	1	1 11.41	0.00001	0.57	1927.00	.00	0.0

Reach	Rive	er Sta	Profile	Plan	Q Total (cfs)	Min Ch El (ft)	W.S. Elev (ft)	Crit W.S. (ft)	E.G. Elev (ft)	E.G. Slope (ft/ft)	Vel Chnl (ft/s)	Flow Area (sq ft)	Top Width (ft)	Froude # Chl
1	1 74	42.3986	2018_025y	Design_20'	1228	0.93	8.8934		8.92	0.000079	1.28	1029.43	225.22	0.09
1	1 74	42.3986	2018_025y	Design_12'	1228	0.93	9.8812		9.9	0.000047	1.08	1285.28	294.8	0.07
1	1 74	42.3986	2018_025y	Design_in-kind	1228	0.93	12.0001		12.01	0.000016	0.73	2230.09	521.49	0.04
1	1 74	42.3986	2018_025y	Design_Exist	1228	0.93	12.1969		12.2	0.000014	0.71	2333.09	525.29	0.04
1	1 74		2018_050yr	Design_20'	1565	0.93	10.2794		10.3	0.000063	1.29	1429.69	402.77	0.08
1	1 74	42.3986	2018_050yr	Design_12'	1565	0.93	11.6141		11.63	0.000031	1.01	2032.21	503.85	0.06
1	1 74	42.3986	2018 050yr	Design in-kind	1565	0.93	12.5011		12.51	0.00002	0.85	2493.79	531.15	0.05
1	-		2018_050yr	Design_Exist	1565	0.93	12.8034		12.81	0.000017	0.8	2655.24	536.99	0.04
1	-		2018_100yr	Design_20'	2000	0.93	11.6625		11.68	0.000049	1.27	2056.66	506.06	0.07
1	-		2018 100yr	Design_12'	2000	0.93	12.3764		12.39	0.000034	1.11	2427.69	528.74	0.06
1	-		2018 100vr	Design in-kind	2000	0.93	12.9026		12.92	0.000026	1	2708.62	538.91	0.05
1	_		2018_100yr	Design_Exist	2000	0.93	13.1318		13.14	0.000023	0.96	2832.64	543.33	0.05
1	-		2018_500yr	Design_20'	2671	0.93	13.6708		13.69	0.000032	1.17	3128.48	554.9	0.06
1	_		2018_500yr	Design_20 Design_12'	2671	0.93	13.6707		13.69	0.000032	1.17	3128.47	554.9	0.06
	_		2018_500yr	_	2671	0.93	13.5195		13.54	0.000032	1.17	3044.79	551.53	0.06
	-			Design_in-kind										
1	-		2018_500yr	Design_Exist	2671	0.93	13.6501		13.67	0.000033	1.18	3117.04	554.44	0.06
1	-		2018_25yr_MHHW_M	-	1228	0.93	8.8934		8.92	0.000079	1.28	1029.43	225.22	0.09
1	_		2018_25yr_MHHW_M	_	1228	0.93	10.1385		10.15	0.000042	1.04	1373.51	395.04	0.06
1	-		2018_25yr_MHHW_M	Design_in-kind	1228	0.93	12.0076		12.01	0.000016	0.73	2233.99	521.64	0.04
1	-		2018_25yr_MHHW_M	-	1228	0.93	12.2117		12.22	0.000014	0.7	2340.88	525.57	0.04
1			2018_25yr_MSL_Ma	Design_20'	1228	0.93	8.8934		8.92	0.000079	1.28	1029.43	225.22	0.09
1			2018_25yr_MSL_Ma	Design_12'	1228	0.93	9.9368		9.95	0.000046	1.07	1301.76	298.53	0.07
1	-		2018_25yr_MSL_Ma	Design_in-kind	1228	0.93	12.0119		12.02	0.000015	0.73	2236.24	521.72	0.04
1	1 74	42.3986	2018_25yr_MSL_Ma	Design_Exist	1228	0.93	12.1891		12.2	0.000014	0.71	2328.98	525.13	0.04
1	1 74	42.3986	2100_025yr_Ab1	Design_20'	1706	0.93	10.7455		10.77	0.000058	1.29	1623.56	429.29	0.08
1	1 74	42.3986	2100_025yr_Ab1	Design_12'	1706	0.93	12.0756		12.09	0.000029	1	2269.51	522.95	0.06
1	1 74	42.3986	2100_025yr_Ab1	Design_in-kind	1706	0.93	12.679		12.69	0.000021	0.89	2588.57	534.58	0.05
1	1 74	42.3986	2100_025yr_Ab1	Design_Exist	1706	0.93	12.7425		12.75	0.000021	0.88	2622.56	535.81	0.05
1	1 74	42.3986	2100_050yr_Ab1	Design_20'	1717	0.93	10.7902		10.81	0.000057	1.29	1642.81	431.86	0.08
1	1 74	42.3986	2100_050yr_Ab1	Design_12'	1717	0.93	12.0901		12.1	0.000029	1.01	2277.1	523.23	0.06
1	1 74	42.3986	2100_050yr_Ab1	Design_in-kind	1717	0.93	12.7309		12.74	0.000021	0.89	2616.35	535.59	0.05
1	1 74	42.3986	2100_050yr_Ab1	Design_Exist	1717	0.93	12.7327		12.74	0.000021	0.89	2617.32	535.62	0.05
1	1 74	42.3986	2100_100yr_Ab1	Design_20'	2562	0.93	13.4916		13.51	0.000032	1.16	3029.4	550.91	0.06
1	1 74	42.3986	2100_100yr_Ab1	Design_12'	2562	0.93	13.4912		13.51	0.000032	1.16	3029.23	550.9	0.06
1	1 74	42.3986	2100_100yr_Ab1	Design_in-kind	2562	0.93	13.4455		13.46	0.000033	1.17	3004.03	549.88	0.06
1			2100_100yr_Ab1	Design_Exist	2562	0.93	13.5669		13.58	0.000031	1.14	3070.96	552.59	0.06
1	-		2018_025yr(Surge	Design_20'	1228	0.93	10.0191		10.04	0.000044	1.06	1327.32	353.23	0.07
1	-		2015_025yr(Surge	Design_12'	1228	0.93	11.5018		11.51	0.00002	0.81	1975.94	498.47	0.05
1	-		2015_025yr(Surge	Design_in-kind	1228	0.93	12.2083		12.21	0.000014	0.7	2339.11	525.51	0.04
1	-		2015_025yr(Surge	Design_Exist	1228	0.93	12.2005		12.21	0.000014	0.7	2336.34	525.4	0.04
1	-		2013_025yr(Surge	Design_20'	1565	0.93	11.0527		11.07	0.000042	1.12	1759.56	460.88	0.07
1	-				1565	0.93	12.1186		12.13	0.000042	0.91	2292.04	523.78	0.05
1	-		2015_050yr(Surge	Design_12'		0.93			12.13			2554.27	533.34	0.05
	-		2015_050yr(Surge	Design_in-kind	1565		12.6148			0.000018	0.83			
1	-		2015_050yr(Surge	Design_Exist	1565	0.93	12.8067		12.81	0.000017	0.8	2657	537.05	0.04
1			015_100yr(Surge)	Design_20'	2000	0.93	11.9585		11.98	0.000042	1.2	2208.45	519.7	0.07
1	_		015_100yr(Surge)	Design_12'	2000	0.93	12.6459		12.66	0.00003	1.05	2570.92	533.94	0.06
1				Design_in-kind		0.93			13.01	0.000025	0.99	2761.19	540.8	0.05
1	1 74	42.3986	015_100yr(Surge)	Design_Exist	2000	0.93	13.1298		13.14	0.000023	0.96	2831.51	543.29	0.05
	1						ļ		ļ			ļ		
1	-		2018_002yr	Design_20'	232	0.79	4.917	2.16	4.94	0.000176	1.19	195.67	57.77	0.11
1			2018_002yr	Design_12'	232	0.79	5.0171	2.16		0.000161	1.15	201.46	57.96	0.11
1	-		2018_002yr	Design_in-kind	232	0.79	5.3893	2.16	5.41	0.000117	1.04	223.16	58.66	0.09
1	_		2018_002yr	Design_Exist	232	0.79	6.4584	2.16	6.47	0.000053	0.81	287.36	63	0.07
1			2018_010yr	Design_20'	845	0.79	7.0496	3.34	7.16	0.000486	2.61	327.87	84.18	0.2
1	1 60	07.5615	2018_010yr	Design_12'	845	0.79	7.3569	3.34	7.45	0.000399	2.46	355.85	95.16	0.18
1	1 60	07.5615	2018_010yr	Design_in-kind	845	0.79	11.1034	3.34	11.12	0.000053	1.26	884.97	400.59	0.07
1	1 60	07.5615	2018_010yr	Design_Exist	845	0.79	11.3851	3.34	11.4	0.000047	1.21	935.47	429.37	0.07
1	1 60	07.5615	2018_025y	Design_20'	1228	0.79	8.7781	3.89	8.89	0.000366	2.74	515.4	129.62	0.18
1	1 60	07.5615	2018_025y	Design_12'	1228	0.79	9.8061	3.89	9.88	0.000213	2.29	664.15	159.74	0.14
1	1 60	07.5615	2018_025y	Design_in-kind	1228	0.79	11.9669	3.89	12	0.000077	1.6	1042.9	514.83	0.09
1	1 60	07.5615	2018_025y	Design_Exist	1228	0.79	12.1658	3.89	12.2	0.00007	1.56	1080.7	554.6	0.08
1	1 60	07.5615	2018_050yr	Design_20'	1565	0.79	10.1745	4.34	10.28	0.000287	2.73	724.72	303.89	0.17
1	-		2018_050yr	Design_12'	1565	0.79		4.34	11.61	0.000149	2.18	965.85	446.91	0.12
1	_		2018_050yr	Design_in-kind	1565	0.79		4.34	12.5	0.000066	1.54	1745.35	565.89	0.08
1	_		2018_050yr	Design_Exist	1565	0.79		4.34	12.81	0.000053	1.41	1920.86	576.69	0.07
1	_		2018_000yr 2018_100yr	Design_20'	2000	0.79		4.87	11.66	0.000242	2.78	967.54	447.89	0.16
1	-		2018_100yr 2018_100yr	-	2000	0.79	12.3354	4.87	11.66	0.000242	2.78	1664.53	560.85	0.11
	-			Design_12'										
1			2018_100yr	Design_in-kind	2000	0.79	12.8763	4.87	12.91	0.000082	1.76	1973.01	579.87	0.09
1	-		2018_100yr	Design_Exist	2000	0.79	13.1099	4.87	13.14	0.00007	1.65	2109.44	588.11	0.09
1	-		2018_500yr	Design_20'	2671	0.79	13.6445	5.6	13.68	0.000089	1.91	2428.36	604.9	0.1
1	-		2018_500yr	Design_12'	2671	0.79	13.6445			0.000089	1.91	2428.35	604.9	0.1
1	1 60	07.5615	2018_500yr	Design_in-kind	2671	0.79	13.4901	5.6	13.53	0.000098	1.99	2335.31	600.05	0.1

Reach	River Sta	Profile	Plan	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
				(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1	607.5615	2018_500yr	Design_Exist	2671	0.79	13.6235	5.6	13.66	0.00009	1.92	2415.65	604.24	0.1
1	607.5615	2018_25yr_MHHW_M	Design_20'	1228	0.79	8.7781	3.89	8.89	0.000366	2.74	515.4	129.62	0.18
1		_ /	Design_12'	1228	0.79	10.0713	3.89	10.14	0.000187	2.18	707.5	293.82	0.13
1		-	Design_in-kind	1228	0.79	11.9745	3.89	12.01	0.000076	1.6	1044.33	518.35	0.09
1	607.5615		Design_Exist	1228	0.79	12.1808	3.89 3.89	12.21	0.00007	1.55	1083.58	555.53	0.08
1	607.5615 607.5615		Design_20' Design_12'	1228 1228	0.79	8.7781 9.8633	3.89	8.89 9.94	0.000366	2.74 2.26	515.4 673.35	129.62 161.41	0.18
1	607.5615		Design_12 Design_in-kind	1228	0.79	11.9789	3.89	12.01	0.000207	1.6	1045.15	519.31	0.09
1	607.5615		Design_Exist	1228	0.79	12.1579	3.89	12.19	0.000071	1.56	1079.18	553.56	0.09
1	607.5615	2100_025yr_Ab1	Design_20'	1706	0.79	10.6421	4.52	10.75	0.000271	2.75	804.19	352.51	0.16
1	607.5615	2100_025yr_Ab1	Design_12'	1706	0.79	12.0125	4.52	12.08	0.000145	2.21	1051.5	535.14	0.12
1	607.5615	2100_025yr_Ab1	Design_in-kind	1706	0.79	12.6561	4.52	12.68	0.000069	1.6	1846.19	572.12	0.08
1	607.5615	2100_025yr_Ab1	Design_Exist	1706	0.79	12.7208	4.52	12.75	0.000066	1.57	1883.27	574.4	0.08
1		2100_050yr_Ab1	Design_20'	1717	0.79	10.6873	4.53	10.79	0.000268	2.75	812	357.25	0.16
1		2100_050yr_Ab1	Design_12'	1717	0.79	12.0265	4.53	12.09	0.000146	2.22	1054.15	537.14	0.12
1		2100_050yr_Ab1 2100_050yr_Ab1	Design_in-kind	1717 1717	0.79	12.7087 12.7105	4.53 4.53	12.73 12.74	0.000068	1.58 1.58	1876.33 1877.39	573.97 574.03	0.08
1		2100_030yr_Ab1 2100_100yr_Ab1	Design_Exist Design_20'	2562	0.79	12.7105	5.49	12.74	0.000088	1.58	2319.67	599.23	0.08
1		2100_100yr_Ab1	Design 12'	2562	0.79	13.4637	5.49	13.5	0.000091	1.92	2319.47	599.22	0.1
1		2100_100yr_Ab1	Design_i2 Design_in-kind	2562	0.79	13.4057	5.49	13.45	0.000091	1.92	2291.49	595.22	0.1
1		2100_100yr_Ab1	Design_Exist	2562	0.79	13.5408	5.49	13.57	0.000087	1.88	2365.81	601.65	0.1
1	607.5615	2018_025yr(Surge	Design_20'	1228	0.79	9.9482	3.89	10.02	0.000199	2.23	687.15	163.88	0.14
1	607.5615	2015_025yr(Surge	Design_12'	1228	0.79	11.4624	3.89	11.5	0.000095	1.73	949.5	437.5	0.1
1		2015_025yr(Surge	Design_in-kind	1228	0.79	12.1774	3.89	12.21	0.00007	1.56	1082.92	555.41	0.08
1		2015_025yr(Surge	Design_Exist	1228	0.79	12.172	3.89	12.2	0.00007	1.56	1081.9	555.22	0.08
1		2018_050yr(Surge	Design_20'	1565	0.79	10.9763	4.34	11.05	0.000194	2.39	862.48	387.4	0.14
1		2015_050yr(Surge	Design_12'	1565	0.79	12.0665	4.34	12.12	0.000119	2.01	1061.74	541.94	0.11
1		2015_050yr(Surge 2015_050yr(Surge	Design_in-kind Design_Exist	1565 1565	0.79	12.5945 12.7894	4.34 4.34	12.62 12.81	0.000061	1.49 1.41	1811.03 1922.78	569.96 576.81	0.08
1		015_100yr(Surge)	Design_20'	2000	0.79	11.8674	4.34	12.81	0.000033	2.65	1922.78	490.94	0.07
1		015_100yr(Surge)	Design_12'	2000	0.79	12.6134	4.87	12.65	0.000098	1.89	1821.77	570.62	0.1
1	607.5615		Design_in-kind	2000	0.79	12.9757	4.87	13	0.000077	1.71	2030.81	583.39	0.09
1	607.5615	015_100yr(Surge)	Design_Exist	2000	0.79	13.1078	4.87	13.13	0.00007	1.65	2108.2	588.04	0.09
1	550.7734	2018_002yr	Design_20'	232	0.88	4.9164	2.06	4.93	0.000099	0.87	266.23	82.51	0.09
1		2018_002yr	Design_12'	232	0.88	5.0168	2.06	5.03	0.000089	0.85	274.52	82.73	0.08
1		2018_002yr	Design_in-kind	232	0.88	5.3898	2.06	5.4	0.000064	0.76	305.53	83.55	0.07
1		2018_002yr	Design_Exist	232	0.88	6.4595	2.06	6.46	0.000028	0.59	399.36	98.47	0.05
1		2018_010yr 2018_010yr	Design_20' Design_12'	845 845	0.88	7.0661	3.1	7.12	0.000251	1.87 1.75	463.37 503.44	117.91 140.19	0.15
1		2018_010yr	Design_12 Design_in-kind	845	0.88	11.1111	3.1	11.12	0.0000204	0.79	1498.46	482.66	0.05
1		2018 010yr	Design_Exist	845	0.88	11.3925	3.1	11.4	0.000017	0.74	1635.91	493.52	0.04
1	550.7734	2018_025y	Design_20'	1228	0.88	8.8059	3.55	8.86	0.000172	1.88	741.68	190.46	0.13
1	550.7734	2018_025y	Design_12'	1228	0.88	9.8275	3.55	9.86	0.000095	1.53	953.75	290.34	0.1
1	550.7734	2018_025y	Design_in-kind	1228	0.88	11.9811	3.55	11.99	0.000025	0.92	1932.07	512.82	0.05
1	550.7734	2018_025y	Design_Exist	1228	0.88	12.1795	3.55	12.19	0.000022	0.88	2034.5	520.23	0.05
1		2018_050yr	Design_20'	1565	0.88	10.2062			0.000125	1.81	1040.92		0.11
1		2018_050yr	Design_12'	1565	0.88	11.5769		11.6	0.000053	1.3	1727.45		0.07
1		2018_050yr 2018_050yr	Design_in-kind	1565	0.88	12.4856 12.791	3.89 3.89		0.00003	1.05	2195.68	533.11 548.28	0.06
1		2018_050yr 2018_100yr	Design_Exist Design_20'	1565 2000	0.88		4.3	12.8 11.63	0.000025	0.98	2360.76 1740.13	548.28	0.05
1		2018_100yr	Design_20 Design_12'	2000	0.88		4.3	12.37	0.000053	1.05	2122.78	527.09	0.08
1		2018_100yr	Design_in-kind	2000	0.88				0.000039	1.22	2411.77	553.37	0.07
1		2018_100yr	Design_Exist	2000	0.88	13.1157	4.3	13.13	0.000035	1.17	2542.17	571.42	0.06
1		2018_500yr	Design_20'	2671	0.88	13.6507	4.89	13.67	0.000046	1.39	2865.59	627.43	0.07
1		2018_500yr	Design_12'	2671	0.88	13.6507	4.89	13.67	0.000046	1.39	2865.59	627.42	0.07
1		2018_500yr	Design_in-kind	2671	0.88	13.4972	4.89	13.52	0.00005	1.44	2769.99	617.69	0.07
1		2018_500yr	Design_Exist	2671	0.88	13.6298	4.89	13.65	0.000047	1.4	2852.49	626.13	0.07
1		2018_25yr_MHHW_M 2018 25yr MHHW M		1228 1228	0.88	8.8059 10.0912	3.55 3.55	8.86 10.12	0.000172	1.88	741.68 1014.04	190.46 372.4	0.13
1		2018_25yr_MHHW_M 2018_25yr_MHHW_M	-	1228	0.88	11.9887	3.55	10.12	0.000082	0.92	1014.04	513.05	0.09
1		2018_25yr_MHHW_M	-	1228	0.88	12.1944	3.55	12.2	0.000023	0.92	2042.27	520.8	0.05
1		2018_25yr_MSL_Ma	Design_20'	1228	0.88		3.55	8.86	0.000172	1.88	741.68	190.46	0.13
1	550.7734	2018_25yr_MSL_Ma	Design_12'	1228	0.88	9.8845	3.55	9.92	0.000092	1.52	966.58	300.02	0.09
1	550.7734	2018_25yr_MSL_Ma	Design_in-kind	1228	0.88	11.993	3.55	12	0.000025	0.92	1938.18	513.18	0.05
1			Design_Exist	1228	0.88				0.000022	0.88	2030.4	519.93	0.05
1		2100_025yr_Ab1	Design_20'	1706	0.88		4.03	10.72	0.000115	1.81	1153.33	443.61	0.11
1		2100_025yr_Ab1	Design_12'	1706	0.88			12.06	0.000047	1.27	1962.14	514.9	0.07
1		2100_025yr_Ab1	Design_in-kind	1706	0.88			12.68	0.000032	1.1	2290.88	541.71	0.06
1		2100_025yr_Ab1 2100_050yr_Ab1	Design_Exist Design_20'	1706 1717	0.88		4.03 4.04	12.74 10.76	0.000031	1.08	2325.79 1164.41	544.91 448.63	0.06
1		2100_050yr_Ab1 2100_050yr_Ab1	Design_20 Design_12'	1717	0.88				0.0000114	1.8	1969.49	515.44	0.11
	333.7734		- 55.g12	1/1/	0.00	12.0000	4.04	12.07	0.000047	1.2/	2505.45	515.44	0.07

Reach	F	River Sta	Profile	Plan	Q Total (cfs)	Min Ch El (ft)	W.S. Elev (ft)	Crit W.S. (ft)	E.G. Elev (ft)	E.G. Slope (ft/ft)	Vel Chnl (ft/s)	Flow Area (sq ft)	Top Width (ft)	Froude # Chl
	1	550.7734	2100 050yr Ab1	Design_in-kind	1717	0.88	12.7151	4.04	12.73	0.000032	1.09	2319.29	544.28	0.06
	1	550.7734	2100_050yr_Ab1	Design_Exist	1717	0.88	12.7169	4.04	12.73	0.000032	1.09	2320.29	544.37	0.06
	1	550.7734	2100_100yr_Ab1	Design_20'	2562	0.88	13.4707	4.79	13.49	0.000047	1.39	2753.65	615.78	0.07
	1	550.7734	2100_100yr_Ab1	Design_12'	2562	0.88	13.4704	4.79	13.49	0.000047	1.39	2753.45	615.76	0.07
	1	550.7734	2100_100yr_Ab1	Design_in-kind	2562	0.88	13.4239	4.79	13.44	0.000048	1.4	2724.92	612.41	0.07
	1	550.7734	2100_100yr_Ab1	Design_Exist	2562	0.88	13.5471	4.79	13.57	0.000045	1.37	2800.9	621.01	0.07
	1	550.7734	2018_025yr(Surge	Design_20'	1228	0.88	9.9688	3.55	10	0.000088	1.49	985.78	323.15	0.09
	1	550.7734	2015_025yr(Surge	Design_12'	1228	0.88	11.4779	3.55	11.49	0.000035	1.05	1678.19	496.28	0.06
	1	550.7734	2015_025yr(Surge	Design_in-kind	1228	0.88	12.191	3.55	12.2	0.000022	0.88	2040.5	520.67	0.05
	1	550.7734	2015_025yr(Surge	Design_Exist	1228	0.88	12.1857	3.55	12.19	0.000022	0.88	2037.74	520.46	0.05
	1	550.7734	2018_050yr(Surge	Design_20'	1565	0.88	11.0032	3.89	11.03	0.000077	1.51	1446.64	478.04	0.09
	1		2015_050yr(Surge	Design_12'	1565	0.88	12.0891	3.89	12.1	0.000038	1.15	1987.65	516.78	0.06
	1		2015_050yr(Surge	Design_in-kind	1565	0.88	12.6005	3.89	12.61	0.000028	1.02	2257.23	538.52	0.06
	1		2015_050yr(Surge	Design_Exist	1565	0.88	12.7943	3.89	12.8	0.000025	0.98	2362.57	548.46	0.05
	1	550.7734	015_100yr(Surge)	Design_20'	2000	0.88	11.9061	4.3	11.93	0.00007	1.53	1893.69	510.53	0.09
	1		015_100yr(Surge)	Design_12'	2000	0.88	12.6229	4.3	12.64	0.000045	1.3	2269.33	539.89	0.07
	1		015_100yr(Surge)	Design_in-kind	2000	0.88	12.9823	4.3	13	0.000037	1.2	2466.67	559.41	0.06
	1	550.7734	015_100yr(Surge)	Design_Exist	2000	0.88	13.1136	4.3	13.13	0.000035	1.17	2540.97	571.25	0.06
	_													
	1		2018_002yr	Design_20'	232	0.59	4.9109	ļ	4.92	0.000089	0.84	276.14	83.58	30.0
	1		2018_002yr	Design_12'	232	0.59	5.0118		5.02	0.000081	0.82	284.58	83.69	0.08
	1		2018_002yr	Design_in-kind	232	0.59	5.3862		5.39	0.000058	0.73	315.98	84.08	0.07
	1		2018_002yr	Design_Exist	232	0.59	6.458	<u> </u>	6.46	0.000026	0.57	406.76	85.78	0.05
	1		2018_010yr	Design_20'	845	0.59	7.0506		7.1	0.000239	1.84	459.9	106.05	0.14
	1		2018_010yr	Design_12'	845	0.59	7.3601		7.41	0.000196	1.73	499.33	151.06	0.13
	1		2018_010yr	Design_in-kind	845	0.59	11.1115	<u> </u>	11.12	0.000016	0.69	1747.88	517.24	0.04
	1		2018_010yr	Design_Exist	845	0.59	11.3929		11.4	0.000013	0.64	1895.04	528.38	0.04
	1		2018_025y	Design_20'	1228	0.59	8.7969		8.85	0.000161	1.84	795.93	291.05	0.12
	1		2018_025y	Design_12'	1228	0.59	9.8257		9.85	0.000081	1.43	1142.13	374.42	0.09
	1		2018_025y	Design_in-kind	1228	0.59	11.9816		11.99	0.000019	0.81	2211.69	549.31	0.04
	1		2018_025y	Design_Exist	1228	0.59	12.1799		12.19	0.000017	0.77	2321.24	555.04	0.04
	1		2018_050yr	Design_20'	1565	0.59	10.2058		10.24	0.000103	1.65	1302.14	463.93	0.1
	1		2018_050yr	Design_12'	1565	0.59	11.578		11.59	0.00004	1.14	1993.39	534.26	0.06
	1		2018_050yr	Design_in-kind	1565	0.59	12.4862		12.49	0.000023	0.92	2492.39	562.46	0.05
	1		2018_050yr	Design_Exist	1565	0.59	12.7915		12.8	0.000019	0.86	2665.25	569.86	0.05
	1		2018_100yr	Design_20'	2000	0.59	11.604		11.63	0.000064	1.45	2007.3	535.09	0.08
	1		2018_100yr	Design_12'	2000 2000	0.59	12.3491 12.8844		12.36 12.9	0.00004	1.21	2415.53	559.14 572.12	0.07
	1		2018_100yr 2018_100yr	Design_in-kind	2000	0.59	12.8844		12.9	0.00003	1.07	2718.29 2851.67	572.12	0.06
	1		2018_100yr 2018_500yr	Design_Exist	2000	0.59	13.1164		13.13	0.000026	1.02	3164.39	590.85	0.06
	1		2018_500yr	Design_20'	2671	0.59	13.6515		13.67	0.000035	1.22		590.85	0.06
	1		2018_500yr 2018_500yr	Design_12' Design_in-kind	2671	0.59	13.4982		13.51	0.000033	1.22	3164.39 3074.05	590.83	0.06
	1		2018_500yr	Design_In-kind	2671	0.59	13.6307		13.65	0.000036	1.20	3152.06	590.35	0.06
	1			Design_20'	1228	0.59	8.7969		8.85	0.000161	1.84	795.93	291.05	0.12
	1		2018_25yr_MHHW_M	Design_12'	1228	0.59	10.0904		10.11	0.000069	1.34	1248.96	457.2	0.08
	1		2018 25yr MHHW M	-	1228	0.59	11.9892		12	0.000019	0.81	2215.84	549.55	0.04
	1		2018_25yr_MHHW_M	• -	1228	0.59	12.1948		12.2	0.000017	0.77	2329.53	555.4	0.04
	1		2018_25yr_MSL_Ma	-	1228	0.59	8.7969		8.85	0.000161	1.84	795.93	291.05	0.12
	1		2018_25yr_MSL_Ma	Design_12'	1228	0.59	9.883		9.91	0.000078	1.41	1163.68	378.81	0.09
	1		2018_25yr_MSL_Ma	Design_in-kind	1228	0.59	11.9935		12	0.000019	0.81	2218.22	549.96	0.04
	1		2018_25yr_MSL_Ma	Design_Exist	1228	0.59	12.172		12.18	0.000017	0.77	2316.87	554.85	0.04
	1		2100_025yr_Ab1	Design_20'	1706	0.59	10.6776		10.71	0.000087	1.58	1528.22	494.16	0.09
	1		2100_025yr_Ab1	Design_12'	1706	0.59	12.0406		12.05	0.000035	1.11	2244.15	551.66	0.06
	1		2100_025yr_Ab1	Design_in-kind	1706	0.59	12.6634		12.67	0.000024	0.96	2592.45	566.76	0.05
	1		2100_025yr_Ab1	Design_Exist	1706	0.59	12.7277		12.74	0.000024	0.95	2628.91	568.32	0.05
	1		2100_050yr_Ab1	Design_20'	1717	0.59	10.723	l	10.75	0.000085	1.57	1550.71	496.3	0.09
	1		2100_050yr_Ab1	Design_12'	1717	0.59	12.0548		12.07	0.000035	1.11	2252.03	552.01	0.06
	1	487.0596	2100_050yr_Ab1	Design_in-kind	1717	0.59	12.7157	ſ	12.72	0.000024	0.95	2622.14	568.03	0.05
	1	487.0596	2100_050yr_Ab1	Design_Exist	1717	0.59	12.7176		12.73	0.000024	0.95	2623.18	568.07	0.05
	1	487.0596	2100_100yr_Ab1	Design_20'	2562	0.59	13.4716		13.49	0.000036	1.21	3058.47	586.52	0.06
	1	487.0596	2100_100yr_Ab1	Design_12'	2562	0.59	13.4713		13.49	0.000036	1.21	3058.28	586.51	0.06
	1	487.0596	2100_100yr_Ab1	Design_in-kind	2562	0.59	13.4249		13.44	0.000036	1.23	3031.08	585.4	0.06
	1	487.0596	2100_100yr_Ab1	Design_Exist	2562	0.59	13.5479		13.56	0.000034	1.2	3103.31	588.36	0.06
	1	487.0596	2018_025yr(Surge	Design_20'	1228	0.59	9.9677		9.99	0.000074	1.38	1196.05	385.32	0.09
	1	487.0596	2015_025yr(Surge	Design_12'	1228	0.59	11.4786		11.49	0.000026	0.92	1940.48	531.1	0.05
	1	487.0596	2015_025yr(Surge	Design_in-kind	1228	0.59	12.1914		12.2	0.000017	0.77	2327.64	555.32	0.04
	1	487.0596	2015_025yr(Surge	Design_Exist	1228	0.59	12.1861		12.19	0.000017	0.77	2324.7	555.19	0.04
	1		2018_050yr(Surge	Design_20'	1565	0.59	11.0048		11.02	0.000058	1.32	1692.91	512.77	0.08
	1	487.0596	2015_050yr(Surge	Design_12'	1565	0.59	12.0899		12.1	0.000029	1	2271.37	552.86	0.06
	1		2015_050yr(Surge	Design_in-kind	1565	0.59	12.6011	ſ	12.61	0.000021	0.89	2557.16	565.25	0.05
	1		2015_050yr(Surge	Design_Exist	1565	0.59	12.7948	l	12.8	0.000019	0.85	2667.14	569.94	0.05
							11.9075		11.93	0.000053	1.34	2171.19	544.74	0.07

Reach	River Sta	Profile	Plan	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
				(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1	487.0596	015_100yr(Surge)	Design_12'	2000	0.59	12.6238		12.64	0.000034	1.13	2570.04	565.8	0.06
1	487.0596	015_100yr(Surge)	Design_in-kind	2000	0.59	12.983		12.99	0.000028	1.05	2774.84	574.51	0.06
1	487.0596	015_100yr(Surge)	Design_Exist	2000	0.59	13.1143		13.12	0.000026	1.02	2850.45	577.7	0.05
1		2018_002yr	Design_20'	232	0.55	4.8933		4.92	0.000158	1.19	195.07	55.14	0.11
1		2018_002yr	Design_12'	232	0.55	4.9953		5.02	0.000145	1.16	200.71	55.42	0.11
1		2018_002yr	Design_in-kind	232	0.55	5.3731		5.39	0.000106	1.05	221.78	55.89	0.09
1		2018_002yr	Design_Exist	232	0.55	6.4503		6.46	0.00005	0.82	282.04	55.99	0.06
1		2018_010yr	Design_20'	845	0.55	6.9668		7.08	0.000492	2.72	311.03	57.28	0.2
1		2018_010yr	Design_12'	845	0.55	7.2856		7.39	0.000422	2.57	330.1	65.88	0.19
1		2018_010yr	Design_in-kind	845 845	0.55	11.1066 11.3892		11.12 11.4	0.000028	0.94	1490.7 1648.22	553.99 560.49	0.05
1		2018_010yr 2018_025y	Design_Exist Design_20'	1228	0.55	8.7139		8.83	0.000022	2.79	532.39	225.05	0.05
1		2018_025y 2018_025y	Design_20 Design_12'	1228	0.55	9.7887		9.84	0.00037	2.79	826.35	312.5	0.13
1		2018_025y	Design_in-kind	1228	0.55	11.9775		11.99	0.00003	1.02	1981.59	572.92	0.06
1		2018_025y	Design_Exist	1228	0.55	12.1765		12.18	0.000026	0.96	2096.16	578.68	0.05
1		2018_050yr	Design_20'	1565	0.55			10.23	0.000227	2.47	973.72	529.87	0.15
1		2018_050yr	Design_12'	1565	0.55			11.59	0.000066	1.48	1748.56	564.3	0.08
1		2018_050yr	Design_in-kind	1565	0.55			12.49	0.000034	1.12	2274.29	587.45	0.06
1	441.3088	2018_050yr	Design_Exist	1565	0.55	12.7883		12.8	0.000028	1.03	2455.59	596.25	0.05
1	441.3088	2018_100yr	Design_20'	2000	0.55	11.5874		11.62	0.000107	1.88	1759.72	564.71	0.1
1	441.3088	2018_100yr	Design_12'	2000	0.55	12.3413		12.36	0.000061	1.49	2191.93	583.41	0.08
1	441.3088	2018_100yr	Design_in-kind	2000	0.55	12.8795		12.89	0.000042	1.28	2510.1	598.87	0.07
1	441.3088	2018_100yr	Design_Exist	2000	0.55	13.1123		13.13	0.000037	1.21	2650.23	605	0.06
1	441.3088	2018_500yr	Design_20'	2671	0.55	13.6467		13.66	0.000047	1.42	2977.45	619.64	0.07
1	441.3088	2018_500yr	Design_12'	2671	0.55	13.6467		13.66	0.000047	1.42	2977.45	619.64	0.07
1	441.3088	2018_500yr	Design_in-kind	2671	0.55	13.4928		13.51	0.000052	1.47	2882.38	615.42	0.08
1		2018_500yr	Design_Exist	2671	0.55	13.6258		13.64	0.000048	1.43	2964.47	619.07	0.07
1		2018_25yr_MHHW_M		1228	0.55	8.7139		8.83	0.00037	2.79	532.39	225.05	0.18
1			Design_12'	1228	0.55	10.0544		10.11	0.000153	2.01	921.41	527.22	0.12
1		-	Design_in-kind	1228	0.55	11.9851		11.99	0.00003	1.02	1985.94	573.08	0.06
1	441.3088		Design_Exist	1228	0.55	12.1914		12.2	0.000025	0.96	2104.83	579.11	0.05
1		2018_25yr_MSL_Ma	Design_20'	1228	0.55	8.7139		8.83	0.00037	2.79	532.39	225.05	0.18
1		2018_25yr_MSL_Ma	Design_12'	1228	0.55	9.8476		9.9	0.000163	2.04	844.88	316.43	0.13
1		2018_25yr_MSL_Ma	Design_in-kind Design Exist	1228 1228	0.55	11.9894 12.1686		12 12.18	0.00003	1.01 0.96	1988.43 2091.59	573.17 578.45	0.06
1		2018_25yr_MSL_Ma 2100_025yr_Ab1	Design_20'	1228	0.55	10.6425		12.18	0.000028	2.24	1236.11	543.01	0.03
1		2100_025yr_Ab1	Design_20 Design_12'	1700	0.55			12.05	0.0000175	1.39	2013.42	574.49	0.08
1		2100_025yr_Ab1 2100_025yr_Ab1	Design_12 Design_in-kind	1700	0.55	12.6591		12.05	0.000035	1.16	2378.81	592.54	0.06
1		2100_025yr_Ab1	Design_In kind	1700	0.55	12.7236		12.07	0.000034	1.10	2417.07	594.39	0.06
1		2100_050yr_Ab1	Design_20'	1717	0.55			10.74	0.000168	2.21	1261.58	544.28	0.13
1		2100 050yr Ab1	Design 12'	1717	0.55			12.07	0.000055	1.39	2021.62	574.96	0.08
1		2100_050yr_Ab1	Design_in-kind	1717	0.55			12.72	0.000035	1.15	2409.93	594.05	0.06
1	441.3088	2100_050yr_Ab1	Design_Exist	1717	0.55	12.7134		12.73	0.000035	1.15	2411.03	594.1	0.06
1	441.3088	2100_100yr_Ab1	Design_20'	2562	0.55	13.4666		13.48	0.000048	1.42	2866.25	614.7	0.07
1	441.3088	2100_100yr_Ab1	Design_12'	2562	0.55	13.4662		13.48	0.000048	1.42	2866.06	614.69	0.07
1	441.3088	2100_100yr_Ab1	Design_in-kind	2562	0.55	13.4196		13.44	0.00005	1.44	2837.44	613.42	0.07
1	441.3088	2100_100yr_Ab1	Design_Exist	2562	0.55	13.5432		13.56	0.000046	1.4	2913.42	616.8	0.07
1	441.3088	2018_025yr(Surge	Design_20'	1228	0.55	9.9346		9.98	0.000153	1.99	872.67	322.22	0.12
1	441.3088	2015_025yr(Surge	Design_12'	1228	0.55	11.4716		11.49	0.000044	1.2	1694.47	562.28	0.07
1	441.3088	2015_025yr(Surge	Design_in-kind	1228	0.55			12.2	0.000026	0.96	2102.86	579.01	0.05
1		2015_025yr(Surge	Design_Exist	1228	0.55			12.19	0.000026	0.96	2099.77	578.86	0.05
1		2018_050yr(Surge	Design_20'	1565	0.55			11.02	0.000107	1.81	1423.6	551.18	0.1
1		2015_050yr(Surge	Design_12'	1565	0.55			12.1	0.000045	1.26	2042.64	576.05	0.07
1		2015_050yr(Surge	Design_in-kind	1565	0.55			12.61	0.000031	1.08	2342.2	590.77	0.06
1		2015_050yr(Surge	Design_Exist	1565	0.55			12.8	0.000027	1.03	2457.57	596.35	0.05
1		015_100yr(Surge)	Design_20'	2000	0.55	11.8955		11.92	0.000084	1.7	1934.69	571.19	0.09
1		015_100yr(Surge)	Design_12'	2000	0.55	12.6177		12.63	0.00005	1.38	2354.29	591.35	0.07
1		015_100yr(Surge)	Design_in-kind	2000	0.55	12.9785		12.99	0.00004	1.25	2569.52	601.38	0.07
1	441.3088	015_100yr(Surge)	Design_Exist	2000	0.55	13.1102		13.12	0.000037	1.21	2648.96	604.94	0.06
	378 7160	2018 00200	Design 201	254	0.01	4.8034		4.88	0.000506	2.2	115.25	25.85	0.18
1		2018_002yr 2018_002yr	Design_20' Design_12'	254	0.01	4.8034		4.88	0.000506	2.2	115.25	25.85	0.18
1		2018_002yr 2018_002yr	Design_12 Design_in-kind	254	0.01	5.3031		4.98	0.000472	2.15	118.02	25.86	0.18
1		2018_002yr 2018_002yr	Design_III-kind Design_Exist	254	0.01	6.4051		6.45	0.000369	1.98	128.18	25.88	0.10
1		2018_002yr 2018_010yr	Design_20'	924	0.01	6.376		6.45	0.000211	5.92	155.99	25.96	0.12
1		2018_010yr 2018_010yr	Design_20 Design_12'	924 924	0.01	6.7706		7.25	0.002746	5.92	155.99	25.95	0.43
1		2018_010yr	Design_12 Design_in-kind	924	0.01	11.0405		11.1	0.0002203	2.33	637.95	266.64	0.13
1		2018_010yr	Design_Exist	924	0.01	11.3377		11.39	0.000178	2.55	717.43	279.22	0.11
1		2018_010yi	Design_20'	1363	0.01	7.9416		8.67	0.002951	6.86	204.32	38.09	0.11
1		2018_025y	Design_20 Design_12'	1363	0.01	9.2922		9.76	0.001627	5.58	272.34	109.25	0.33
-		2018_025y	Design_in-kind	1363	0.01	11.9072		11.97	0.000246	2.58	884.87	303.06	0.14
1			· ·······	1000	0.01		L		2.3002.10	2.50	20	200.00	0

Reach	River Sta	Profile	Plan	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
				(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1	328.7169	2018_025y	Design_Exist	1363	0.01	12.1155		12.17	0.000217	2.45	956.24	407.58	0.13
1	328.7169	2018_050yr	Design_20'	1772	0.01	9.3149		10.09	0.00272	7.22	274.93	117.46	0.43
1		2018_050yr	Design_12'	1772	0.01	11.3838		11.56	0.000624	3.98	731.99	281.15	0.21
1		2018_050yr	Design_in-kind	1772	0.01	12.4017		12.48	0.000289	2.88	1079.19	445.26	0.15
1		2018_050yr	Design_Exist	1772	0.01	12.7283		12.79	0.000223	2.57	1230.15	481.42	0.13
1		2018_100yr	Design_20'	2267 2267	0.01	11.248		11.56 12.33	0.001137	5.33	694.19	275.45	0.29
1		2018_100yr 2018_100yr	Design_12' Design_in-kind	2267	0.01	12.1812 12.786		12.33	0.000565	3.97 3.21	984.89 1259.67	414.4 483.85	0.21
1		2018_100yr	Design_In-Kind	2267	0.01	13.0371		13.11	0.000340	2.95	1380.83	496.47	0.15
1		2018_500yr	Design_20'	3078	0.01	13.5558		13.64	0.000348	3.36	1649.4	530.17	0.16
1		2018 500yr	Design 12'	3078	0.01	13.5558		13.64	0.000348	3.36	1649.39	530.17	0.16
1	328.7169	2018_500yr	Design_in-kind	3078	0.01	13.3886		13.49	0.000396	3.55	1561.52	521.25	0.17
1	328.7169	2018_500yr	Design_Exist	3078	0.01	13.5332		13.62	0.000356	3.39	1635.8	528.94	0.17
1	328.7169	2018_25yr_MHHW_M	Design_20'	1363.01	0.01	7.9416		8.67	0.002951	6.86	204.32	38.09	0.44
1	328.7169	2018_25yr_MHHW_M	Design_12'	1363.01	0.01	9.6365		10.03	0.001347	5.21	319.38	155.04	0.3
1	328.7169	2018_25yr_MHHW_M	Design_in-kind	1363.01	0.01	11.9153		11.98	0.000245	2.58	887.31	303.4	0.13
1	328.7169	2018_25yr_MHHW_M	Design_Exist	1363.01	0.01	12.1313		12.19	0.000214	2.43	962.71	409.23	0.13
1		2018_25yr_MSL_Ma	Design_20'	1363	0.01	7.9416		8.67	0.002951	6.86	204.32	38.09	0.44
1		2018_25yr_MSL_Ma	Design_12'	1363	0.01	9.3661		9.82	0.001567	5.5	281.14	124.87	0.33
1		2018_25yr_MSL_Ma	Design_in-kind	1363	0.01	11.9199		11.99	0.000244	2.57	888.71	303.6	0.13
1		2018_25yr_MSL_Ma	Design_Exist	1363	0.01	12.1071		12.17	0.000219	2.46	952.84	406.72	0.13
1		2100_025yr_Ab1 2100 025yr Ab1	Design_20'	1930 1930	0.01	9.914		10.58	0.002277	6.9	367.05 879.37	187.14 302.27	0.4
1		2100_025yr_Ab1 2100_025yr_Ab1	Design_12' Design_in-kind	1930 1930	0.01	11.889 12.5778		12.02 12.65	0.000501	3.68 2.94	8/9.3/	302.27	0.19
1		2100_025yr_Ab1 2100_025yr_Ab1	Design_III-killa Design Exist	1930	0.01	12.5778		12.03	0.000297	2.94	1191.19	477.66	0.15
1		2100_025yr_AD1 2100 050yr Ab1	Design_Exist Design 20'	1930	0.01	9.9802		12.72	0.000282	6.84	379.55	477.66	0.15
1		2100_050yr_Ab1	Design 12'	1946	0.01	11.9025		12.04	0.000504	3.69	883.43	302.85	0.19
1		2100_050yr_Ab1	Design_in-kind	1946	0.01	12.6328		12.71	0.000288	2.91	1186.02	476.94	0.15
1		2100_050yr_Ab1	Design_Exist	1946	0.01	12.6347		12.71	0.00029	2.91	1185.3	477.04	0.15
1	328.7169	2100_100yr_Ab1	Design_20'	2943	0.01	13.37	8.11	13.46	0.000367	3.42	1551.82	520.36	0.17
1	328.7169	2100_100yr_Ab1	Design_12'	2943	0.01	13.3696	8.11	13.46	0.000367	3.42	1551.64	520.33	0.17
1	328.7169	2100_100yr_Ab1	Design_in-kind	2943	0.01	13.3189		13.42	0.000382	3.48	1525.34	516.33	0.17
1	328.7169	2100_100yr_Ab1	Design_Exist	2943	0.01	13.453		13.54	0.000346	3.33	1593.53	524.59	0.16
1		2018_025yr(Surge	Design_20'	1363	0.01	9.4772		9.9	0.001476	5.38	295.91	139.47	0.32
1		2015_025yr(Surge	Design_12'	1363	0.01	11.3615		11.46	0.000376	3.09	725.74	280.22	0.17
1		2015_025yr(Surge	Design_in-kind	1363	0.01	12.1278		12.18	0.000213	2.43	962.92	408.86	0.13
1		2015_025yr(Surge	Design_Exist	1363	0.01	12.1221		12.18	0.000216	2.44	958.93	408.27	0.13
1		2018_050yr(Surge 2015_050yr(Surge	Design_20' Design_12'	1772 1772	0.01	10.6347 11.9703		10.96 12.08	0.001131	5.11 3.29	533.28 904.08	249.29 305.77	0.28
1		2015_050yr(Surge	Design_12 Design_in-kind	1772	0.01	12.5254		12.00	0.000261	2.75	1135.33	462.37	0.14
1		2015_050yr(Surge	Design_Exist	1772	0.01	12.7318		12.79	0.000222	2.56	1231.83	481.57	0.13
1		015_100yr(Surge)	Design 20'	2267	0.01	11.6546	6.54	11.88	0.000827	4.66	809.65	292.47	0.25
1		015_100yr(Surge)	Design_12'	2267	0.01	12.4969		12.61	0.000437	3.56	1122.15	460.14	0.18
1	328.7169	015_100yr(Surge)	Design_in-kind	2267	0.01	12.8934		12.97	0.000317	3.1	1311.87	488.35	0.16
1	328.7169	015_100yr(Surge)	Design_Exist	2267	0.01	13.0349		13.11	0.000285	2.95	1379.71	496.17	0.15
1	260.5812	2018_002yr	Design_20'	254	-0.2	4.6954	2.24	4.83	0.000934	2.9	87.59	21.8	0.26
1		2018_002yr	Design_12'	254	-0.2		2.24	4.93	0.000859	2.82	90.08	21.83	0.24
1		2018_002yr	Design_in-kind	254				5.33	0.00043	2.26		21.95	0.18
1		2018_002yr	Design_Exist	254	-0.91	6.3728	1.63	6.43	0.000231	1.91	132.69	22.26	0.13
1		2018_010yr 2018_010yr	Design_20'	924 924	-0.2	4.496 5.9672	4.5	6.41 6.96	0.014363	11.1	83.25 115.53	21.74 22.15	0.62
1		2018_010yr 2018_010yr	Design_12' Design_in-kind	924	-0.2	10.8603	4.49		0.005506	8 3.69		81.9	0.62
1		2018_010yr 2018_010yr	Design_III-kind Design_Exist	924	-0.2	11.1727	3.93	11.06	0.00064	3.69	319.69	105.64	0.19
1		2018_025y	Design_20'	1363	-0.91	5.6405	5.64	8.1	0.014438	12.58	108.31	22.06	1
1		2018_025y	Design_20 Design_12'	1363	-0.2		5.64	9.54	0.003737	7.81	174.46	22.62	0.5
1		2018_025y	Design_in-kind	1363	-0.2	11.5917	5.06	11.92	0.000992	4.8	375.57	156.86	0.25
1	260.5812	2018_025y	Design_Exist	1363	-0.91	11.8407	5.1	12.12	0.00091	4.54	416.7	178.02	0.24
1	260.5812	2018_050yr	Design_20'	1772	-0.2	6.5976	6.6	9.51	0.014584	13.68	129.55	22.32	1
1	260.5812	2018_050yr	Design_12'	1772	-0.2	10.4006	6.61	11.39	0.003416	8.05	243.61	73.16	0.46
1	260.5812	2018_050yr	Design_in-kind	1772	-0.2	11.9504	6.02	12.4	0.001376	5.77	436.99	197.04	0.3
1		2018_050yr	Design_Exist	1772	-0.91	12.3794	6.08	12.72	0.001128	5.21	544.48	287.98	0.27
1		2018_100yr	Design_20'	2267	-0.2	7.6504	7.65	11.05	0.014856	14.8	153.18	22.53	1
1		2018_100yr	Design_12'	2267	-0.2	10.6315	7.65	12.11	0.005052	9.91	260.98	77.35	0.57
1		2018_100yr	Design_in-kind		-0.2	12.0725	7.09	12.76	0.00211	7.2	463.78	242.04	0.37
1		2018_100yr	Design_Exist	2267	-0.91	12.5024	7.17	13.02	0.001708	6.45		310.3	0.33
1		2018_500yr	Design_20'	3078	-0.2		10.88	13.34	0.008315	12.88	281.13	82.54	0.73
1		2018_500yr	Design_12'	3078	-0.2			13.34	0.008315	12.88	281.13	82.54	0.73
1		2018_500yr	Design_in-kind		-0.2	11.8859		13.29	0.004297	10.16		181.27	0.53
1		2018_500yr	Design_Exist	3078 1363.01	-0.91 -0.2	12.6126 5.6408	8.79 5.64	13.49 8.1	0.002903	8.47 12.58	616.5 108.32	323.41 22.06	0.43
1	260 5812	2018_25yr_MHHW_M	Decian 20'										

Reach	R	River Sta	Profile	Plan	Q Total (cfs)	Min Ch El (ft)	W.S. Elev (ft)	Crit W.S. (ft)	E.G. Elev (ft)	E.G. Slope (ft/ft)	Vel Chnl (ft/s)	Flow Area (sq ft)	Top Width (ft)	Froude # Chl
	1	260.5812	2018_25yr_MHHW_M	Design_in-kind	1363.01	-0.2	11.6013	5.06	11.92	0.000987	4.79	377.07	157.48	0.25
	1	260.5812	2018_25yr_MHHW_M	Design_Exist	1363.01	-0.91	11.8593	5.1	12.14	0.0009	4.52	420.03	179.36	0.24
	1	260.5812	2018_25yr_MSL_Ma	Design_20'	1363	-0.2	5.6405	5.64	8.1	0.014438	12.58	108.31	22.06	1
	1	260.5812	2018_25yr_MSL_Ma	Design_12'	1363	-0.2	8.6803	5.64	9.61	0.003622	7.72	176.44	22.63	0.49
	1	260.5812	2018_25yr_MSL_Ma	Design_in-kind	1363	-0.2	11.6068	5.06	11.93	0.000984	4.78	377.94	157.83	0.25
	1	260.5812	2018_25yr_MSL_Ma	Design_Exist	1363	-0.91	11.8317	5.1	12.11	0.000913	4.54	415.11	176.78	0.24
	1	260.5812	2100_025yr_Ab1	Design_20'	1930	-0.2	6.9498	6.95	10.01	0.014627	14.04	137.43	22.42	t
	1		2100_025yr_Ab1	Design_12'	1930	-0.2	10.9144	6.95	11.87	0.003225	8.04	283.65	83.38	0.45
	1		2100_025yr_Ab1	Design_in-kind	1930	-0.2	12.0684	6.37	12.57	0.001533	6.13	462.8	241.51	0.32
	1		2100_025yr_Ab1	Design_Exist	1930	-0.91	12.1724	6.45	12.64	0.001515	5.97	488.61	255.06	0.31
	-		2100_050yr_Ab1	Design_20'	1946	-0.2	6.9836	6.98	10.07	0.01464	14.08	138.19	22.42	1
	_		2100_050yr_Ab1	Design_12'	1946	-0.2	10.9074	6.98	11.88	0.003289	8.11	283.07	83.18	0.46
	_		2100_050yr_Ab1	Design_in-kind	1946	-0.2	12.1367	6.4	12.63	0.001495	6.08	479.59	250.41	0.32
	1		2100_050yr_Ab1	Design_Exist	1946 2943	-0.91 -0.2	12.1422 8.9563	6.48 8.96	12.63 12.99	0.001569	6.06 16.11	480.97 182.69	251.13 22.66	0.31
	_		2100_100yr_Ab1	Design_20'		-0.2		8.96	12.99		16.11			
	1 1		2100_100yr_Ab1 2100_100yr_Ab1	Design_12'	2943 2943	-0.2	8.9594 12.121	8.4	12.99	0.01532	9.23	182.76 475.66	22.66 248.36	0.48
	1		2100_100yr_Ab1	Design_in-kind Design_Exist	2943	-0.2	12.6217	8.53	13.23	0.003433	9.23	619.47	324.30	0.41
	1		2018_025yr(Surge	Design_20'	1363	-0.91	8.8079	5.64	9.71	0.002055	7.6	179.33	22.65	0.48
	1		2015_025yr(Surge	Design_20 Design_12'	1363	-0.2	10.9	5.64	11.38	0.001619	5.69	282.45	82.98	0.32
	_		2015_025yr(Surge	Design_in-kind	1363	-0.2	11.8538	5.06	12.13	0.000858	4.53	419.04	178.96	0.24
	1		2015_025yr(Surge	Design_Exist	1363	-0.91	11.8484	5.1	12.13	0.000906	4.53	418.09	178.57	0.24
	1		2018_050yr(Surge	Design_20'	1772	-0.2	9.403	6.6	10.72	0.004794	9.19	192.82	22.7	0.56
	1		2015_050yr(Surge	Design_12'	1772	-0.2	11.2628	6.61	11.96	0.002316	6.95	317.04	117.62	0.38
			2015_050yr(Surge	Design_in-kind	1772	-0.2	12.111	6.02	12.52	0.00126	5.57	473.19	247.06	0.29
	1		2015_050yr(Surge	Design_Exist	1772	-0.91	12.3835	6.08	12.73	0.001126	5.21	545.67	289.14	0.27
	1	260.5812	015_100yr(Surge)	Design_20'	2267	-0.2	9.4031	7.65	11.55	0.007846	11.76	192.83	22.7	0.71
	1	260.5812	015_100yr(Surge)	Design_12'	2267	-0.2	11.3383	7.65	12.44	0.003651	8.77	326.33	128.69	0.48
	1	260.5812	015_100yr(Surge)	Design_in-kind	2267	-0.2	12.2671	7.09	12.88	0.001871	6.85	513.37	268.13	0.35
	1	260.5812	015_100yr(Surge)	Design_Exist	2267	-0.91	12.4982	7.17	13.02	0.001713	6.46	580.23	309.87	0.33
	1	239.34			Culvert									
	1		2018_002yr	Design_20'	254	-5.32	4.7664	-3.84	4.77	0.00002	0.7	361.07	47.07	0.04
			2018_002yr	Design_12'	254	-5.32	4.7664	-3.84	4.77	0.00002	0.7	361.07	47.07	0.04
	_		2018_002yr	Design_in-kind	254	-5.32	4.7664	-3.84	4.77	0.00002	0.7	361.07	47.07	0.04
	-		2018_002yr	Design_Exist	254	-5.32	6.0515	-0.9	6.12	0.000298	2.14	118.55	48.92	0.12
	1		2018_010yr	Design_20'	924 924	-5.32 -5.32	4.7217 4.7217	-2.17	4.82 4.82	0.000264	2.57 2.57	358.97	47.01 47.01	0.16
	1		2018_010yr 2018_010yr	Design_12' Design_in-kind	924	-5.32	4.7217	-2.17	4.82	0.000264	2.57	358.97 358.97	47.01	0.16
	1		2018_010yr	Design_III-killa	924	-5.32	7.8034	-2.17	8.47	0.002385	6.55	141	51.44	0.35
	1		2018_010yi	Design_Exist Design 20'	1363	-5.32	4.6627	-1.35	4.89	0.002383	3.83	356.2	46.92	0.24
	1		2018_025y	Design_20 Design_12'	1363	-5.32	4.6627	-1.35	4.89	0.000588	3.83	356.2	46.92	0.24
	1		2018 025y	Design_in-kind	1363	-5.32	4.6627	-1.35	4.89	0.000588	3.83	356.2	46.92	0.24
	_		2018_025y	Design_Exist	1363	-5.32	8.4896	3.86	9.78	0.004365	9.1	149.79	52.43	0.47
	1		2018_050yr	Design_20'	1772	-5.32	4.5834	-0.67	4.98	0.001024	5.03	352.48	46.81	0.32
	1	212.9068	2018_050yr	Design_12'	1772	-5.32	4.5834	-0.67	4.98	0.001024	5.03	352.48	46.81	0.32
	1	212.9068	2018_050yr	Design_in-kind	1772	-5.32	4.5834	-0.67	4.98	0.001024	5.03	352.48	46.81	0.32
	1	212.9068	2018_050yr	Design_Exist	1772	-5.32	10.979	5.2	11.08	0.000214	2.62	758.43	205.62	0.13
	1	212.9068	2018_100yr	Design_20'	2267	-5.32	4.4494	0.09	5.12	0.001754	6.55	346.22	46.62	0.42
	1	212.9068	2018_100yr	Design_12'	2267	-5.32	4.4494	0.09	5.12	0.001754	6.55	346.22	46.62	0.42
	1	212.9068	2018_100yr	Design_in-kind	2267	-5.32	4.4494	0.09	5.12	0.001754	6.55	346.22	46.62	0.42
	1	212.9068	2018_100yr	Design_Exist	2267	-5.32	10.6487	6.71	10.84	0.000391	3.49	699.08	150.47	0.18
	1		2018_500yr	Design_20'	3078	-5.32	4.0975	1.22	5.45	0.003743	9.33	329.9	46.12	0.63
	1		2018_500yr	Design_12'	3078	-5.32	4.0975	1.22	5.45	0.003743	9.33	329.9	46.12	0.6
	_		2018_500yr	Design_in-kind	3078	-5.32	4.0975	1.22	5.45	0.003743	9.33	329.9	46.12	0.6
	1		2018_500yr	Design_Exist	3078	-5.32	11.3172	9.04	11.6	0.000574	4.37	832.81	232.41	0.2
	1		2018_25yr_MHHW_M	_	1363.01	-5.32	5.6671	-1.35	5.84	0.000409	3.37	404.05	48.37	0.2
	1		2018_25yr_MHHW_M		1363.01	-5.32	5.6671	-1.35	5.84	0.000409	3.37	404.05	48.37	0.2
	1		2018_25yr_MHHW_M		1363.01	-5.32	5.6671	-1.35	5.84	0.000409	3.37	404.05	48.37	0.2
	1		2018_25yr_MHHW_M	_	1363.01	-5.32	8.4889	3.86	9.78	0.004366	9.1	149.78	52.43	0.4
	-			Design_20'	1363	-5.32	0.297	-1.35	1.13	0.003222	7.3	186.69	36.03	0.5
	1			Design_12'	1363	-5.32	0.297	-1.35	1.13	0.003222	7.3	186.69	36.03	0.5
	1			Design_in-kind	1363	-5.32	0.297	-1.35	1.13	0.003222	7.3	186.69	36.03	0.5
	1		2018_25yr_MSL_Ma		1363	-5.32	8.4845	3.86	9.77	0.00437	9.1	149.72	52.42	0.4
	1		2100_025yr_Ab1	Design_20'	1930	-5.32	6.6364	-0.42	6.92	0.000594	4.27	451.6	49.76	0.2
	1		2100_025yr_Ab1 2100_025yr_Ab1	Design_12' Design_in-kind	1930 1930	-5.32 -5.32	6.6364	-0.42	6.92 6.92	0.000594	4.27 4.27	451.6 451.6	49.76 49.76	0.2
	_			Design_in-kind			6.6364	-0.42		0.000594				
	1	212.9008	2100_025yr_Ab1	Design_Exist	1930	-5.32	8.5991	5.7	11.13	0.008522	12.77	151.19	52.58	0.60
	_	212 0060	2100 05000 461	Decign 201	1046									
	1		2100_050yr_Ab1 2100_050yr_Ab1	Design_20' Design_12'	1946 1946	-5.32 -5.32	6.634 6.634	-0.4 -0.4	6.92 6.92	0.000604	4.31 4.31	451.49 451.49	49.76 49.76	0.25

Reach	Riv	ver Sta	Profile	Plan	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
					(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1	-		2100_050yr_Ab1	Design_Exist	1946	-5.32	8.5817	5.74	11.16	0.008701	12.89	150.97	52.56	0.66
1	-		2100_100yr_Ab1	Design_20'	2943	-5.32	6.4399	1.04	7.13	0.001475	6.66	441.86	49.48	0.39
1	-		2100_100yr_Ab1	Design_12'	2943	-5.32	6.4399	1.04	7.13	0.001475	6.66	441.86	49.48	0.39
1	-		2100_100yr_Ab1	Design_in-kind	2943	-5.32	6.4399	1.04	7.13	0.001475	6.66	441.86	49.48	0.39
1			2100_100yr_Ab1	Design_Exist	2943	-5.32	11.2239	8.69	11.49	0.000543	4.23	811.38	227.36	0.21
1	-		2018_025yr(Surge	Design_20'	1363 1363	-5.32 -5.32	8.1518 8.1518	-1.35 -1.35	8.26 8.26	0.00019	2.58 2.58	528.66 528.66	51.94 51.94	0.14
1	-		2015_025yr(Surge 2015_025yr(Surge	Design_12' Design in-kind	1363	-5.32	8.1518	-1.35	8.26	0.00019	2.58	528.66	51.94	0.14
1	-		2015_025yr(Surge	Design_III-Killa	1363	-5.32	8.5017	3.86	9.79	0.004352	9.09	149.94	52.44	0.14
1	-		2018_050yr(Surge	Design_20'	1772	-5.32	8.1177	-0.67	8.29	0.000324	3.36	526.89	51.89	0.19
1	-		2015_050yr(Surge	Design 12'	1772	-5.32	8.1177	-0.67	8.29	0.000324	3.36	526.89	51.89	0.19
1			2015_050yr(Surge	Design_in-kind	1772	-5.32	8.1177	-0.67	8.29	0.000324	3.36	526.89	51.89	0.19
1	-		2015 050yr(Surge	Design_Exist	1772	-5.32	10.9854	5.2	11.09	0.000214	2.62	759.75	206.15	0.13
1	. 2	212.9068	015_100yr(Surge)	Design_20'	2267	-5.32	8.0632	0.09	8.35	0.000538	4.33	524.07	51.81	0.24
1	1 2	212.9068	015_100yr(Surge)	Design_12'	2267	-5.32	8.0632	0.09	8.35	0.000538	4.33	524.07	51.81	0.24
1	1 2	212.9068	015_100yr(Surge)	Design_in-kind	2267	-5.32	8.0632	0.09	8.35	0.000538	4.33	524.07	51.81	0.24
1	1	212.9068	015_100yr(Surge)	Design_Exist	2267	-5.32	10.6528	6.71	10.84	0.000391	3.49	699.71	150.79	0.18
1	. 2	208.0453	2018_002yr	Design_Exist	254	-5.32	6.0415	-0.81	6.12	0.00034	2.25	112.66	49.15	0.13
1		208.0453	2018_010yr	Design_Exist	924	-5.32	7.7022	2.47	8.45	0.002773	6.94	133.21	51.59	0.37
1	-		2018_025y	Design_Exist	1363	-5.32	8.2652	4.14	9.73	0.005214	9.72	140.19	52.41	0.51
1	-		2018_050yr	Design_Exist	1772	-5.32	8.4445	5.54		0.008426	12.44	142.42	52.68	0.65
1	-		2018_100yr	Design_Exist	2267	-5.32	10.6431	7.07	10.83	0.0004	3.52	691.88	154.61	0.18
1	-		2018_500yr	Design_Exist	3078	-5.32	11.3072	9.39	11.6	0.000589	4.41	814.53	219.19	0.22
1	-		2018_25yr_MHHW_M	Design_Exist	1363.01	-5.32	8.2644	4.14	9.73	0.005216	9.72	140.18	52.41	0.51
1	-		2018_25yr_MSL_Ma	Design_Exist	1363	-5.32	8.2597	4.14	9.73	0.005222	9.73	140.13	52.41	0.51
1	-		2100_025yr_Ab1	Design_Exist	1930	-5.32	10.2611	6.04	10.41	0.000328	3.12	638.1	129.12	0.16
1	-		2100_050yr_Ab1	Design_Exist	1946	-5.32	10.277	6.1	10.43	0.000331	3.14	640.17	129.48	0.17
1	-		2100_100yr_Ab1 2015_025yr(Surge	Design_Exist Design_Exist	2943 1363	-5.32 -5.32	11.2148 8.2781	9.01 4.14	11.49 9.74	0.000556	4.27 9.71	794.57 140.35	212.82 52.43	0.22
1	_		2015_023yr(Surge 2015_050yr(Surge	Design_Exist	1303	-5.32	8.4561	5.54	10.86	0.008402	12.43	140.33	52.43	0.65
1	-		015_100yr(Surge)	Design_Exist	2267	-5.32	10.6473	7.07	10.80	0.000399	3.52	692.52	154.88	0.03
1		200.0433	015_100y1(Suige)	Design_Exist	2207	-5.52	10.0475	7.07	10.04	0.000333	5.52	052.52	134.00	0.10
1		203 1735	2018_002yr	Design_Exist	254	-5.32	6.0921	-0.8	6.1	0.000021	0.64	398.09	49.23	0.04
1	-		2018_010yr	Design_Exist	924	-5.32	8.1871	2.47	8.24	0.000137	1.83	504.44	52.3	0.1
1	-		2018_025y	Design_Exist	1363	-5.32	9.2244	4.14	9.32	0.00022	2.44	559.48	53.81	0.13
1	-		2018_050yr	Design_Exist	1772	-5.32	10.0302	4.6		0.000296	2.94	606.8	125.18	0.16
1	-		2018_100yr	Design_Exist	2267	-5.32	10.6405	4.6		0.0004	3.52	692.46	159.73	0.18
1	1 2	203.1735	2018_500yr	Design_Exist	3078	-5.32	11.3039	4.6	11.6	0.000588	4.41	818.44	222.15	0.22
1	1 2	203.1735	2018_25yr_MHHW_M	Design_Exist	1363.01	-5.32	9.2238	4.14	9.32	0.00022	2.44	559.44	53.81	0.13
1	1 2	203.1735	2018_25yr_MSL_Ma	Design_Exist	1363	-5.32	9.2199	4.14	9.31	0.00022	2.44	559.23	53.81	0.13
1	. 2	203.1735	2100_025yr_Ab1	Design_Exist	1930	-5.32	10.2589	4.6	10.41	0.000328	3.13	636.02	134.49	0.16
1	1	203.1735	2100_050yr_Ab1	Design_Exist	1946	-5.32	10.2748	4.6	10.43	0.000332	3.15	638.18	136.18	0.17
1	. 2	203.1735	2100_100yr_Ab1	Design_Exist	2943	-5.32	11.2116	4.6	11.49	0.000556	4.27	798.16	217.13	0.22
1	1	203.1735	2015_025yr(Surge	Design_Exist	1363	-5.32	9.2352	4.14	9.33	0.000219	2.43	560.05	53.83	0.13
1	. 2	203.1735	2015_050yr(Surge	Design_Exist	1772	-5.32	10.0385	4.6	10.17	0.000296	2.93	607.84	125.36	0.16
1	1 2	203.1735	015_100yr(Surge)	Design_Exist	2267	-5.32	10.6446	4.6	10.84	0.000399	3.52	693.13	159.99	0.18
	<u> </u>													
1	-		2018_002yr	Design_20'	254	-5.32	4.769	ļ	4.77	0.000006	0.47	545.48	69.44	0.03
1			2018_002yr	Design_12'	254	-5.32	4.769		4.77	0.000006	0.47	545.48	69.44	0.03
1	-		2018_002yr	Design_in-kind	254	-5.32	4.769		4.77	0.000006	0.47	545.48	69.44	0.03
1	-		2018_002yr	Design_Exist	254	-5.32	4.769		4.77	0.000006	0.47	545.48	69.44	0.03
1	-		2018_010yr	Design_20'	924	-5.32	4.7565		4.8	0.000085	1.7	544.61	69.4	0.11
1	-		2018_010yr 2018 010yr	Design_12' Design in-kind	924	-5.32	4.7565		4.8	0.000085	1.7	544.61	69.4	0.11
1	-		2018_010yr 2018_010yr	Design_in-kind Design_Exist	924 924	-5.32 -5.32	4.7565 4.7565		4.8	0.000085	1.7	544.61 544.61	69.4 69.4	0.11
1	-		2018_010yr 2018_025y	Design_Exist	1363	-5.32	4.7565		4.8	0.000085	2.51	544.61	69.4	0.11
1			2018_025y 2018_025y	Design_20 Design_12'	1363	-5.32	4.7403		4.84	0.000186	2.51	543.49	69.36	0.16
1	-		2018_025y 2018_025y	Design_12 Design in-kind	1363	-5.32	4.7403		4.84	0.000186	2.51	543.49	69.36	0.16
1	_		2018_025y 2018_025y	Design_Exist	1363	-5.32	4.7403		4.84	0.000186	2.51	543.49	69.36	0.16
1	-		2018_020y 2018_050yr	Design_20'	1772	-5.32	4.7193		4.89	0.000100	3.27	542.03	69.29	0.21
1	-		2018_050yr	Design_12'	1772	-5.32	4.7193		4.89	0.000317	3.27	542.03	69.29	0.21
1	-		2018_050yr	Design_in-kind	1772	-5.32	4.7193		4.89	0.000317	3.27	542.03	69.29	0.21
1	-		2018_050yr	Design_Exist	1772	-5.32	4.7193		4.89	0.000317	3.27	542.03	69.29	0.21
1	-		2018_100yr	Design_20'	2267	-5.32	4.6856		4.96	0.000525	4.2	539.7	69.19	0.27
1	-		2018_100yr	Design_12'	2267	-5.32	4.6856		4.96	0.000525	4.2	539.7	69.19	0.27
1	-		2018_100yr	Design_in-kind	2267	-5.32	4.6856		4.96	0.000525	4.2	539.7	69.19	0.27
1	-		2018_100yr	Design_Exist	2267	-5.32	4.6856		4.96	0.000525	4.2	539.7	69.19	0.27
1	-		2018_500yr	Design_20'	3078	-5.32	4.6065		5.12	0.000996	5.76	534.23	68.95	0.36
1	-		2018_500yr	Design_12'	3078	-5.32	4.6065		5.12	0.000996	5.76	534.23	68.95	0.36
		170.7372	2018_500yr	Design_in-kind	3078	-5.32	4.6065		5.12	0.000996	5.76	534.23	68.95	0.36
1												-		

Reach	R	River Sta	Profile	Plan	-		W.S. Elev			E.G. Slope	Vel Chnl		-	Froude # Chi
1	1	170 7272	2018 25yr MHHW M	Design_20'	(cfs) 1363.01	(ft) -5.32	(ft) 5.7279	(ft)	(ft) 5.8	(ft/ft) 0.00013	(ft/s) 2.22	(sq ft) 613.47	(ft) 72.37	0.13
	-		_ ,	Design_20	1363.01	-5.32	5.7279		5.8	0.00013	2.22	613.47	72.37	0.13
1	1		-	Design_in-kind	1363.01	-5.32	5.7279		5.8	0.00013	2.22	613.47	72.37	0.13
1	1		2018_25yr_MHHW_M	-	1363.01	-5.32	5.7279		5.8	0.00013	2.22	613.47	72.37	0.13
1	1	170.7372	2018_25yr_MSL_Ma	Design_20'	1363	-5.32	0.5328		0.9	0.001269	4.89	278.65	56.53	0.39
1	1	170.7372	2018_25yr_MSL_Ma	Design_12'	1363	-5.32	0.5328		0.9	0.001269	4.89	278.65	56.53	0.39
1	_	170.7372	2018_25yr_MSL_Ma	Design_in-kind	1363	-5.32	0.5328		0.9	0.001269	4.89	278.65	56.53	0.39
1	1		2018_25yr_MSL_Ma	Design_Exist	1363	-5.32	0.5328		0.9	0.001269	4.89	278.65	56.53	0.39
1	1		2100_025yr_Ab1	Design_20'	1930	-5.32	6.736		6.86	0.00018	2.81	693.42	88.16	0.16
1	1		2100_025yr_Ab1	Design_12'	1930	-5.32	6.736		6.86	0.00018	2.81	693.42	88.16	0.16
1	-		2100_025yr_Ab1 2100_025yr_Ab1	Design_in-kind Design_Exist	1930 1930	-5.32 -5.32	6.736 6.736		6.86 6.86	0.00018	2.81	693.42 693.42	88.16 88.16	0.16
1	-		2100_025yr_Ab1 2100_050yr_Ab1	Design_Exist Design 20'	1930	-5.32	6.7354		6.86	0.00018	2.81	693.42	88.15	0.16
	_		2100_050yr_Ab1	Design_20 Design_12'	1946	-5.32	6.7354		6.86	0.000183	2.84	693.37	88.15	0.16
1	_		2100_050yr_Ab1	Design_in-kind	1946	-5.32	6.7354		6.86	0.000183	2.84	693.37	88.15	0.16
1	1		2100_050yr_Ab1	Design_Exist	1946	-5.32	6.7354		6.86	0.000183	2.84	693.37	88.15	0.16
1	1	170.7372	2100_100yr_Ab1	Design_20'	2943	-5.32	6.6891		6.98	0.000425	4.31	689.3	87.47	0.25
1	1	170.7372	2100_100yr_Ab1	Design_12'	2943	-5.32	6.6891		6.98	0.000425	4.31	689.3	87.47	0.25
1	1	170.7372	2100_100yr_Ab1	Design_in-kind	2943	-5.32	6.6891		6.98	0.000425	4.31	689.3	87.47	0.25
1	1	170.7372	2100_100yr_Ab1	Design_Exist	2943	-5.32	6.6891		6.98	0.000425	4.31	689.3	87.47	0.25
1	1	170.7372	2018_025yr(Surge	Design_20'	1363	-5.32	8.1886		8.23	0.000055	1.71	840.3	120.18	0.09
1			2015_025yr(Surge	Design_12'	1363	-5.32	8.1886		8.23	0.000055	1.71	840.3	120.18	0.09
1	-		2015_025yr(Surge	Design_in-kind	1363	-5.32	8.1886		8.23	0.000055	1.71	840.3	120.18	0.09
1	-		2015_025yr(Surge	Design_Exist	1363	-5.32	8.1886		8.23	0.000055	1.71	840.3	120.18	0.0
1	-		2018_050yr(Surge 2015_050yr(Surge	Design_20'	1772 1772	-5.32 -5.32	8.1806 8.1806		8.26 8.26	0.000093	2.22	839.35 839.35	120 120	0.12
1	-		2015_050yr(Surge 2015_050yr(Surge	Design_12' Design_in-kind	1772	-5.32	8.1806		8.26	0.000093	2.22	839.35	120	0.12
	1		2015_050yr(Surge	Design_III-kild	1772	-5.32	8.1806		8.26	0.000093	2.22	839.35	120	0.12
	1		015_100yr(Surge)	Design_20'	2267	-5.32	8.168		8.29	0.000153	2.85	837.84	119.73	0.15
1	1		015_100yr(Surge)	Design_12'	2267	-5.32	8.168		8.29	0.000153	2.85	837.84	119.73	0.15
1	1		015_100yr(Surge)	Design_in-kind	2267	-5.32	8.168		8.29	0.000153	2.85	837.84	119.73	0.15
1	1	170.7372	015_100yr(Surge)	Design_Exist	2267	-5.32	8.168		8.29	0.000153	2.85	837.84	119.73	0.15
1	1	136.7287	2018_002yr	Design_20'	254	-7.5	4.77	-6.55	4.77	0.000002	0.34	793.66	96.66	0.02
1	1		2018_002yr	Design_12'	254	-7.5	4.77	-6.55	4.77	0.000002	0.34	793.66	96.66	0.02
1	-		2018_002yr	Design_in-kind	254	-7.5	4.77	-6.55	4.77	0.000002	0.34	793.66	96.66	0.02
1	-		2018_002yr	Design_Exist	254	-7.5	4.77	-6.55	4.77	0.000002	0.34	793.66	96.66	0.02
1	_		2018_010yr	Design_20'	924	-7.5	4.77	-5.29	4.79	0.000028	1.23	793.66	96.66	0.07
1	_		2018_010yr 2018_010yr	Design_12' Design_in-kind	924 924	-7.5 -7.5	4.77	-5.29 -5.29	4.79 4.79	0.000028	1.23	793.66 793.66	96.66 96.66	0.07
	-		2018_010yr	Design_III-killd	924	-7.5	4.77	-5.29	4.79	0.000028	1.23	793.66	96.66	0.07
			2018_025y	Design_20'	1363	-7.5	4.77	-4.65	4.82	0.000020	1.25	793.66	96.66	0.0
1	_		2018_025y	Design_12'	1363	-7.5	4.77	-4.65	4.82	0.000061	1.81	793.66	96.66	0.1
1	1		2018_025y	Design_in-kind	1363	-7.5	4.77	-4.65	4.82	0.000061	1.81	793.66	96.66	0.1
1	1	136.7287	2018_025y	Design_Exist	1363	-7.5	4.77	-4.65	4.82	0.000061	1.81	793.66	96.66	0.1
1	1	136.7287	2018_050yr	Design_20'	1772	-7.5	4.77	-4.12	4.86	0.000104	2.35	793.66	96.66	0.13
1	1	136.7287	2018_050yr	Design_12'	1772	-7.5	4.77	-4.12	4.86	0.000104	2.35	793.66	96.66	0.13
1	1	136.7287	2018_050yr	Design_in-kind	1772	-7.5	4.77	-4.12	4.86	0.000104	2.35	793.66	96.66	0.13
1	1		2018_050yr	Design_Exist	1772	-7.5		-4.12	4.86	0.000104		793.66	96.66	0.13
1	-		2018_100yr	Design_20'	2267	-7.5		-3.54	4.91	0.00017	3.01	793.66	96.66	0.16
1	-		2018_100yr	Design_12'	2267	-7.5		-3.52	4.91	0.00017	3.01	793.66	96.66	0.16
1	1		2018_100yr	Design_in-kind	2267	-7.5		-3.52	4.91	0.00017	3.01	793.66	96.66	0.16
	1		2018_100yr 2018_500yr	Design_Exist Design_20'	2267 3078	-7.5 -7.5	4.77 4.77	-3.52 -2.66	4.91 5.03	0.00017	3.01 4.08	793.66 793.66	96.66 96.66	0.16
1	1		2018_500yr 2018_500yr	Design_20 Design_12'	3078	-7.5	4.77	-2.66	5.03	0.000313	4.08	793.66	96.66	0.22
1	1		2018_500yr	Design_12 Design_in-kind	3078	-7.5	4.77	-2.66	5.03	0.000313	4.08	793.66	96.66	0.22
1	1		2018_500yr	Design_Exist	3078	-7.5	4.77	-2.66	5.03	0.000313	4.08	793.66	96.66	0.22
1	1		2018_25yr_MHHW_M	-	1363.01	-7.5	5.75	-4.65	5.79	0.000046	1.65	893.87	107.84	0.08
1	1	136.7287	2018_25yr_MHHW_M	Design_12'	1363.01	-7.5	5.75	-4.65	5.79	0.000046	1.65	893.87	107.84	0.08
1	1	136.7287	2018_25yr_MHHW_M	Design_in-kind	1363.01	-7.5	5.75	-4.65	5.79	0.000046	1.65	893.87	107.84	0.08
1	1	136.7287	2018_25yr_MHHW_M	Design_Exist	1363.01	-7.5	5.75	-4.65	5.79	0.000046	1.65	893.87	107.84	0.08
1	1			Design_20'	1363	-7.5		-4.65	0.81	0.000273	2.89	473.24	68.64	0.19
1	-			Design_12'	1363	-7.5		-4.65	0.81	0.000273	2.89	473.24	68.64	0.19
1	_			Design_in-kind	1363	-7.5		-4.65	0.81	0.000273	2.89		68.64	0.19
1	-		2018_25yr_MSL_Ma		1363	-7.5		-4.65	0.81	0.000273	2.89		68.64	0.19
1			2100_025yr_Ab1	Design_20' Design_12'	1930	-7.5 -7.5		-3.93 -3.93	6.84	0.000068	2.13 2.13	1009.81	119.48	0.
1	_		2100_025yr_Ab1 2100_025yr_Ab1	Design_12' Design_in-kind	1930 1930	-7.5		-3.93	6.84 6.84	0.000068	2.13	1009.81 1009.81	119.48 119.48	0.:
1	-		2100_025yr_Ab1 2100_025yr_Ab1	Design_III-kind Design_Exist	1930	-7.5	6.77	-3.93	6.84	0.000068	2.13	1009.81	119.48	0.:
			2100_023yr_Ab1 2100_050yr_Ab1	Design_20'	1930	-7.5	6.77	-3.93	6.84	0.00007	2.13	1009.81	119.48	0.11
1	-		2100_050yr_Ab1	Design_20 Design_12'	1946	-7.5	6.77	-3.91	6.84	0.00007	2.15	1009.81	119.48	0.11
	_	/	2100_050yr_Ab1	Design_in-kind	1946	-7.5			6.84	0.00007	2.15	1009.81	119.48	0.11

Reach	River Sta	Profile	Plan	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
				(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1	136.7287	2100_050yr_Ab1	Design_Exist	1946	-7.5	6.77	-3.91	6.84	0.00007	2.15	1009.81	119.48	0.11
1	136.7287	2100_100yr_Ab1	Design_20'	2943	-7.5	6.77	-2.8	6.93	0.000159	3.25	1009.81	119.48	0.16
1	136.7287	2100_100yr_Ab1	Design_12'	2943	-7.5	6.77	-2.8	6.93	0.000159	3.25	1009.81	119.48	0.16
1	136.7287	2100_100yr_Ab1	Design_in-kind	2943	-7.5	6.77	-2.8	6.93	0.000159	3.25	1009.81	119.48	0.16
1	136.7287	2100_100yr_Ab1	Design_Exist	2943	-7.5	6.77	-2.8	6.93	0.000159	3.25	1009.81	119.48	0.16
1	136.7287	2018_025yr(Surge	Design_20'	1363	-7.5	8.2	-4.65	8.23	0.000023	1.34	1199.56	147.66	0.06
1	136.7287	2015_025yr(Surge	Design_12'	1363	-7.5	8.2	-4.65	8.23	0.000023	1.34	1199.56	147.66	0.06
1	136.7287	2015_025yr(Surge	Design_in-kind	1363	-7.5	8.2	-4.65	8.23	0.000023	1.34	1199.56	147.66	0.06
1	136.7287	2015_025yr(Surge	Design_Exist	1363	-7.5	8.2	-4.65	8.23	0.000023	1.34	1199.56	147.66	0.06
1	136.7287	2018_050yr(Surge	Design_20'	1772	-7.5	8.2	-4.12	8.25	0.00004	1.74	1199.56	147.66	0.08
1	136.7287	2015_050yr(Surge	Design_12'	1772	-7.5	8.2	-4.12	8.25	0.00004	1.74	1199.56	147.66	0.08
1	136.7287	2015_050yr(Surge	Design_in-kind	1772	-7.5	8.2	-4.12	8.25	0.00004	1.74	1199.56	147.66	0.08
1	136.7287	2015_050yr(Surge	Design_Exist	1772	-7.5	8.2	-4.12	8.25	0.00004	1.74	1199.56	147.66	0.08
1	136.7287	015_100yr(Surge)	Design_20'	2267	-7.5	8.2	-3.52	8.27	0.000065	2.23	1199.56	147.66	0.1
1	136.7287	015_100yr(Surge)	Design_12'	2267	-7.5	8.2	-3.52	8.27	0.000065	2.23	1199.56	147.66	0.1
1	136.7287	015_100yr(Surge)	Design_in-kind	2267	-7.5	8.2	-3.52	8.27	0.000065	2.23	1199.56	147.66	0.1
1	136.7287	015_100yr(Surge)	Design_Exist	2267	-7.5	8.2	-3.52	8.27	0.000065	2.23	1199.56	147.66	0.1

ATTACHMENT D Scour Results

SCOUR ANALYSIS - CONTRACTION SCOUR & ABUTMENT SCOUR Modified Laursen's Equation (1960), Laursens (1963), and NCHRP

Bridge/Culvert Name: MBTS Central Street Bridge - Proposed 20-Foot Concrete Arch Culvert

Town	Manhcester by the Sea (MBTS)
Lat:	42.575253
Long:	-70.77288
Storm Size:	50-Year
HEC-RAS Proj:	SawmillBrookDownstream
HEC-RAS Geom:	SawmillBrk Design20'
	Sawiniiibi K_Design20

HEC-RAS XS1	328.7
HEC-RAS XS2	260.6 (just upstream of culvert)

Notes

(1) Governing storms are 50-year for Scour Design and 100-Year for Scour Check (based on Table 1.3.4-1 in the MassDOT LRFD Bridge Manual.

(2) for scour at open-bottom culverts, refer to HEC-18 for equations(3) left bank and right bank defined from looking downstream

Data Input

B				
Description	Item	LOB	CHANNEL	ROB
Constant for Critical Velocity Calculation (English Units)	Ku (crit)	11.17	11.17	11.17
Constant for Clear- Water Scour Calculations (English Units)	Ku (CW-cont)	0.0077	0.0077	0.0077
Constant for Open Bottom Culvert Contraction Scour Calc	Ku (Open-Bottom)	0.84	0.84	0.84
Hydraulic Depth at XS 1	y ₁ (ft)	1.37	8.78	0.16
Hydraulic Depth at XS 1 (for Critical Velocity Calculation)	y (ft)	1.37	8.78	0.16
Hydraulic Depth at XS 2 Prior to Scour	y_0 (ft)		5.8	
Flow at XS 1	Q_1 (ft ³ /s)	79.23	1686.97	5.8
Flow at XS 2	Q ₂ (ft ³ /s)		1772	
Top Width at XS1	W ₁ (ft)	22.24	26.6	68.62
Top Width at XS2	W ₂ (ft)		22.32	
Unit Discharge at XS1	q ₁ (ft ² /s)	3.56	63.42	0.08
Unit Discharge at XS2	q ₂ (ft ² /s)		79.39	
Velocity at XS1	V_1 (ft/s)	2.61	7.22	0.53
Velocity at XS1 (For Critical Scour Equation V is V1)	V (ft/s)	2.61	7.22	0.53
Energy Grade Line at XS1	S ₁	0.002722	0.002722	0.002722
D50 from Sieve Analysis	D50 (mm)	0.275	0.275	0.275
D50 from Sieve Analysis with Convesrion from mm to ft	D50 (ft)	0.000902	0.000902	0.000902

Critical Velocity

Input:

 $V_c = K_u y^{1/6} D^{1/3}$

		LOB	CHANNEL	ROB	
	Ku (crit)	11.17	11.17	11.17	<- constant English units
	y (ft)	1.37	8.78	0.16	<- hydraulic depth from HEC-RAS upstream cross section
	D50 (ft)	0.000902	0.000902	0.000902	<- based on sieve analysis
	V (ft/s)	2.61	7.22	0.53	<- mean channel velocity in HEC-RAS
Output:					
	Vc (ft/s)	1.137	1.550	0.795	
	Clear-Water ??	NO	NO	YES	
	Live-Bed ??	YES	YES	NO	
	Construction Scour	Live-Bed	Live-Bed	Clear-Water	

Tighe&Bond

Modified Laursen's Equation (1960), Laursens (1963), and NCHRP

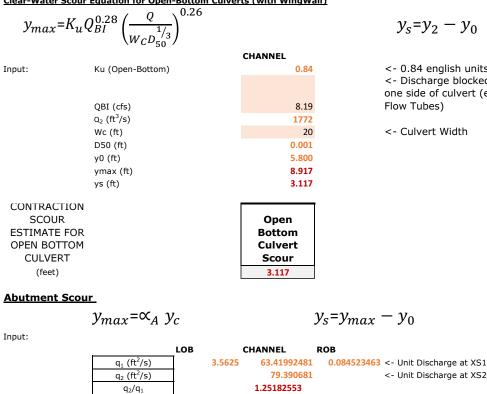
Live-Bed Contraction Scour

$$y_2 = y_1 \left(\frac{Q_2}{Q_1}\right)^{6/7} \left(\frac{W_1}{W_2}\right)^{k_1} \qquad y_s = y_2 - y_0$$

Input:

	LOB	CHANNEL	ROB
y1 (ft)	1.37	8.78	
y0 (ft)	0	5.8	<- assumed that this is the same approx. as y1
Q1 (ft ³ /s)	79.23	1686.97	<- flow for design storm assuming all going into channel
Q ₂ (ft ³ /s)	0	1772	<- assuming no overtopping, all flow goes through
W1 (ft)	22.24	26.6	<- based on upstream cross section top width HEC-RAS at design stor
W2 (ft)	0	22.32	<- based on proposed structure clear span HEC-RAS at design storm
S1	0.002722	0.002722	<- from HEC-RAS
V* (ft/s)	0.347	0.877	<- calculated
D50 (mm)	0.275	0.275	
T (ft/s)	0.036123	0.036123	<- input from figure 6.8 (estimated using polynomial best fit)

Intermediate Calcs:				
	k1	0.69	0.69	
	y2	N/A No Flow	9.500761239	
Output:				
	ys (ft)	N/A No Flow	3.700761239	<- predicted scour depth for Live-Bed


Clear-Water Contraction Scour

$y_2 = \left[\frac{K_u Q^2}{D_m^{2/3} W^2}\right]^{3/7}$	<i>y</i> _{<i>s</i>} = <i>y</i> ₂	$-y_0$	
Input:			
2	LOB	CHANNEL	ROB
Q ₂ (ft ³ /s)			0
D50 (ft)			0.000902 <- assumed about 0.25"
Dm (ft)	-	-	0.0011275 <- calculated based on D50
W ₂ (ft)			0 <- based on HEC-RAS
y0 (ft)			0 <- based on HEC-RAS
Ku (CW-cont)			0.0077 <- constant
Intermediate Calcs:			
y2 (ft)			N/A No Flow
Output:			
ys (ft)			N/A No Flow

Take Live-Bed where applicable and Contraction Scour where applicable.

	Left Bank	Channel	Right Bank
TOTAL			
CONTRACTION			
SCOUR	N/A No Flow	3.701	N/A No Flow
ESTIMATED:			
(feet)	<u> </u>		·

Modified Laursen's Equation (1960), Laursens (1963), and NCHRP Clear-Water Scour Equation for Open-Bottom Culverts (with WingWall)

 $y_s = y_2 - y_0$

<- 0.84 english units; 1.16 SI units <- Discharge blocked by road embankment on one side of culvert (estimated using HEC-RAS

<- based on HEC-RAS

<- based on HEC-RAS

<- From NCHRP Figures

<- flow depth including scour (maximum y_{max} or y_2)

Intermediate Calcs:

Output:

y0 (ft)

yc

a_A

ymax

ys (ft)

NCHRP Figure

N/A No Flow

10.8 N/A No Flow <- abutment scour

5.8

9.501

1.75

16.63

Figure 8.10

Tighe&Bond

SCOUR ANALYSIS - CONTRACTION SCOUR & ABUTMENT SCOUR Modified Laursen's Equation (1960) and Laursens (1963)

Bridge/Culvert Name: MBTS Central Street Bridge - Proposed 20-Foot Concrete Arch Culvert

Town	Manhcester by the Sea (MBTS)
Lat:	42.575253
Long:	-70.77288
Storm Size:	100-Year
HEC-RAS Proj:	SawmillBrookDownstream
HEC-RAS Geom:	SawmillBrk_Design20'
HEC-RAS XS1	328.7
HEC-RAS XS2	260.6 (just upstream of culvert)

Notes

(1) Governing storms are 50-year for Scour Design and 100-Year for Scour Check (based on Table 1.3.4-1 in the MassDOT LRFD Bridge Manual.

(2) for scour at open-bottom culverts, refer to HEC-18 for equations(3) left bank and right bank defined from looking downstream

<u>Data Input</u>

Description	14	1.00	CUANNEL	202
-	Item	LOB	CHANNEL	ROB
Constant for Critical	Ku (crit)	11.17	11.17	11.17
Velocity Calculation (English Units)	Ku (crit)	11.17	11.17	11.17
Constant for Clear-		-	-	
Water Scour	<i>(</i>)	0.0077	0.0077	0.0077
Calculations (English	Ku (CW-cont.)	0.0077	0.0077	0.0077
Units)				
Constant for Open				
Bottom Culvert	Ku (Open-Bottom)	0.84	0.84	0.84
Contraction Scour		0101	0101	0101
Calc Hydraulic Depth at				
XS 1	y ₁ (ft)	2.08	10.72	1.55
Hydraulic Depth at				
XS 1 (for Critical	y (ft)	2.08	10.72	1.55
Velocity Calculation)				
Hydraulic Depth at	y ₀ (ft)		6.8	
XS 2 Prior to Scour	- (-3)		1510.11	500.40
Flow at XS 1	Q ₁ (ft ³ /s)	218.41	1519.41	529.18
Flow at XS 2	Q ₂ (ft ³ /s)		2267	
Top Width at XS1	W_1 (ft)	44.42	26.6	204.43
Top Width at XS2	W ₂ (ft)		22.53	
Unit Discharge at	q1 (ft ² /s)	4.92	57.12	2.59
VS1 Unit Discharge at	q ₂ (ft ² /s)		100.62	
XS2 Velocity at XS1	V ₁ (ft/s)	2.36	5.33	1.67
Velocity at XS1 (For	V ₁ (10/3)	2.50	5.55	1.07
Critical Scour	V (ft/s)	2.36	5.33	1.67
Equation V is V1)	v (175)	2.30	5.55	1.07
Energy Grade Line at				
XS1	S ₁	0.00427	0.00427	0.00427
D50 from Sieve		0.275	0.275	0.275
Analysis	D50 (mm)	0.275	0.275	0.275
D50 from Sieve				
Analysis with		0.000902	0.000902	0.000902
Conversion from mm	D50 (ft)			
to ft	D30 (IL)			

Critical Velocity

Input:

 $V_c = K_u y^{1/6} D^{1/3}$

		LOB	c	CHANNEL		ROB	
	Ku (crit)	11	1.17		11.17		11.17
	y (ft)	2	2.08		10.72		1.55
	D50 (ft)	0.000	902	0.00	00902	C	.000902
	V (ft/s)	2	2.36		5.33		1.67
Output:							
	Vc (ft/s)	1.	.219		1.603		1.161
	Clear-Water ??	NO	Ν	NO		NO	
	Live-Bed ??	YES	Y	ſES		YES	
	Construction Scour	Live-Bed	L	.ive-Bed		Live-Be	d

Modified Laursen's Equation (1960) and Laursens (1963)

Live-Bed Contraction Scour

$$y_2 = y_1 \left(\frac{Q_2}{Q_1}\right)^{6/7} \left(\frac{W_1}{W_2}\right)^{k_1} \qquad y_s = y_2 - y_0$$

Input:

ROB	
1.55	
.8 0	<- assumed that this is the same approx. as y1
l 529.18	<- flow for design storm assuming all going into channel
57 0	<- assuming no overtopping, all flow goes through
.6 204.43	<- based on upstream cross section top width HEC-RAS at design stor
53 0	<- based on proposed structure clear span HEC-RAS at design storm
0.00427	<- from HEC-RAS
L4 0.462	<- calculated
75 0.275	
0.036123	<- input from figure 6.8 (estimated using polynomial best fit)
	72 1.55 5.8 0 41 529.18 67 0 53 0 27 0.00427 14 0.462 75 0.275

Intermediate Calcs:

	k1	0.69	0.69 0.69	9
	y2	N/A No Flow	8.531130248 N/A No Flow	
Output:				
	ys (ft)	N/A No Flow	1.731130248 N/A No Flow	<- predicted scour depth for Live-Bed

Clear-Water Contraction Scour

$$y_2 = \left[\frac{K_u Q^2}{D_m^{2/3} W^2}\right]^{3/7}$$
Input:

Input:		LOB	CHANNEL	ROB	
	Q ₂ (ft ³ /s)				
	D50 (ft)				<- assumed about 0.25"
	Dm (ft)	-	-	-	<- calculated based on D50
	W ₂ (ft)				<- based on HEC-RAS
	y0 (ft)				<- based on HEC-RAS
	Ku (CW-cont)				<- constant
Intermediate Calcs:					
	y2 (ft)				
Output:					-
	ys (ft)				

Take Live-Bed where applicable and Contraction Scour where applicable.

 $y_s = y_2 - y_0$

	Left Bank	Channel	Right Bank
TOTAL			
CONTRACTION			
SCOUR	N/A No Flow	1.731	N/A No Flow
ESTIMATED:			
(feet)	<u></u>		

Tighe&Bond

CHANNEL

0.84

13.29

2267

0.001

6.800 10.887

4.087

Open

Bottom

Culvert

Scour

4.087

20

Modified Laursen's Equation (1960) and Laursens (1963) Clear-Water Scour Equation for Open-Bottom Culverts (with WingWall)

$$y_{max} = K_u Q_{BI}^{0.28} \left(\frac{Q}{W_C D_{50}^{1/3}}\right)^{0.26}$$

Ku (Open-Bottom)

QBI (cfs)

 Q_2 (ft³/s)

Wc (ft)

D50 (ft)

ymax (ft)

y0 (ft)

ys (ft)

 $y_s = y_2 - y_0$

<- 0.84 english units; 1.16 SI units <- Discharge blocked by road embankement on one side of culvert (estimated using HEC-RAS Flow Tubes)

<- Culvert Width

CONTRACTION SCOUR ESTIMATE FOR OPEN BOTTOM CULVERT (feet)

Abutment Scour

 $y_{max} = \propto_A y_c$

 $y_s = y_{max} - y_0$

Input:

Input:

input					
		LOB	CHANNEL	ROB	
	q1 (ft ² /s)	4.916929311	57.12067669	2.588563322	<- Unit Discharge at XS1
	q ₂ (ft ² /s)		100.6213937		<- Unit Discharge at XS2
	q ₂ /q ₁		1.761558152		
	y0 (ft)	0	6.8	0	<- based on HEC-RAS
	NCHRP Figure		Figure 8.10		<- based on HEC-RAS
	ус		10.887		<- flow depth including scour (maximum y_{max} or y_2)
	a _A		1.25		<- From NCHRP Figures
Intermediate Calcs:					
	ymax		13.61		
					1
ABUTMENT SCOUR	(2)	N/A No Flow	6.8	N/A No Flow	
SCOUR	ys (ft)				- abutment scour

Tighe&Bond

SCOUR ANALYSIS - LONG-TERM AGGREGATION/DEGRADATION QUALITATIVE AND QUANTITATIVE APPROACHES

(MBTS)

Tighe&Bond

Bridge/Culvert Name: MBTS Central Street Bridge - Proposed 20-Foot Concrete Arch

Town	Manchester by the Sea
Lat:	42.575253
Long:	-70.77288

Notes

(1) Governing storms are 50-year for Scour Design and 100-Year for Scour Check (based on Table 1.3.4-1 in the MassDOT LRFD Bridge (2) Qualitative and Quantitative analyses below reference HEC-20 FHWA approach

HEC-20 (6.26) Level 1 (Qualitative Geomorphic Analyses)

Direct Evidence

Land-Use Change?
Exposed Utility Crossings
Exposed Bridge Foundations
Channel Banks Failing Due to Excessive Height
Comparison of Reference Reach Cross sections

Dams/Reservoirs Upstream/Downstream ? Changes in Watershed Land-Use ? Urbanization Deforestation Increased Impervious

Channelization Cutoffs of Meander Bends (natural or manmade)

Changes in Downstream Hydraulic Control Rocks Dams Culvert Diversions of Water In/Out of Stream

HEC-20 (6.26)

Level 2 (Basic Engineering Analyses)

Watershed Sediment Yield Incipient Motion Armoring Rating Curve Shifts Not significant (based on historical imagery from 1995 (No Data) No, existing bridge founded on bedrock. Not Observed U/S reach channelized D/S reach currently impacted by tide gate (to be

Tide gate located downstream (to be removed)

Not Significant

Not Significant

Not Significant

The pond and channel leading to the bridge is channelized with vertical walls.

The channel has some slight meanders but is generally straight. There is an ogee shaped bend upstream of the bridge.

(Assumed None) Tide gate to be removed; however, the tide gate Not Significant None known within project area

Based on sediment transport analysis sediment is anticipated to settle into the pond upstream of the bridge during high tide, and tend to flow out during low tide.

Yes (See Below) No (See Below) No Data Available

HEC-20 (6.26) Level 3 (Mathematical or Physical Modeling Studies)

A sediment transport analysis was completed in the area in 2018 as part of Sediment Characterization and Flushing Studies - Sawmill Brook Flood Mitigation and Restoration Project completed in 2018 by Tighe & Bond using HEC-RAS. The analysis evaluated the effects of a bank full "channel forming flow" occurring doing mean higher high water (MHHW) tide conditions and mean lower low water (MLLW) tide conditions.

Sediment Transport/Routing Modeling

Incipient Diameter Analysis

Input:				
		LOB	CHANNEL	ROB
	Q (cfs)		1772	
	V (f/s)		13.68	
	y (ft)		5.8	
	R (ft)		3.99	
	D50 (ft)		0.0009	
	D84 (ft)		0.0044	
	Ku		1.486	
	n		0.033	
Intermediate Calcs:				
	ks		0.01546	
	n		0.01243	
	n		0.01620	
	τ ₀		3.633	
Output:			<u> </u>	т
	Dc (ft)		1.2	l

>During design flood, hydraulic forces are adequate to transport bed material up to Dc in diameter. The gradation curve indicates the percentage of bed material that is less than or equal to this particle diameter, therefor, 100 - (this percentage) is coarser than the Dc

>If more than 5% of the bed material is coarser than Dc, then armoring is possible. See section below

Armoring Analysis

(No armoring is anticipated to occur)

Conclusions: Based on the qualitative and quantitative analysis above, the long term aggregation and degradation potential for this reach suggests that there may be potential for both sediment aggradation and degradation over time. It is anticipated that storm events occurring during higher tides will cause sediment to aggregate, while storm events during low tides will tend to cause sediment to degenerate. The shallow bedrock (within 0 to 2 feet of the channel bottom) is anticipated to act as a functional vertical control for degradation. The existing walls on either end of the channel and the pond upstream are anticipated to prevent channel migration.

Appendix D Geotechnical Report

Central Street Bridge Replacement – Manchester-by-the-Sea, MA Geotechnical Evaluation

То:	Massachusetts Department of Transportation (MassDOT)
FROM:	Dave Brogan, PE and Chris Haker, PE
Сору:	Vinod Kalikiri PE, PTOE and David Loring, PE, LEED AP
DATE:	August 22, 2019

1. EXECUTIVE SUMMARY

Tighe & Bond, Inc. performed a subsurface exploration program for the Central Street Bridge Replacement project in Manchester-by-the-Sea, Massachusetts. Observed subsurface conditions generally consisted of 14 inches of asphalt pavement overlying 9 feet of fill overlying bedrock.

It is recommended that the proposed bridge and wingwall be supported on spread footings bearing entirely on bedrock. A concrete leveling pad could be placed between uneven bedrock surfaces and the bottom of the footings. However, it is preferable to have the footing bear directly on bedrock. Dowels socketed into bedrock may be required to resist potential sliding of the leveling pad or footings placed on sloped bedrock surfaces. Alternatively, the bedrock may be partially removed to create a level surface. The recommended nominal bearing resistance for bedrock is 200 kips per square foot (ksf), and the factored bearing resistance for bedrock at the strength limit state is 90 ksf based on a bearing resistance factor (φ_b) of 0.45 for spread footings on bedrock. Bedrock bearing surfaces should be cleared of any ponded water, loose rock, or soil prior to foundation construction.

2. INTRODUCTION

The project consists of replacing the existing bridge which spans the Sawmill Brook at the mouth of Manchester Harbor on Central Street (Route 127) in Manchester-by-the-Sea, Massachusetts. The existing bridge supports two lanes of traffic, parking on the downstream (south) side of the bridge, and sidewalks in both directions.

The vertical datum referenced in this memorandum is the North American Vertical Datum of 1988 (NAVD88).

2.1 Scope of Work

Our scope of work included coordinating and conducting a subsurface exploration program, performing geotechnical engineering analyses, and preparing a geotechnical engineering memorandum. The subsurface exploration program consisted of a review of available United States Geologic Society (USGS) mapping of the area, vacuum excavation of potential boring locations for utility clearance, and drilling test borings. Five test borings were planned, however, only one proposed boring location was found to be clear of underground utilities, and due to the congestion of the site, the need to maintain one-way traffic, and the presence of existing utilities, other boring locations were not available. Our geotechnical

engineering analyses and geotechnical memorandum have been prepared in general accordance with the Massachusetts Department of Transportation (MassDOT) Load and Resistance Factor Design (LRFD) Bridge Manual (2013 Edition) and the American Association of State Highway and Transportation Officials (AASHTO) LRFD Bridge Design Specifications (8th Edition, 2017).

2.2 Bridge Background and Proposed Construction

Central Street bridge is on the National Historic Registry as the site of historic water powered mills dating back to the 1600's. The bridge consists of a 16-foot span, mortared stone masonry circular arch bridge with stone masonry wingwalls and headwalls. Water, sewer, electric and gas utilities are located within the roadbed over the bridge. Timber cribs functioning as weirs are imbedded into the bottom of the stream bed. The bridge was rebuilt around the mid 1900's and a tide gate was installed on the south side of the bridge to control Sawmill Brook and create Central Pond just upstream. An approximate 10 to 14-foot tall and 35-foot long stone masonry wingwall extends off the southwest side of the bridge and functions as a seawall. A shotcrete facing exists along portions of the bridge and wingwall above the tidal zone.

The passage under the bridge discharges flow from Sawmill Brook via a narrow, channelized reach, with approximately 12-foot- high stone masonry walls and buildings abutting either side. Tidal flow from Manchester Harbor passes under the bridge, depending on the setting of the tide gate and tide height. The tide gate and bridge design have been identified as contributing factors to upstream flooding, due to significant hydraulic restriction when large precipitation events and high tide elevations are concurrent. In addition, the tide gate restricts fish passage. Existing grades range from approximately elevation 9 to 10 feet along the bridge deck, to elevation 0 to -4 feet in the channel below the bridge.

It is planned that the replacement structure will be a three-sided precast concrete arch culvert supported by shallow spread footings, and the southwest wingwall will be replaced with a cast-in-place concrete cantilever retaining wall, with a stone façade to replicate existing aesthetics. It is also anticipated that the tide gate will be removed. Site grades are anticipated to remain relatively unchanged near the bridge.

2.3 Site Reconnaissance and Overall Description

Central Street is an approximately 17 to 18-foot-wide, paved, two-lane roadway. Vehicular traffic generally consists of passenger cars and small trucks. The bridge is located downtown in a commercial and residential area. A site location map is included as Figure 1 in Appendix A.

3. SUBSURFACE CONDITIONS

3.1 Local Geology

Based on information from the United States Geological Survey (USGS) that is available on Oliver, the MassGIS online mapping tool, the surficial soils at the site are mapped as glacial till or bedrock with overburden thickness less than 50 feet, and bedrock is mapped as granite.

3.2 Historic Subsurface Data

Tighe & Bond requested available historic subsurface data from the Town; however, no previous test boring or geotechnical data was available for the site.

3.3 Topographic Survey

A topographic survey was performed for the site and included exposed bedrock elevations.

3.4 Subsurface Exploration Program

3.4.1 Test Borings

One geotechnical test boring (B-1) was drilled by New England Boring Contractors of Derry, NH on August 9, 2018. Although additional borings were planned, they were not advanced due to the numerous underground utilities in the area and physical site constraints. This site constraints limiting the ability to do additional borings were communicated to the MassDOT District Bridge Engineer prior to advancing the design. The test boring was advanced to a depth of 5 feet below the existing ground surface using vacuum excavation methods to check for the presence of underground utilities, and then with 4-inch inner diameter flush joint casing and drive and wash methods to a depth of approximately 20.5 feet. Split-spoon sampling and Standard Penetration Tests (SPTs) were conducted at maximum 5-foot intervals. Test boring B-1 was terminated in bedrock after coring 10 feet of rock. The boring was backfilled upon completion with grout.

A subsurface exploration plan is included as Figure 2 in Appendix A, and the test boring log is included in Appendix B.

3.4.2 Laboratory Testing

Laboratory tests were performed to aid in soil classifications, evaluate soil re-use potential, and estimate bedrock stress-strain parameters. One mechanical Particle Size Analysis tests (ASTM D6913) and one Compressive Strength and Elastic Moduli of Rock test (ASTM D7012 – Method D) were performed on samples taken during the exploration. Laboratory test results are included in Appendix C.

3.5 Verification of Sample Descriptions

Soil samples obtained from the test borings were visually and manually examined on September 24, 2018 by a co-author of this memorandum and select samples were submitted for laboratory testing, as described above. The descriptions presented on the boring log are considered representative of the soils encountered in the test boring.

3.6 Subsurface Profile

The generalized subsurface conditions described in the text below summarizes trends observed in the exploration performed to date. The boundaries between soil strata are approximate and are based on interpretations of widely spaced samples. Actual conditions could be more variable.

In general, subsurface conditions observed in the exploration consisted of approximately 14 inches of asphalt pavement overlying 9 feet of fill overlying bedrock. The top of bedrock was

encountered at a depth of approximately 10 feet below the existing ground surface in boring B-1, corresponding to approximately elevation -0.5 feet. Based on the topographic survey, the top of bedrock elevation ranges from approximately 1 to -4 feet along the face of the existing wingwall and from approximately 0 to -4 feet along the west side of the channel beneath the bridge.

Table 1 below presents the general stratigraphy encountered during the subsurface exploration program in descending depth from the ground surface.

Table 1

Description of Subsurface Conditions Encountered

Strata (In Descending Depth)	General Description
FILL	Brown, fine to coarse SAND with up to 40% Gravel and 20% Silt; varying to medium dense to very dense GRAVEL with up to 35% fine to coarse Sand and 20% Silt
BEDROCK	Very hard to hard, moderately to very slightly weathered, slightly fractured to sound, very coarse to coarse-grained GRANITE with close to moderately close, horizontal to moderately dipping fractures; RQD = 95% to 98%

3.7 Seismic Design Category Evaluation

Based on data from the borings, the site is assigned to Site Class C, according to the AASHTO LRFD Bridge Design Specifications, 8^{th} Edition. The design peak seismic ground acceleration coefficient modified by the short-period site factor (A_s) is 0.150, and the design spectral response accelerations at 0.2-second periods (S_{DS}) and at 1-second periods (S_{D1}) are 0.228 and 0.102 respectively. These values were calculated based on the mapped peak ground acceleration and spectral response accelerations provided in the MassDOT LRFD Bridge Manual (2013 Edition) Part I appendix for the 2500-year return period assuming the bridge is a critical/essential structure, and the appropriate magnification factors for Site Class C.

3.8 Liquefaction Potential

Based on the standard penetration test N-values, groundwater levels measured at the site, and the gradation of the soils observed in the exploration, the soils encountered in the test boring are not considered susceptible to liquefaction due to the significant gravel content in the soil.

4. RECOMMENDED FOUNDATION SYSTEM

4.1 Existing Foundation System

The mortared stone masonry of the existing circular arch bridge and southwest wingwall appear to bear directly on bedrock.

4.2 Embankment Considerations

There are no roadway embankments associated with the existing bridge and they are not proposed for the replacement bridge.

4.3 Shallow Foundations

Existing grades range from approximately elevation 0 to -4 feet within the bottom of the channel near the bridge and at the base of the southwest wingwall. Bedrock outcroppings are present along the west side of the channel beneath the bridge, at the base of the southwest wingwall, and downstream of the tide gate. The top of bedrock was encountered at approximately elevation -0.5 feet at boring B-1, and it varied from approximately elevation 1 to -4 feet along the face of the wingwall and along the west side of the channel beneath the bridge based on the topographic survey.

The new bridge and wingwall should be supported on conventional shallow strip footing foundations bearing entirely on bedrock. It is anticipated that the bedrock profile within the area of the footings will likely vary. Therefore, in accordance with the MassDOT LRFD Bridge Manual, cement concrete with a nominal aggregate size of 1-1/2 inches, a minimum compressive strength of 3,000 pounds per square inch (psi), and a minimum thickness of 6 inches could be placed as a leveling pad between the bedrock surfaces and the bottom of the footings to facilitate footing construction. However, it is preferable for the footing to bear directly on bedrock. Dowels socketed into bedrock may be required to resist potential sliding of the leveling pad or footings placed on sloped bedrock surfaces.

In accordance with the AASHTO LRFD Bridge Design Specifications, 8th Edition (2017), the recommended nominal bearing resistance for bedrock is 200 kips per square foot (ksf), and the factored bearing resistance for bedrock at the strength limit state is 90 ksf based on a bearing resistance factor (φ_b) of 0.45 for spread footings on bedrock. Bearing resistance calculations are included in Appendix D. The factored compressive resistance of the footing or leveling slab concrete should be taken as 0.3 times the 28-day compressive strength of the concrete.

At the service limit state bearing resistance, total and differential elastic settlements are anticipated to be less than $\frac{1}{2}$ inch. Most settlement will occur during construction as dead load is applied.

As footings will bear on relatively sound and intact bedrock, embedment for frost protection is not required and scour protection is not required.

Foundation subgrades and required fill to achieve proposed pavement subgrade levels should be prepared, placed, and compacted as recommended later in this memorandum.

4.4 Lateral Earth Pressures

The project includes below-grade restrained culvert side walls and an unrestrained wingwall that will bear on bedrock. As currently planned, the wingwall will be constructed as a cantilever wall. However, a gravity wall constructed in front of the existing wingwall should be considered as an option, if it hasn't already, as it could limit removal of the existing wingwall and backfill, better facilitate installation of a temporary bridge that could be hindered due to excavation into the existing roadway for constructing the heel of a cantilever wall, and reduce the challenges associated with supporting and protecting portions of the southwest channel wall to remain as well as the building behind it. However, the reduced hydraulic capacity of the channel would need to be evaluated and may require additional permitting.

In accordance with the MassDOT LRFD Bridge Manual cantilever or gravity retaining walls founded on bedrock should be designed for at-rest (K_0) earth pressures, as should the culvert. The following soil parameters are recommended for use in design:

- Soil unit weight $(\gamma)=130$ pounds per cubic foot
- Angle of internal friction of drained soil $(\Phi_f) = 32$ degrees
- At-rest earth pressure coefficient $(K_0) = 0.47$

These design values assume the use of three feet of Gravel Borrow or Crushed Stone wrapped in non-woven filter fabric placed behind the walls as part of a drainage system to limit buildup of hydrostatic pressures. Additional drainage recommendations are provided below. Additional fill needed behind the walls should consist of Granular Fill. Where the calculated lateral earth pressure is less than 200 pounds per square foot (psf), it should be increased to 200 psf to account for compaction induced stresses.

The culvert walls and the wingwall should be designed for lateral loads produced by the AASHTO HL-93 vehicular live load, uniformly distributed over the height of each wall.

Based on the "Sawmill Brook Culvert and Green Infrastructure Analysis Task 4 Final Report: Evaluation of Locations for Flood Mitigation" prepared by Tighe & Bond and dated February 2016, a new wider culvert with the tide gate removed would likely result in overtopping of Central Street during the 100-year storm at any time in the future (with anticipated sea level rise) and during the 50-year storm event in the year 2025 and beyond (with anticipated sea level rise and storm surge). To limit unbalanced hydrostatic pressures acting on the culvert walls and wingwall, it is recommended that an engineered drainage system consisting of Crushed Stone wrapped in a non-woven filter fabric be placed above the mean high tide level and at the base of each wall to help drain the wall backfill, with weep holes placed above the mean high tide level based on the design life of the structure and sea level rise projections, with consideration given to weep hole maintenance. Stormwater runoff should be directed away from the walls to the extent possible.

The AASHTO LRFD Bridge Design Specifications, 8th Edition, does not include a geotechnical resistance factor at the strength limit state for sliding of footings on bedrock. A coefficient of friction equal to 0.70 (δ = 35 degrees) is recommended for concrete on clean, sound bedrock.

5. CONSTRUCTION CONSIDERATIONS

5.1 Groundwater Table

Groundwater was encountered approximately 6.3 feet below the existing ground surface corresponding to approximately elevation 3 feet. The water level was taken immediately after drilling and may not reflect stabilized conditions. Water levels can fluctuate with the tides, water levels within Sawmill Brook, season, precipitation, and nearby construction or other below grade activities, such as excavation, dewatering, wells, infiltration basins, etc.

5.2 Water Control During Construction

Except for periods around low tide, water levels will generally be above the bottom of foundation level. It is anticipated that foundation construction will take place around the low tide. Temporary cofferdams around bridge and wingwall foundations with pumping from properly filtered sumps will likely be required to keep excavations dry and allow placement and compaction of fills to be completed in the dry. Groundwater should be discharged according to federal, state, and local regulations. Surface water entering the construction area should be diverted away from excavations.

5.3 Excavations and Fill

Conventional heavy construction equipment should be suitable for excavation in existing soil materials. Excavation should conform to OSHA excavation regulations contained in 29 CFR Part 1926, latest edition. Any soil subgrades for roadway or utility work following culvert and wingwall construction should be excavated in such a way to minimize disturbance, such as using a smooth faced bucket. Bedrock removal, if required for foundation subgrade preparation, could likely be completed with an appropriately sized excavator to remove weathered rock, if encountered but not anticipated, or with a hoe ram to remove bedrock to a limited depth. Fill needed behind the culvert or wingwall should consist of compacted Granular Fill, Gravel Borrow, or Crushed Stone wrapped in a non-woven geotextile separation fabric. Table 2 presents the required gradations for imported materials.

Table 2

Gradation Requirements for Borrow Materials

Sieve Size	Granular Fill	Gravel Borrow (M1.03.0, Type B)	1-1/2" Crushed Stone (M2.01.2)
2/3 rd lift thickness	100		
3 inch		100	
2 inch			100
1½ inch			95-100
1 inch			35-70
³ ⁄4 inch			0-25
½ inch		50-85	
No. 4		40-75	
No. 10	30-95		
No. 40	10-70		
No. 50		8-28	
No. 200	0-15	0-10	

All backfill should be placed in 12-inch maximum lifts and should be compacted to at least 95 percent of the maximum dry density as determined by the Modified Proctor laboratory test (ASTM D1557). Thinner lifts may be needed depending on the material placed and the type of compactor used. Crushed Stone should be placed in loose lift thicknesses of less than 12 inches and be compacted with heavy compaction equipment to achieve an unyielding subgrade.

5.4 Bearing Surface Preparation

Bedrock bearing surfaces should be cleared of any ponded water, loose rock, or soil prior to foundation construction.

5.5 Reuse of Existing Soils

Existing subsurface materials, excluding topsoil which is not anticipated, may be re-used as Granular Fill, regardless of its gradation, provided it is environmentally appropriate, free of organics, debris, stones greater than two thirds the lift thickness in diameter, or other unsuitable material, and they are placed to the required degree of compaction.

Existing site soils may not be re-used as Gravel Borrow or Crushed Stone unless they meet the gradation requirements presented above, which is unlikely. Existing topsoil/subsoil, if encountered, may be reused in landscaped areas but should be tested for pH, percent organics, and nutrient content and modified as needed to support vegetative growth. Tighe & Bond's scope of work did not include evaluation of the potential for soil contamination with regard to suitability for reuse under the Massachusetts Contingency Plan (MCP) regulations or for off-site disposal purposes. Tighe & Bond did not observe visual or olfactory evidence of contamination in the test boring performed for the geotechnical evaluation. Sampling and analysis of excess soil stockpiles will be required during construction for soil management purposes.

5.6 Obstructions

An approximate 1-foot diameter boulder was encountered in boring B-1 at a depth of 7 to 8 feet below the existing ground surface. Based on this and the possibility that other boulders or buried debris may be present, obstructions, including cobbles and boulders, are anticipated to be encountered during construction. It is anticipated that obstructions which may be encountered will be removed from below foundations as they will bear on bedrock.

5.7 Protection of Adjacent Structures and Utilities

Utilities to remain in the area of the proposed construction should be properly supported and protected during construction activities. The existing building foundations immediately upstream and downstream of the bridge, and portions of the channel walls which will not be removed as part of construction should also be properly braced and protected. Additional investigation by the Contractor is recommended to better understand how the buildings adjacent to the bridge are currently supported as they may be part of the channel walls that could be disturbed during construction. If the buildings are connected to the channel walls, low vibration, minimal disturbance techniques to separate the walls should be employed such as saw cutting.

5.8 Sequence of Construction Activities

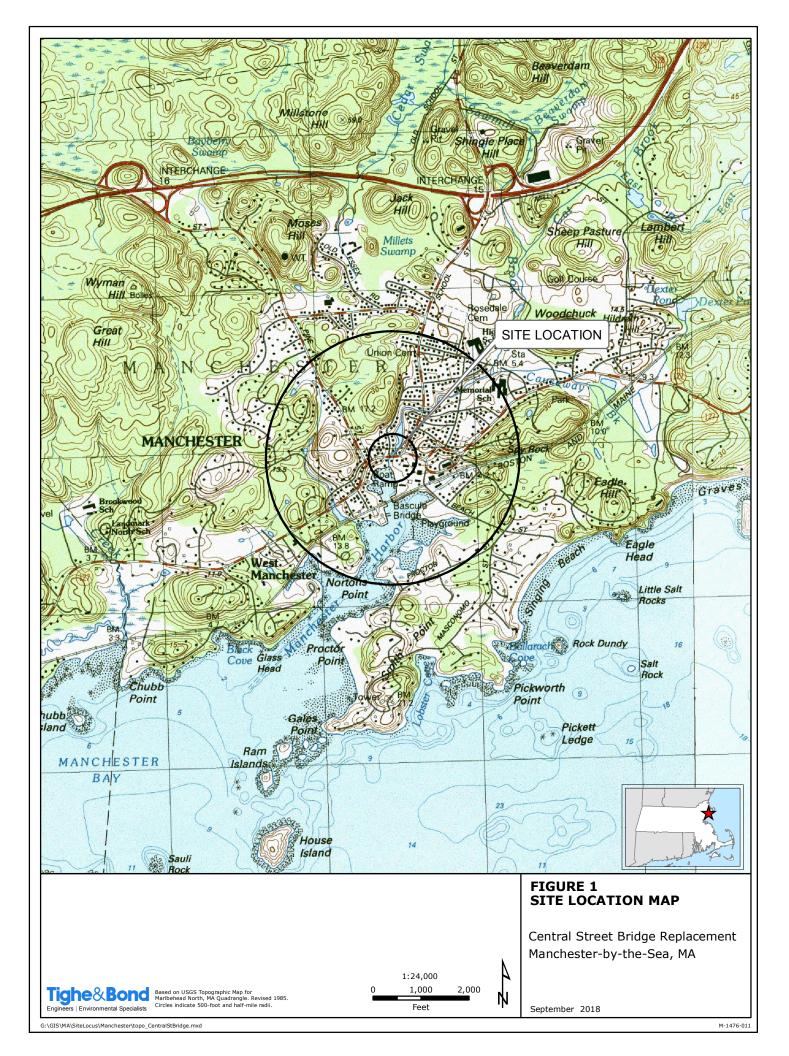
The following is a general sequence of construction activities for the bridge replacement. The actual construction sequence will be determined based on the Contractor's means and methods.

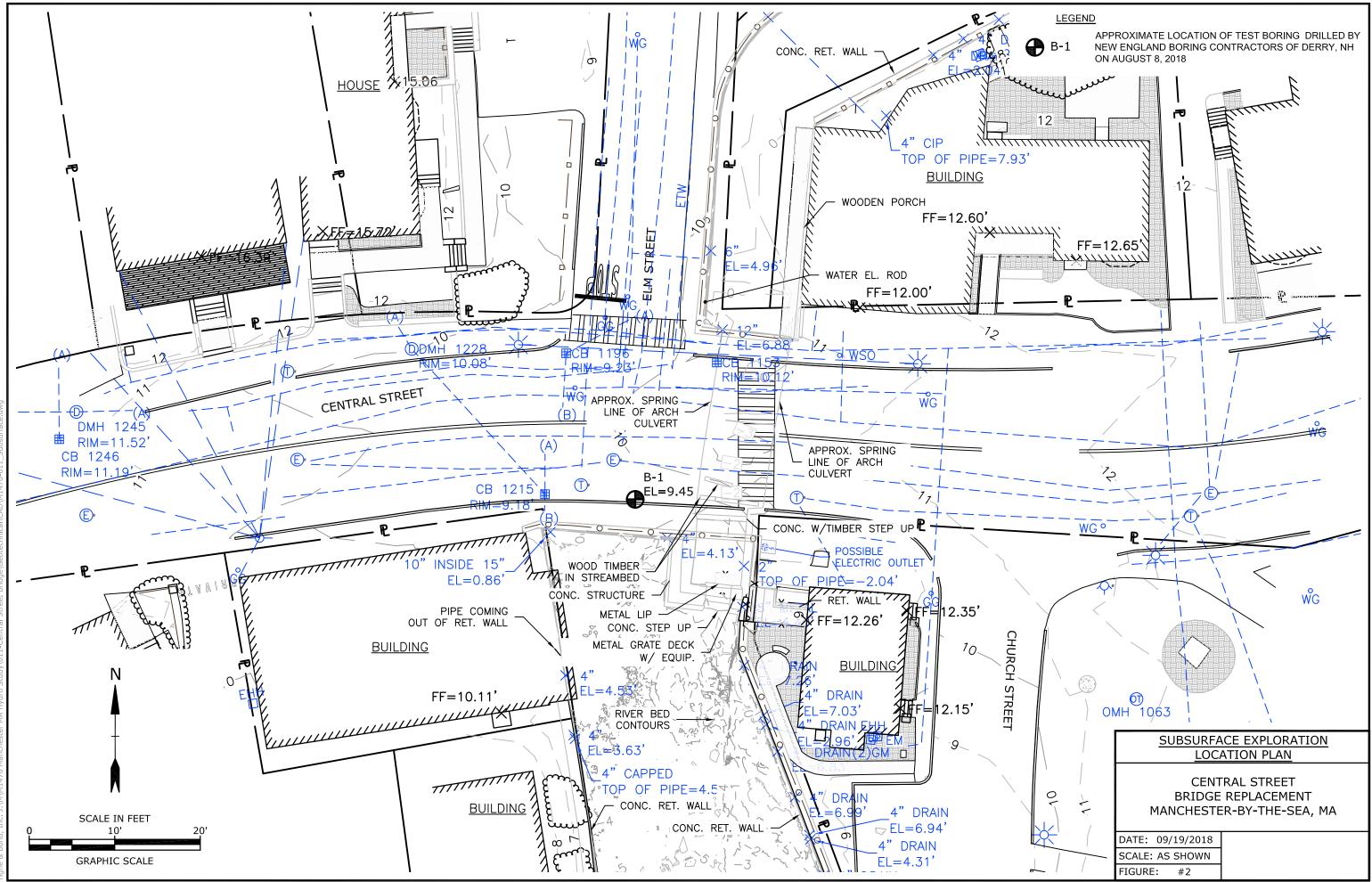
- Install sediment and erosion control measures
- Temporarily relocate utilities. It may be possible to temporarily deactivate some utilities prior to bridge construction, subject to input from the Town and utility companies
- Close Central Street to traffic and establish a work zone at the bridge crossing
- Install water diversion structures/cofferdams and dewatering system
- Install support systems to support and protect the channel walls and adjacent structures, as needed
- Excavate and remove existing culvert and tide gate
- Excavate to bedrock and clear off any ponded water, loose rock, or soil
- Install dowels, if needed
- Construct concrete leveling pads, if used
- Construct footings for the new culvert and wingwall
- Construct/install culvert and wingwall
- Backfill behind the culvert and wingwalls
- Install utilities in the roadway
- Install guardrail and pavement
- Install signage and paint roadway lines
- Reopen Central Street to traffic
- During staged construction, complete relocation of utilities to final location

5.9 Special Geotechnical Monitoring and Instrumentation

The following monitoring and instrumentation programs are recommended:

- Pre-excavation surveys of the existing buildings adjacent to and immediately upstream and downstream of the bridge, to document conditions prior to the start of construction
- Monitoring movements of channel walls upstream and downstream within 50 feet of the bridge


- Settlement monitoring of the existing buildings adjacent to and immediately upstream and downstream of the bridge
- Monitoring of construction induced vibrations


Specifications for the recommended monitoring and instrumentation, and movement and vibration thresholds would be included as part of the design documents.

6. LIMITATIONS

The preceding recommendations provided herein are for specific application to the proposed Central Street Bridge Replacement project in Manchester-by-the-Sea, Massachusetts, in accordance with generally accepted soil and foundation engineering practices. No warranty, expressed or implied, is made. In the event that any changes in the design or location of the proposed structure are made, the conclusions and recommendations in this report should not be considered valid unless verified in writing. This report is for design purposes only and may not be sufficient to prepare accurate quantity take-offs. It is discouraged that this report in its entirety be included in the construction documents or be provided to a contractor. Rather, the construction recommendations should be incorporated appropriately into the construction specifications as well as exploration locations, exploration logs, and laboratory test results for the contractor's use under informational purposes only.

Appendix A Figures

Appendix B Exploration Logs

Engineers | Environmental Specialists

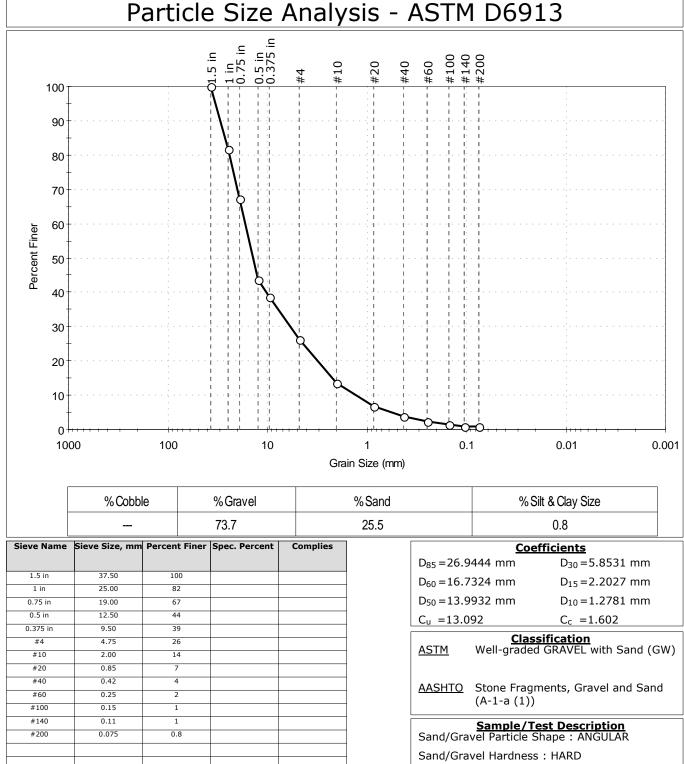
Project: Central Street Bridge Location: Central Street, Manchester-by-the-Sea, MA Client: Town of Manchester-by-the-Sea
 Boring No.
 B-1

 Page
 1
 of
 1

 File No.
 M-1476011
 1

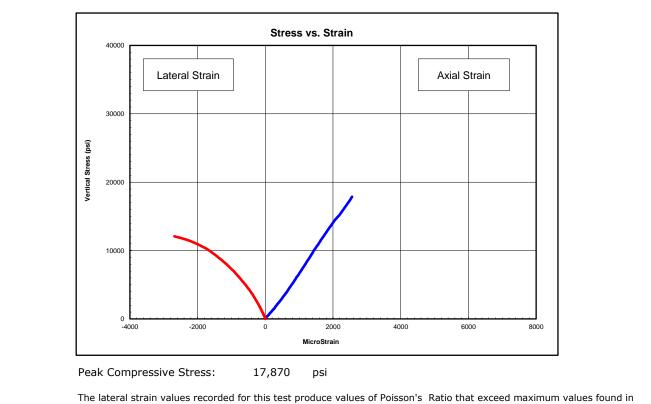
C. Haker

Checked by:


Drilling Co.:	New England Boring Cont	actors	_	Casing	Sampler			Groundwat	er Readings	
Foreman:	Mike Porter		Туре	HW	Split Spoon	Date	Time	Depth	Casing	Sta. Time
T&B Rep.:	M. Trovato		I.D./O.D.	4"/4.5"	1-3/8"/2"	8/9/2018	13:45	6.3'		End of Boring
Date Start:	08/09/18 End	08/09/18	Hammer Wt.		140#					
Location	See Exploration Location I	Plan	Hammer Fall		30"					
GS. Elev.	9.45' Datum: NAVD88		Other		Auto hammer					

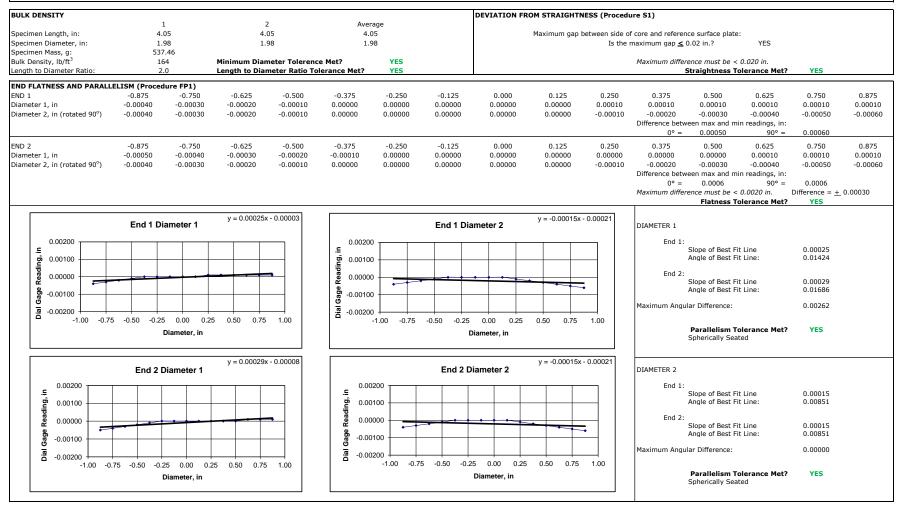
Depth (ft.)	Casing Blows Per Ft.	Sample No. Rec. (in)	Sample Depth (ft.)	Blows Per 6"	Sample [Description	General Stratigraphy	N o t e s	Well Construction
		S-1/-	0-2		14-inches of Asphalt	14-inches of Asphalt, over brown, fine to			
						coarse SAND, some Gravel, trace Silt			
-		S-2/-	2-4		Brown, fine to coarse	SAND and GRAVE			No Well Installed
					little Silt				
5		S-3/8	5-7	9 - 12	Medium dense, brown	, GRAVEL, some fine	FILL		
				2 - 13	to coarse Sand, trace	o coarse Sand, trace Silt			
ľ								2	
ſ		S-4/4	8-10	50/6''	Very dense, brown, G	RAVEL, little fine to			
10					coarse Sand, little Silt		9.9'	3	
10		C-1/58	10.5-15.5	2:04	Very hard to hard, mo	derate to slightly			
				1:37	weathered, slightly fra	ctured to sound, very			
				1:53	coarse to coarse-grain				
				2:09	moderately dipping fra				
15				2:12					
15		C-2/60	15.5-20.5	2:17	Very hard to hard, slight to very slightly weathered, slightly fractured to sound, very		BEDROCK		
				2:09					
				1:44		coarse to coarse-grained GRANITE, with close to moderately close, horizontal to			
				2:12	shallow fractures; RQI				
20				3:09					
					Bottom of exp	loration at 20.5'			
25									
					4				
					4				
30						[
were col 2) Bould 2) Refus	llected by h ler encount sal encount	and. ered from ap	proximately 5 oximately 9.9	7 to 8 feet be	le. Samples S-1 and S-2 elow grade. grade, telescoped 3-inch	Proportions Used TRACE (TR.) 0 - <10%	De VERY LOOSE LOOSE MEDIUM DENSE DENSE VERY DENSE	0-4 4-10 10-30 30-50 >50) MEDIUM 4-8) STIFF 8-15) VERY STIFF 15-30

Appendix C Laboratory Test Results


	Client:	Tighe & Bo	ond				
	Project:	Central St	Bridge				
	Location:	Mancheste	r-By-The-Sea,	MA		Project No:	GTX-308653
	Boring ID:	B-1		Sample Type:	bag	Tested By:	jbr
	Sample ID:	S-3		Test Date:	08/23/18	Checked By:	jsc
	Depth :	5-7 ft		Test Id:	469736		
[Test Comm	ent:					
	Visual Desc	ription:	Moist, dark bro	own gravel with	n sand		
	Sample Cor	mment:					
		<u><u> </u></u>	A 1			CO1 2	
'a	rticle	Size	Analys	is - AS	IMD	6913	
			2				

Client:	Tighe & Bond
Project Name:	Central St Bridge
Project Location:	
GTX #:	308653
Test Date:	8/29/2018
Tested By:	trm
Checked By:	jsc
Boring ID:	C-1
Sample ID:	B-1, C-1
Depth, ft:	10.5-15.5
Sample Type:	rock core
Sample Description:	See photographs Intact material failure

Compressive Strength and Elastic Moduli of Rock by ASTM D7012 - Method D


The lateral strain values recorded for this test produce values of Poisson's Ratio that exceed maximum values found in rocks. The lateral strain gauges failed before the peak value was attained.

Stress	Range, psi	Young's Modulus, psi	Poisson's Ratio					
18	00-6600	6,930,000						
660	0-11300	7,670,000						
113	00-16100	6,600,000						
Notes:		sted at the approximate as-received moistu	,					
	The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minute							
	Young's Modulus	and Poisson's Ratio calculated using the ta	ngent to the line in the stress range listed	l.				
	Calculations assu	me samples are isotropic, which is not nece	essarily the case.					

Tighe Bond	Test Date: 8/28/2018	
Central St Bridge	Tested By: crs	
	Checked By: jsc	
308653		
C-1		
B-1, C-1		
10.5-15.5 ft		
: See photographs		
	Central St Bridge 308653 C-1 B-1, C-1 10.5-15.5 ft	Central St Bridge Tested By: crs Checked By: jsc 308653 C-1 B-1, C-1 10.5-15.5 ft

UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543

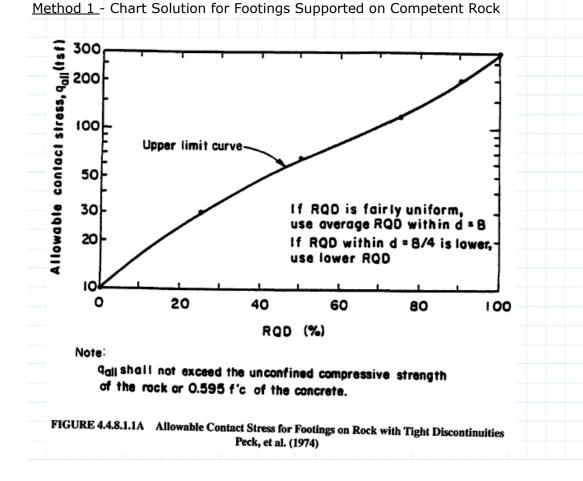
Maximum and Minimum (in.) [0.00050	1.980	Slope 0.00025	Angle° 0.014	Perpendicularity Tolerance Met? YES	Maximum angle of departure must be $\leq 0.25^{\circ}$	
		0.00025	0.014	YES		
0.00000						
0.00060	1.980	0.00030	0.017	YES	Perpendicularity Tolerance Met?	YES
0.00060	1.980	0.00030	0.017	YES		
0.00060	1.980	0.00030	0.017	YES		
-	0.00060	0.00060 1.980	0.00060 1.980 0.00030	0.00060 1.980 0.00030 0.017	0.00060 1.980 0.00030 0.017 YES	0.00060 1.980 0.00030 0.017 YES

Client:	Tighe & Bond
Project Name:	Central Street Bridge
Project Location:	
GTX #:	308653
Test Date:	8/29/2018
Tested By:	trm
Checked By:	jsc
Boring ID:	C-1
Sample ID:	B-1, C-1
Depth, ft:	10.5-15.5 ft

After break

Appendix D Bearing Resistance Calculations

Central Street Bridge Replace	ment
Central Street - Manchester-by-th	ne-Sea, MA
M-1476011-01	
Prepared by: Dave Brogan	Date: 9/25/18
Checked by:	Date:


Bearing Resistance of Bedrock

Method: AASHTO LRFD Bridge Design Specifications, 8th Edition, 2017

Basis: Determine the bearing resistance of bedrock for spread footing support. Based on bedrock cores C-1 and C-2 obtained from boring B-1 the bedrock is described as very hard to hard, moderately to very slightly weathered, slightly fractured to sound, very coarse to coarse-grained GRANITE with close to moderately close, horizontal to moderately dipping fractures, with RQD values ranging from approximately 95% to 98%. A peak compressive strength of 17,870 pounds per square inch (psi) was measured from the Compressive Strength and Elastic Moduli of Rock (ASTM D7012-Method D) test performed on a bedrock sample taken from core C-1 recovered from a depth of 10.5 to 15.5 feet below the existing ground surface.

Bearing Resistance

Based on the referenced document, uniaxial compressive rock strength and RQD may be relied upon for design of footings bearing on competent rock.

Based on the Figure 4.4.8.1.1A above, the allowable contact stress for a footing bearing on rock which has an RQD=95% would be about 220 tsf, say 200 tsf (400 ksf).

<u>Method 2</u> - Use the Rock Mass Rating (RMR) system to account for discontinuities in the overall rock mass

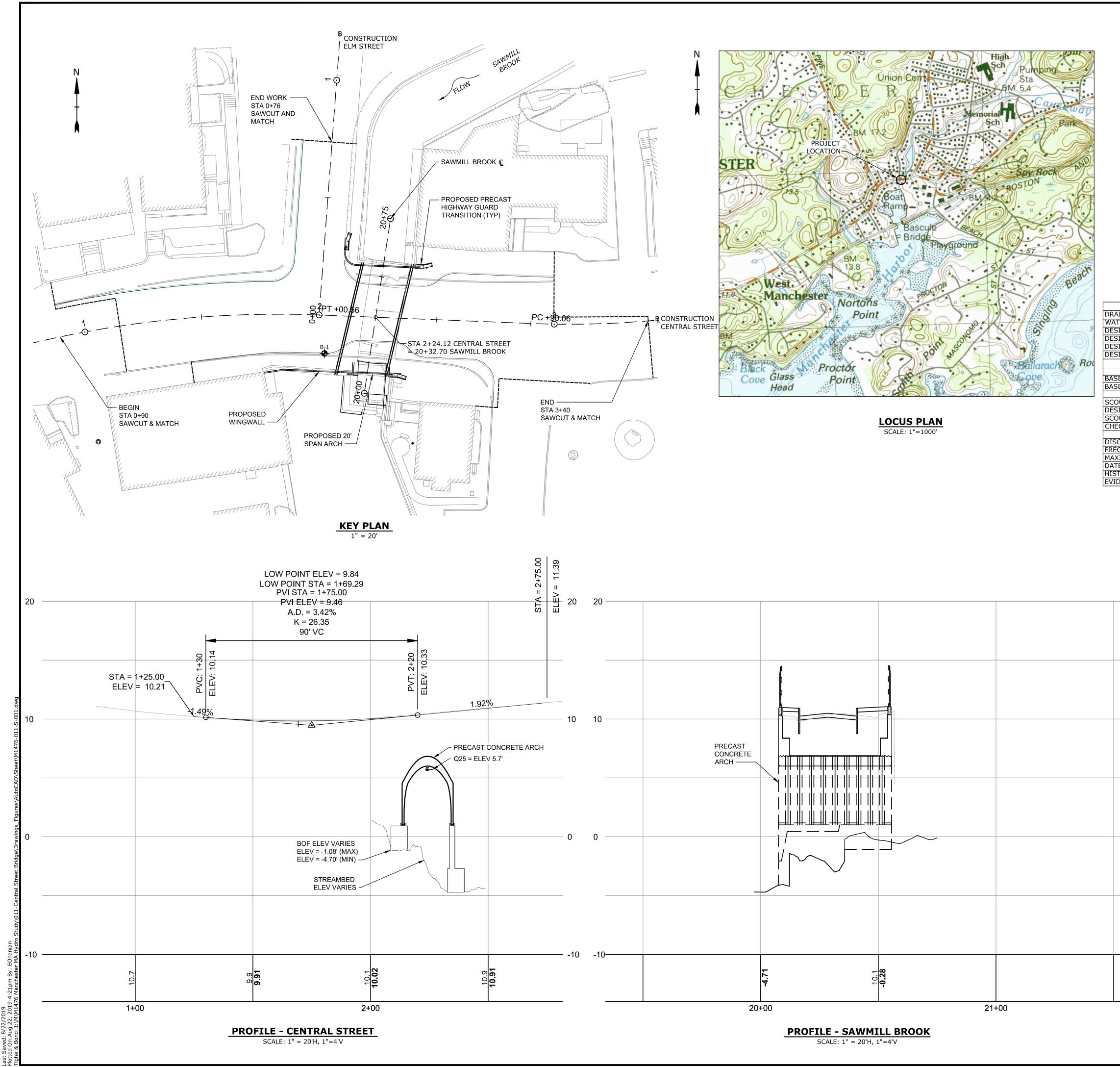
Based on Table 4.4.8.1.2B below, granite is assigned to Rock Category E

Rock			C ₀ ⁽¹⁾			
Category	General Description	Rock Type	(ksf)	(psi) 4,800-45,00 3,500-42,00 5,500-10,00 5,500-35,00 19,000-49,00 4,200-21,00 200- 1,20 7,600-28,00 3,500-35,00 1,400-17,00 1,000- 5,10 21,000-30,00 4,800-32,00 9,700-25,00 9,000-55,00 14,000-26,00 3,100-83,00 17,000-40,00 18,000-45,00 2,100-49,00 1,400-14,00 19,000-23,00		
A	Carbonate rocks with well-	Dolostone	700- 6,500	4,800-45,000		
	developed crystal cleavage	Limestone	500- 6,000	3,500-42,000		
		Carbonatite	800-1,500	5,500-10,000		
		Marble	800- 5,000	5,500-35,000		
		Tactite-Skarn	2,700- 7,000	19,000-49,000		
В	Lithified argillaceous rock	Argillite	600- 3,000	4,200-21,000		
		Claystone	30- 170	200-1,200		
		Maristone	1,000- 4,000	7,600-28,000		
		Phyllite	500- 5,000	3,500-35,000		
		Siltstone	200- 2,500	1,400-17,000		
		Shale ⁽²⁾	150- 740	1,000- 5,100		
		Slate	3,000- 4,400	21,000-30,000		
с	Arenaceous rocks with strong	Conglomerate	700- 4,600	4,800-32,000		
	crystals and poor cleavage	Sandstone	1,400- 3,600	9,700-25,000		
		Quartzite	1,300- 8,000	9,000-55,000		
D	Fine-grained igneous	Andesite	2,100- 3,800	14,000-26,000		
	crystalline rock	Diabase	450-12,000	3,100-83,000		
E	Coarse-grained igneous and	Amphibolite	2,500- 5,800	17,000-40,000		
	metamorphic crystalline rock	Gabbro	2,600- 6,500	18,000-45,000		
		Gneiss	500- 6,500	3,500-45,000		
		Granite	300- 7,000	2,100-49,000		
		Quartzdiorite	200- 2,100	1,400-14,000		
		Quartzmonzonite	2,700- 3,300	19,000-23,000		
		Schist and	200- 3,000	1,400-21,000		
		Syenite	3,800- 9,000	26,000-62,000		

¹⁷Range of Uniaxial Compressive Strength values reported by various investigation ⁽²⁾Not including oil shale.

Based on Table 4.4.8.1.2A below, a Rock Category E and RQD between 90% and 95%, coefficient Nms would be 2.3.

However, considering the presence of moderately weathered and close (2 inches to 1-foot) to moderately close (1-foot to 3 feet) joints observed in the rock core from the only boring completed an Nms value of 0.081 may be more appropriate.


Rock Mass		RMR ⁽¹⁾	NGI ⁽²⁾	RQD ⁽³⁾			N _{ms} ⁽⁴⁾		
Quality	General Description	Rating	Rating	(%)	Α	в	С	D	Е
Excellent	Intact rock with joints spaced > 10 feet apart	100	500	95-100	3.8	4.3	5.0	5.2	6.1
Very good	Tightly interlocking, undis- turbed rock with rough unweathered joints spaced 3 to 10 feet apart	85	100	90-95	1.4	1.6	1.9	2.0	2.3
Good	Fresh to slightly weathered rock, slightly disturbed with joints spaced 3 to 10 feet apart	65	10	75-90	0.28	0.32	0.38	0.40	0.46
Fair	Rock with several sets of mod- erately weathered joints spaced 1 to 3 feet apart	44	1	50-75	0.049	0.056	0.066	0.069	0.08
Poor	Rock with numerous weathered joints spaced 1 to 20 inches apart with some gouge	23	0.1	25-50	0.015	0.016	0.019	0.020	0.024
Very poor	Rock with numerous highly weathered joints spaced < 2 inches apart	3	0.01	<25	Use qu	_{alt} for an	equiva	lent soi	l mass

⁽¹⁾Geomechanics Rock Mass Rating (RMQ) System—Bieniawski, 1988. ⁽²⁾Norwegian Geotechnical Institute (NGI) Rock Mass Classification System, Barton, et al., 1974. ⁽³⁾Range of RQD values provided for general guidance enly; actual determination of rock mass quality should be based on RMR or NGI rating

systems. "Value of Nm as a function of rock type; refer to Table 4.4.8.1.2B for typical range of values of Co for different rock type in each category.

C ₀ ≔17870 psi	Uniaxial compressive strength of bedrock
$q_n := N_{ms} \cdot C_0 = 1447 \ psi$	Nominal bearing resistance of bedrock
q _n =208 <i>ksf</i>	
$\varphi_{\rm b} := 0.45$	Resistance factor for footings on rock per Table 10.5.5.2.2-1 in the referenced document
$\mathbf{q}_{\mathrm{R}} \coloneqq \varphi_{\mathrm{b}} \cdot \mathbf{q}_{\mathrm{n}} = 94 \ \boldsymbol{ksf}$	Factored bearing resistance at the strength limit state

Appendix E 25% Design Drawings

BRIDGE DRAWING INDEX

20

10

0

- -10

S-001	BRIDGE KEY PLAN, PROFILES, LOCUS, AND INDEX
S-002	BRIDGE NOTES
S-003	BORING LOGS & BORING NOTES
S-101	GENERAL BRIDGE PLAN AND ELEVATION
S-102	BRIDGE FRAMING AND LAYOUT PLAN
S-103	BRIDGE SECTION & DETAILS

HYDRAULIC DATA	
AINAGE AREA	5.0 SQ. MILES
ATER CONTROL FLOOD DISCHARGE (2 YR)	254 CFS
SIGN FLOOD DISCHARGE (25 YR)	1,363 CFS
SIGN FLOOD ANNUAL CHANCE (RETURN FREQUENCY)	4% (25-YEARS)
SIGN FLOOD VELOCITY (25 YR)	7.5 FPS
SIGN FLOOD ELEVATION (25 YR)	5.7 FEET
BASE (100-YR) FLOOD DATA	
SE FLOOD DISCHARGE (100 YR)	2,267 CFS
SE FLOOD ELEVATION (100 YR)	7.7 FEET
DESIGN AND CHECK SCOUR DATA	
OUR DESIGN FLOOD ANNUAL CHANCE (RETURN FREQUENCY)	2% (50-YEARS)
SIGN FLOOD ABUTMENT SCOUR DEPTH	LEFT: 2 FT RIGHT: 2 FT
OUR CHECK FLOOD ANNUAL CHANCE (RETURN FREQUENCY)	1% (100-YEARS)
ECK FLOOD ABUTMENT SCOUR DEPTH	LEFT: 2 FT RIGHT: 2 FT
FLOOD OF RECORD	
SCHARGE	UNKNOWN
EQUENCY (IF KNOWN)	N/A
XIMUM ELEVATION	N/A
TE	N/A
STORY OF ICE FLOES	UNKNOWN
IDENCE OF SCOUR AND EROSION	UNKNOWN

Draft 25% Plans Not For Construction

Tighe& Bond Engineers | Environmental Specialists

Central Street Bridge Replacement

Department of Public Works

MassDOT Bridge No. M-02-001, BIN 8AM

Town of Manchester-By-The-Sea, Massachusetts

MARK	DATE	DESCRIPTION					
PROJEC	CT NO:	M1476 - 011					
DATE:		JUNE 2019					
FILE:	M1476-011-S	-001.dwg					
DRAWN	N BY:	D.BISHOP					
CHECK	ED:	Х					
APPRO	VED:	Х					
BR		Y PLAN, PROFILES, 5 AND INDEX					
SCAL	∃:	AS NOTE					
		-001 HEET 1 OF 6					

COMMONWEALTH OF MASSACHUSETTS MassDOT, Highway Division CONCEPTUAL DESIGN IS ACCEPTABLE TO MASSDOT FOR CONTRACTING

1.	DESIGN LOADING:	HL-93		AND DETAIL DRAWING
2.	DESIGN:	LOAD AND RESISTANCE FACTOR DESIGN (LRFD) IN ACCORDANCE WITH: AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, 8TH	19	D. TAKE ALL NECESSARY BARRIERS OF SUFFICI OPEN EXCAVATIONS A
		ED., 2017 AS AMENDED MASSDOT 2013 LRFD BRIDGE DESIGN MANUAL, AS AMENDED	20). ALL EXPOSED EDGES (NOTED.
3.	SPECIFICATIONS:	MASSDOT 1988 STANDARD SPECIFICATIONS AS AMENDED	21	SHEAR KEYS SHALL BE ELEMENT, CENTERED,
4.	FOUNDATION DATA:	ABUTMENTS AND U-WINGWALL: SPREAD FOOTINGS SUPPORTED ON SOUND BEDROCK WITH A NOMINAL BEARING CAPACITY OF 100.0 TSF IN	22	2. PEEL AND STICK BARR (SUBSIDIARY) AND PL
		COMBINATION WITH A RESISTANCE FACTOR OF 0.45. PRECAST GUARD TRANSITION:		EXPANSION AND CONS
		TRANSITION BASE ON CONTROLLED DENSITY FILL (NON EXCAVATABLE) ON COMPACTED GRAVEL BORROW OR UNDISTURBED SOIL.	23	3. APPLY PAVEMENT JOIN PAVEMENT PASSES AN ARMORING PRIOR TO
5.	REINFORCING STEEL:	AASHTO M31 (ASTM A 615) GRADE 60	24	. FOR SURVEY CONTROL
		ALL BARS SHALL BE HOT-DIPPED GALVANIZED (ASTM A767 & ASTM A1094)	25	5. FOR BORING NOTES S
6.	CONCRETE:	PRECAST ACRH, PEDESTAL FOOTINGS, CURBS/HEADWALLS, GUARD TRANSITIONS, U-WINGWALL, AND U-WINGWALL		5. FOR HYDRAULIC DATA
		FOOTINGS: 5000 PSI, ¾", 685 HP CEMENT CONCRETE	27	7. FOR ROAD CLOSURE T
7.	SEISMIC:	PEAK GROUND ACCELERATION (PGA) = 0.125g SITE CLASS = C		DGE REMOVAL NOTES:
		SEISMIC DESIGN CATEGORY = A	1.	THE CONTRACTOR'S METH SUBMITTED TO THE ENGI COMMENCEMENT OF ANY
<u>GEN</u>	IERAL NOTES:		2.	REMOVAL OF EXISTING B REMOVAL OF THE ARCH, F
		ING BRIDGE ARE NOT AVAILABLE.	3.	C-005 (CIVIL SHEETS) FO
		E BY NEW ENGLAND BORING CONTRACTORS ON 9/8/2018.		SEQUENCING.
	TRIANGULATION POIN	NTS MUST NOT BE DISTURBED. WHEN THE WORK CALLED FOR NG A BRONZE DISC THE CONTRACTOR SHALL NOTIFY THE		<u>INDATION NOTES:</u> FOUNDATION MAY BE ALT
		TLY IN ADVANCE OF THE WORK TO PERMIT THE STATE TO ATE THE AFFECTED MARKER.		DURING CONSTRUCTION,
	OSHA'S EXCAVATION	MPLY WITH OSHA'S LATEST STANDARDS. ALL REQUIREMENTS OF STANDARDS SHALL BE PROVIDED BY THE CONTRACTOR		CONCRETE SHALL NOT BE BOTTOM OF FOUNDATION
		LIMITED TO, THE PROVISION FOR A COMPETENT PERSON ON RED DOCUMENTATION THAT MAY REQUIRE CERTIFICATION BY A NEER.		CONSIDERED MINIMUM D MATERIAL AS REQUIRED.
		ITRACTOR'S RESPONSIBILITY TO MAINTAIN ALL UTILITIES RLY IN THE AREAS UNDER CONSTRUCTION PRIOR TO COMPLETION	4.	ALL FINISHED EXCAVATION PRIOR TO PLACEMENT OF
	OF THE PROJECT. ALL CONTRACT SHALL BE	L PIPES AND STRUCTURES WITHIN THE LIMITS OF THIS LEFT IN A CLEAN AND OPERABLE CONDITION AT THE COMPLETION ONTRACTOR SHALL TAKE ALL NECESSARY PRECAUTIONS TO	5.	ALL EXCAVATIONS FOR FOR ALL FINISHED EXCAVATION CONCRETE PLACEMENT.
	CONTRACTOR IS RES	SILT FROM DISTURBED AREAS FROM ENTERING THE SYSTEM. PONSIBLE FOR DAMAGE SUSTAINED TO ANY EXISTING UTILITIES NSIBILITY TO MAKE REPAIRS TO THE REQUIREMENTS OF THE	6.	ALL BACKFILL UNDER OR PLACED IN ACCORDANCE
	TOWN OR RESPECTIV	E UTILITY COMPANY.	7.	PRIOR TO PLACEMENT OF OWNER'S DESIGNATED E
6.	CURBING, SURPLUS M	ISHED BUILDING MATERIALS, STRUCTURES, PIPES, PAVEMENT, MATERIAL, AND SITE RUBBLE SHALL BE DISPOSED OF BY THE TE AT HIS EXPENSE AND IN ACCORDANCE WITH ALL APPLICABLE		
_	STATE AND FEDERAL	ENVIRONMENTAL REGULATIONS.		<u>OTECHNICAL DESIGN PA</u> MINIMUM EMBEDMENT
	DOES NOT FALL ON A	IALL TAKE ALL NECESSARY MEASURES TO ENSURE THAT DEBRIS NY ROADWAY, RAILROAD, OR WATERWAY BELOW THE EXISTING STS INCLUDING ERECTION, MAINTENANCE AND REMOVAL OF	C	SURFACE.
	TEMPORARY STRUCTU	JRES OR OTHER SUCH APPROVED METHODS, SHALL BE APPROPRIATE ITEMS OF WORK BEING PERFORMED.	Ζ.	FOOT a. THE BRIDGE DE
8.		METHODS ARE TO COMPLY WITH THE MASSDOT STANDARD HIGHWAYS AND BRIDGES, DATED 1988, AND ITS LATEST		THE FINAL BRID EMBEDMENT
	REVISIONS.		3.	MAXIMUM ALLOWABLE
Э.		AS SHALL BE LOAMED & SEEDED UNLESS OTHERWISE SPECIFIED. M & SEED AREAS AS REQUIRED TO MEET GRADE.	4.	MINIMUM LATERAL EAR a. STATIC = 61 PO
	THESE CHANGES TO CONSTRUCTION. ONC	ONS TO APPROVED PLANS, THE CONTRACTOR SHALL SUBMIT THE DESIGNER OF RECORD FOR REVIEW AND APPROVAL PRIOR TO THESE REVISIONS ARE APPROVED BY THE MUNICIPALITY'S		FLUID PRESSUR b. SURCHARGE = (DISTRIBUTED O SURCHARGE SH
		D, THEY SHALL THEN BE SUBMITTED TO MASSDOT FOR FILING. E HORIZONTAL AND VERTICAL, AND ARE GIVEN AT 68 DEGREES		c. SEISMIC = 3.9H THE WALL
		D BY THE CONTRACTOR SHALL COMPLY WITH ALL FEDERAL,	5.	MINIMUM LATERAL EAR a. STATIC = 35 PS b. SURCHARGE = 0
	THE CONTRACTOR SH	EGULATIONS AND REQUIREMENTS. IALL REVIEW AND UNDERSTAND ALL APPLICABLE ENVIRONMENTAL		DISTRIBUTED O SURCHARGE SH SHALL ACCOUN
	THE CONTRACTOR SH	E THAT ALL CONSTRUCTION CONDITIONS ARE MET.		c. SEISMIC = 3.9H THE WALL
15		RFORM AND COMPLETE THE WORK. IALL BE RESPONSIBLE FOR REPAIRING ANY DAMAGE TO PRIVATE	6.	MINIMUM BACKFILL UN
101	OR PUBLIC PROPERTY	OUTSIDE THE LIMITS OF CONSTRUCTION SHOWN ON THE PLANS TRACTOR, AT THE SOLE COST TO THE CONTRACTOR.		MAXIMUM BACKFILL AN
16.	MANCHESTER-BY-THE	JST COORDINATE ALL WORK WITH THE TOWN OF SEA, ALL UTILITY COMPANIES, THE ENGINEER, AND ANY		0.70 (DELTA= 35 DEGR
	THE TOWN OF MANCH			SITE CLASS = C DESIGN PEAK SEISMIC
17.	SHEETS, APPLICATIO	IALL SUBMIT LITERATURE (MANUFACTURER'S LITERATURE, CUT N PROCEDURES, ETC.) FOR ALL PRODUCTS PROPOSED FOR USE R APPROVAL BY THE ENGINEER. APPROVAL OF MATERIALS SHALL	11	FACTOR $(A^{s}) = 0.103$
	BE IN ACCORDANCE V SPECIFICATIONS FOR	NITH THE APPLICABLE REQUIREMENTS OF MATERIALS SHALL R HIGHWAYS AND BRIDGES, LATEST EDITION AS AMENDED, D SECTION 6.00, CONTROL OF MATERIALS.		DESIGN SPECTRAL RES

NECESSARY MEASURES AND PROVIDE ALL NECESSARY CONTINUOUS OF SUFFICIENT TYPE, SIZE AND STRENGTH TO PREVENT ACCESS TO ALL AVATIONS AT THE COMPLETION OF EACH DAY'S WORK.

SED EDGES OF CONCRETE SHALL BE CHAMFERED 3/4", UNLESS OTHERWISE

YS SHALL BE 3" HIGH BY ONE-THIRD THE WIDTH OF THE CONCRETE CENTERED, WITH 3" MIN. CLEAR EACH SIDE.

STICK BARRIER MEMBRANE SHALL BE 2' WIDE WITH PROTECTION BOARD ARY) AND PLACED CENTERED OVER ALL HORIZONTAL AND VERTICAL AND CONSTRUCTION JOINTS.

EMENT JOINT ADHESIVE ALONG ALL LONGITUDINAL JOINTS BETWEEN PASSES AND ALONG BRIDGE CURB LINES AND EXPANSION JOINT **FRIOR TO PLACING ALL PAVEMENT COURSES.**

EY CONTROLS SEE SHEETS C-001 TO C-004 (CIVIL SHEETS).

NG NOTES SEE SHEET S-003.

AULIC DATA SEE SHEET S-001.

CLOSURE TRAFFIC MANAGEMENT PLAN SEE SHEET C-702 (CIVIL SHEETS).

CTOR'S METHOD FOR REMOVAL OF THE EXISTING BRIDGE SHALL BE TO THE ENGINEER FOR REVIEW AND ACCEPTANCE PRIOR TO THE ENT OF ANY REMOVAL OPERATIONS.

EXISTING BRIDGE STRUCTURE SHALL INCLUDE THE COMPLETE THE ARCH, FOOTINGS, HEADWALLS, AND WINGWALL. REFER TO SHEET SHEETS) FOR DEMOLITION PLAN.

IEET [FILL-IN FOR FINAL DESIGN] (CIVIL SHEETS) FOR WATER CONTROL

MAY BE ALTERED, IF NECESSARY, TO SUIT CONDITIONS ENCOUNTERED STRUCTION, WITH THE APPROVAL OF THE ENGINEER.

HALL NOT BE PLACED IN WATER OR ON FROZEN GROUND.

FOUNDATION ELEVATIONS PROVIDED ON DRAWINGS SHALL BE MINIMUM DEPTHS. CONTRACTOR SHALL REMOVE UNSUITABLE

EXCAVATIONS SHALL BE VERIFIED AND APPROVED BY THE ENGINEER ACEMENT OF FORMWORK FOR CONCRETE FOUNDATION.

FIONS FOR FOOTINGS SHALL BE FINISHED BY HAND FOR THE LAST 6". EXCAVATIONS SHALL BE INSPECTED BY THE ENGINEER PRIOR TO ANY

UNDER OR ADJACENT TO ANY PORTION OF THE STRUCTURE SHALL BE CCORDANCE WITH MASSDOT STANDARD SPECIFICATIONS.

ACEMENT OF FOOTINGS, REVIEW IN-SITU CONDITIONS WITH THE SIGNATED ENGINEER.

DESIGN PARAMETERS

MBEDMENT FOR FROST PROTECTION = 4 FEET BELOW ADJACENT GROUND

STRENGTH LIMIT STATE BEARING RESISTANCE = 45.0 TONS PER SQUARE

BRIDGE DESIGNER SHALL VERIFY THE BEARING RESISTANCE BASED ON FINAL BRIDGE AND WINGWALL FOUNDATION DIMENSIONS AND

ALLOWABLE SETTLEMENT = 1 INCH TOTAL, ¹/₂ INCH DIFFERENTIAL

ATERAL EARTH PRESSURES FOR RESTRAINED ARCH WALLS: TIC = 61 POUNDS PER SQUARE FOOT PER FOOT (PSF/FT) AS AN EQUIVALENT D PRESSURE, 200 PSF/FT MINIMUM

CHARGE = 0.5 TIMES THE VERTICAL SURCHARGE LOAD UNIFORMLY FRIBUTED OVER THE HEIGHT OF THE WALL. THE MINIMUM VERTICAL

CHARGE SHALL BE AN AASHTO HL-93 VEHICULAR LOAD.

SMIC = 3.9H² DISTRIBUTED AS AN INVERSE TRIANGLE OVER THE HEIGHT OF

ATERAL EARTH PRESSURES FOR UNRESTRAINED WING WALLS: TIC = 35 PSF/FT AS AN EQUIVALENT FLUID PRESSURE, 200 PSF/FT MINIMUM CHARGE = 0.28 TIMES THE VERTICAL SURCHARGE LOAD UNIFORMLY RIBUTED OVER THE HEIGHT OF THE WALL. THE MINIMUM VERTICAL CHARGE SHALL BE AN AASHTO HL-93 VEHICULAR LOAD. THE DESIGN LL ACCOUNT FOR SLOPING GROUND SURFACE ABOVE THE WALLS. SMIC = 3.9H² DISTRIBUTED AS AN INVERSE TRIANGLE OVER THE HEIGHT OF

ACKFILL UNIT WEIGHT = 130 POUNDS PER CUBIC FOOT (PCF)

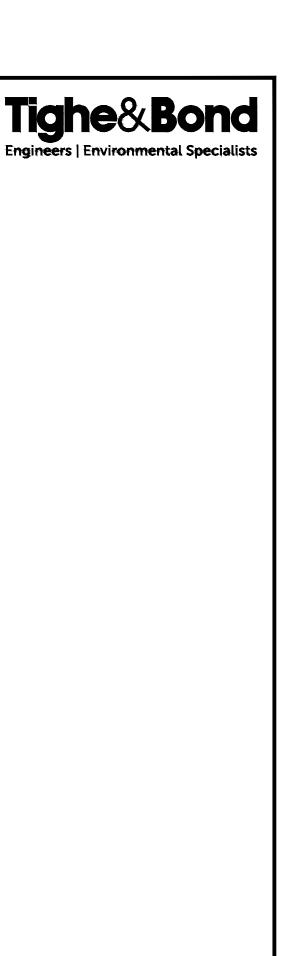
BACKFILL ANGLE OF INTERNAL FRICTION = 32 DEGREES

COEFFICIENT OF FRICTION FOR CONCRETE ON CLEAN, SOUND BEDROCK =

AK SEISMIC GROUND ACCELERATION MODIFIED BY THE SHORT-PERIOD SITE

ECTRAL RESPONSE ACCELERATION AT 0.2-SECOND PERIODS (S^{DS}) = 0.202

ECTRAL RESPONSE ACCELERATION AT 1-SECOND PERIODS $(S_{D1}) = 0.068$


PRECAST CONCRETE BRIDGE STRUCTURE NOTES:

1. ITEM 995.01, BRIDGE STRUCTURE - STRUCTURE NO. 1, SHALL INCLUDE THE PRECAST CONCRETE ARCH, CURBS/HEADWALLS, PEDESTAL FOOTINGS USED TO SUPPORT THE RIGID FRAME, U-WINGWALL, AND WINGWALL FOOTING. JOINT MATERIALS, MEMBRANE, AND ANY OTHER MATERIALS REQUIRED FOR INSTALLATION OF THE PRECAST CONCRETE BRIDGE OR WINGWALL STRUCTURE SHALL BE SUBSIDIARY.

- THE CONTRACTOR SHALL SUBMIT SHOP DRAWINGS AND DESIGN CALCULATIONS, SEALED AND SIGNED BY A CURRENTLY REGISTERED MASSACHUSETTS PROFESSIONAL ENGINEER TO THE MUNICIPALITY'S DESIGNER OF RECORD FOR REVIEW AND ACCEPTANCE FOR REVIEW TO ENSURE CONFORMANCE WITH THE CONTRACT DOCUMENTS. SHOP DRAWINGS AND CALCULATIONS SHALL BE SUBMITTED PRIOR TO FABRICATION FOR ALL PRECAST CONCRETE ELEMENTS. SHOP DRAWINGS SHALL SHOW JOINT DETAILS AND REINFORCEMENT SIZE AND LOCATION.
- CHANGES OR MODIFICATIONS DURING THE FABRICATION PROCESS MUST BE SUBMITTED TO THE MUNICIPALITY'S DESIGNER OF RECORD FOR ACCEPTANCE AND INCORPORATED INTO THE FINAL AS-BUILT DRAWINGS.
- DIMENSIONS SHOWN FOR THE PRECAST CONCRETE ELEMENTS ARE ASSUMED AND ARE BELIEVED TO BE PRACTICABLE. NO ADJUSTMENTS TO QUANTITIES OR PAYMENTS WILL BE MADE AS A RESULT OF PROVIDING PRECAST UNITS SIZED DIFFERENTLY THAN SHOWN ON THE PLANS.
- 5. THE QUALITY OF MATERIALS, THE PROCESS OF MANUFACTURE, AND THE FINISHED PRECAST UNITS SHALL BE SUBJECT TO INSPECTION AND APPROVAL BY THE ENGINEER.
- 6. JOINTS BETWEEN ABUTTING PRECAST UNITS SHALL BE MECHANICALLY CONNECTED, WATERTIGHT, GROUTED, AND MEMBRANED.
- 7. JOINTS BETWEEN ABUTTING PRECAST ARCH, WINGWALL, AND CURB/HEADWALL ELEMENTS SHALL BE MECHANICALLY CONNECTED, WATER TIGHT, AND MEMBRANED.
- 8. WATERPROOF MEMBRANE SHALL BE PROVIDED OVER THE STRUCTURE ACROSS THE ENTIRE ROADWAY WIDTH.
- 9. MEMBRANED SURFACES TO BE BACKFILLED AGAINST SHALL BE PROTECTED BY A PROTECTION BOARD.
- 10. EXPOSED CONCRETE SURFACES SHALL BE TREATED WITH WATER REPELLENT (SILANE/SILOXANE).
- 11. PRECAST CONCRETE CURB/HEADWALL ANCHORAGES, CURB, U-WINGWALL, AND ARCH SECTIONS SHALL BE DESIGNED TO ACCOUNT FOR ALL EARTH PRESSURE, LIVE LOAD SURCHARGES, AND BRIDGE RAILING LIVE LOAD AS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS FOR NCHRP 350 TL-2 TEST LEVEL.
- 12. WEEP HOLES SHALL BE PLACED 1'-0" (TYP.) ABOVE THE TOP OF THE PEDESTAL FOOTING AND ONE (1) WEEP PROVIDED ON BOTH SIDES OF EACH ARCH OR WINGWALL UNIT OR 10'-0" (MAX.) SPACING ALONG FOOTING.
- 13. FOOTINGS SHALL HAVE A KEYWAY WITH THE SPECIFIED DIMENSIONS. GROUT SHALL BE PLACED AROUND THE BOTTOM OF THE ARCH OR WINGWALL AND TO THE TOP OF THE KEYWAY.
- 14. TOP SURFACES OF FOOTING UNITS SHALL BE SET UNIFORMLY TRUE & LEVEL TO A TOLERANCE OF +/- 1/8". PRECAST UNITS SHALL UNIFORMLY BEAR ON SUPPORTING MATERIAL.
- 15. ANY UNSUITABLE MATERIALS SUCH AS BOULDERS, ROOTS, ORGANIC SOILS, SILT/CLAY, OR FRACTURED BEDROCK ENCOUNTERED AT THE PROPOSED BOTTOM OF EXCAVATION ELEVATION SHALL BE REMOVED AND REPLACED WITH CONCRETE, AS DIRECTED BY THE ENGINEER.
- 16. DEWATERING SHALL BE REQUIRED AT EACH FOUNDATION LOCATION TO CONTROL THE WATER INFLOW AND ADEQUATELY DEWATER THE FOOTING EXCAVATION. SUMP PUMPING AREAS AROUND THE ENTIRE PERIMETER SHALL BE REQUIRED TO ADEQUATELY CONTROL THE GROUNDWATER WITHIN THE EXCAVATION AREAS. DEWATERING SHALL BE CONTINUOUS UNTIL THE PRECAST CONCRETE ARCH AND WINGWALLS ARE BACKFILLED EVENLY ON BOTH SIDES TO THE ELEVATIONS OF THE SURROUNDING WATER TABLE, UNLESS OTHERWISE DIRECTED.
- 17. ANY PROPOSED DEWATERING AND SHORING PROCEDURES SHALL BE SUBMITTED TO THE ENGINEER OF RECORD FOR REVIEW AND ACCEPTANCE.
- 18. WATER PUMPED FROM DEWATERING LOCATIONS SHALL BE FILTERED ADEQUATELY TO REMOVE FINE MATERIALS PRIOR TO RETURNING THE WATER TO THE RIVER/BROOK. ACTUAL LOCATION OF SEDIMENTATION BASIN TO BE DETERMINED BY CONTRACTOR AND APPROVED BY THE ENGINEER PRIOR TO INSTALLATION
- 19. ANY FOUNDATION MATERIALS WEAKENED AS A RESULT OF INSUFFICIENT CARE WHILE MAINTAINING A DEWATERED CONDITION SHALL BE REMOVED AND REPLACED WITH CONCRETE AT NO EXPENSE TO THE OWNER.
- 20. REINFORCEMENT SHALL HAVE A 2" MINIMUM CLEAR COVER.
- 21. A CORROSION INHIBITOR CONCRETE ADDITIVE SHALL BE USED FOR ALL CONCRETE.
- 22. DATE TO BE PLACED ON THE INSIDE NORTHEAST FACE AND INSIDE SOUTHWEST FACE HIGHWAY GUARDRAIL TRANSITIONS. A SHEET SHOWING SIZE AND CHARACTER OF NUMERALS WILL BE FURNISHED. THE DATE USED SHALL BE THE LATEST YEAR OF CONTRACT COMPLETION AS OF THE DATE THE FIRST HIGHWAY GUARDRAIL TRANSITION IS CONSTRUCTED. ALL HIGHWAY GUARDRAIL TRANSITIONS SHALL FEATURE THE SAME DATE.

CHAPTER 85 SECTION 35 REVIEW AND APPROVAL NOTES:

1. IN ACCORDANCE AND COMPLIANCE WITH THE REQUIREMENTS OF CHAPTER 85 SECTION 35 OF THE MASSACHUSETTS GENERAL LAWS, THE CONTRACTOR SHALL SUBMIT TO THE MASSACHUSETTS DEPARTMENT OF TRANSPORTATION ALL CONSTRUCTION DRAWINGS AND DESIGN CALCULATIONS THAT SHALL BE USED TO FABRICATE AND CONSTRUCT THE STRUCTURE DENOTED ON THESE PLANS FOR REVIEW AND APPROVAL. THIS APPROVAL SHALL CONSTITUTE THE FINAL APPROVAL AS STIPULATED BY CHAPTER 85 SECTION 35 OF THE MASSACHUSETTS GENERAL LAWS.

Draft 25% Plans **Not For** Construction

Central Street Bridge Replacement

Department of Public Works

MassDOT Bridge No. M-02-001, BIN 8AM

Town of Manchester-By-The-Sea, Massachusetts

MARK	DATE	DESCRIPTION		
PROJE	ROJECT NO: M1476 - 011			
DATE: JUNE 2019				
FILE:	M1476-011-S-	-002.dwg		
DRAWI	N BY:	D.BISHOP		
CHECK	ED:	EAO		
APPRO	VED:	DLL		
	BRID	OGE NOTES		
SCAL	E:	AS NOTED		
	S	-002		

SHEET 2 OF 6

COMMONWEALTH OF MASSACHUSETTS MassDOT, Highway Division CONCEPTUAL DESIGN IS ACCEPTABLE TO MASSDOT FOR CONTRACTING

	·	& B					Boring No		B	
Inginee	rs Envi	ronmental S	Specialists	Project:	Central Street Bridge Central Street, Manchester-by-the-Sea, MA	_	File No. Checked	by:	M-14760 C. H	
					Town of Manchester-by-the-Sea	_	enconca	~ <u>,</u> _	0.11	unor
Drilling C	o.: New E	England Borin	g Contractors	6	Casing Sampler		Groundwat	er Rea	dings	
Foreman:	Mike	Porter	0		Type HW Split Spoon Date	Time	Depth	Cas	sing	Sta. Time
T&B Rep				00/00/40	I.D./O.D. 4"/4.5" 1-3/8"/2" 8/9/2018	13:45	6.3'			End of Bori
Date Star Location	-	8/09/18 Exploration Lo	End: cation Plan	08/09/18	Hammer Wt 140# Hammer Fall 30"	-				
GS. Elev.		Datum: N			Other Auto hammer					
	Casing	Sample /	1					N		
Depth	Blows	No.	Sample Depth	Blows	Sample Description	General S	Stratigraphy	o t	Well C	Construction
(ft.)	Per Ft.	Rec. (in)	(ft.)	Per 6"				e s		
(,		S-1/-	0-2				HALT	1		
-		0-1/-	0-2		14-inches of Asphalt, over brown, fine to <u>1.</u> coarse SAND, some Gravel, trace Silt					
L					Source Shire, some Gravel, lidde Sill					
		S-2/-	2-4		Brown, fine to coarse SAND and GRAVEL,				No We	ell Installed
					little Silt					
F					1					
5 -		0.0/0	E 7	0 40	1	F	ILL			
F		S-3/8	5-7	9 - 12	Medium dense, brown, GRAVEL, some fine					
				2 - 13	to coarse Sand, trace Silt					
								2		
		S-4/4	8-10	50/6"	Very dense, brown, GRAVEL, little fine to					
F					coarse Sand, little Silt					
10					9.			3		
		C-1/58	10.5-15.5	2:04	Very hard to hard, moderate to slightly					
				1:37	weathered, slightly fractured to sound, very					
				1:53	coarse to coarse-grained GRANITE, with					
F				2:09	close to moderately close, horizontal to moderately dipping fractures; RQD = 95%					
-										
15				2:12	-					
		C-2/60	15.5-20.5	2:17	Very hard to hard, slight to very slightly	BED	ROCK			
				2:09	weathered, slightly fractured to sound, very					
				1:44	coarse to coarse-grained GRANITE, with					
⊢				2:12	close to moderately close, horizontal to shallow fractures; RQD = 98%					
\vdash										
20				3:09	4					
Γ					Bottom of exploration at 20.5'					
F					1					
F					1					
⊢					4					
25					4					
-										
Γ										
F					1					
F					1					
					4					
30					<u> </u>					
Notes: 1) Vacuu	mercavo	ated to approv	imately 5 fee	t below area	de. Samples S-1 and S-2				onsistency VERY S	
were colle	ected by	hand.		-		6 VERY % LOOS	LOOSE E	0-4 4-10	SOFT	2-4
		tered from ap			elow grade.	% MEDI	JM DENSE	10-30 30-50	STIFF	8-15
		pt to advance			grade, telescoped 5-inch AND 35 - <50		DENSE	>50	VERY S	TIFF 15-3

BORING LOG B-1

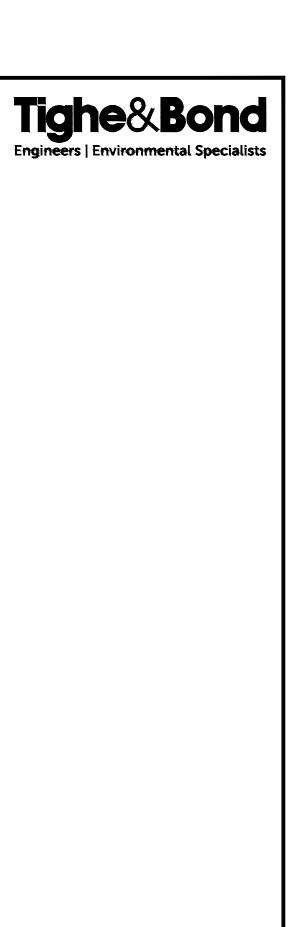
BORING LOCATIONS						
BORING	STATION	OFFSET				
B-1	0+52.3	RT. 16.2'				

BORING NOTES:

- 1. LOCATION OF BORINGS SHOWN ON SHEET S-001 THUS:
- MATERIALS TO BE ENCOUNTERED DURING CONSTRUCTION.
- WATER LEVEL.
- ROCK SAMPLES BY CONTACTING THE DESIGN ENGINEER.
- 6. ALL BORINGS WERE MADE IN SEPTEMBER 2018.
- NEW HAMPSHIRE.

B-1

2. BORINGS WERE TAKEN FOR PURPOSE OF DESIGN AND SHOW CONDITIONS AT BORING POINTS ONLY, BUT DO NOT NECESSARILY SHOW THE NATURE OF


3. WATER LEVELS SHOWN ON THE BORING LOGS WERE OBSERVED AT THE TIME OF TAKING BORINGS AND DO NOT NECESSARILY SHOW THE TRUE GROUND

4. FIGURES IN COLUMNS INDICATE NUMBER OF BLOWS REQUIRED TO DRIVE A 1%" I.D. SPLIT SPOON SAMPLER 6" USING A 140 POUND WEIGHT FALLING 30".

5. BORING SAMPLES ARE STORED AT TIGHE & BOND'S OFFICE, 53 SOUTHAMPTON ROAD, WESTFIELD, MA 01085. THE CONTRACTOR MAY EXAMINE THE SOIL AND

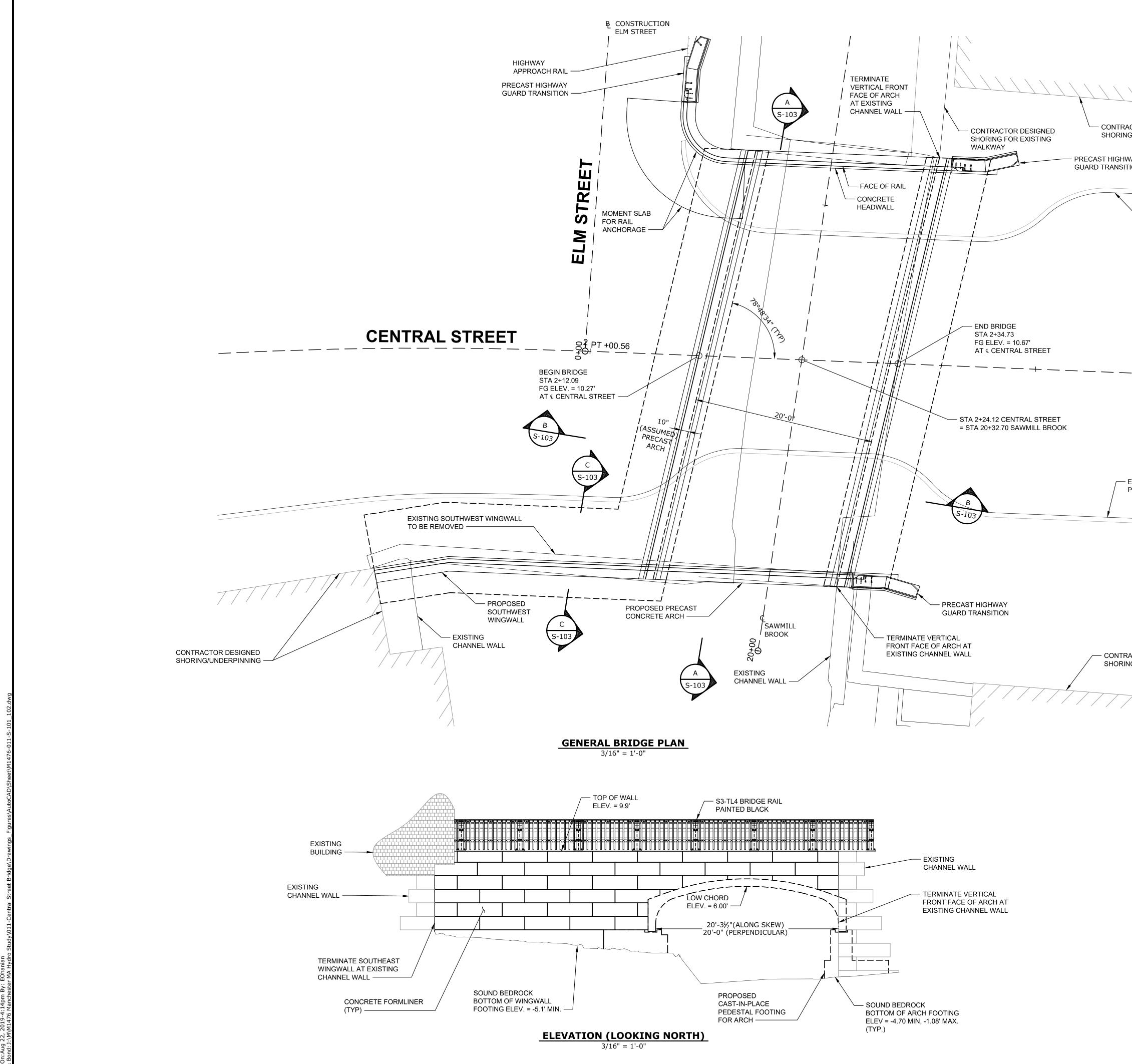
7. BORINGS WERE MADE BY NEW ENGLAND BORING CONTRACTORS OF DERRY,

- 8. THE NORTH AMERICAN VERTICAL DATUM (NAVD) OF 1988 IS USED THROUGHOUT.
- 9. THE SURFACE ELEVATION ON EACH BORING LOG IS THE ELEVATION OF THE EXISTING GROUND AT THE TIME THE BORING WAS TAKEN.
- 10. SEE SHEET S-002 FOR GEOTECHNICAL DESIGN PARAMETERS.
- 11. ENGINEERING JUDGEMENT WAS EXERCISED IN PREPARING THE SUBSURFACE INFORMATION PRESENTED HEREIN. ANALYSIS AND INTERPRETATION OF SUBSURFACE DATA WAS PERFORMED FOR DESIGN AND ESTIMATING PURPOSES. PRESENTATION OF THE INFORMATION IN THE CONTRACT IS INTENDED TO PROVIDE THE CONTRACTOR ACCESS TO THE SAME DATA AVAILABLE TO THE OWNER. THE SUBSURFACE INFORMATION IS PRESENTED IN GOOD FAITH AND IS NOT INTENDED AS A SUBSTITUTE FOR PERSONAL INVESTIGATION, INDEPENDENT INTERPRETATION, INDEPENDENT ANALYSIS OR JUDGEMENT BY THE CONTRACTOR.

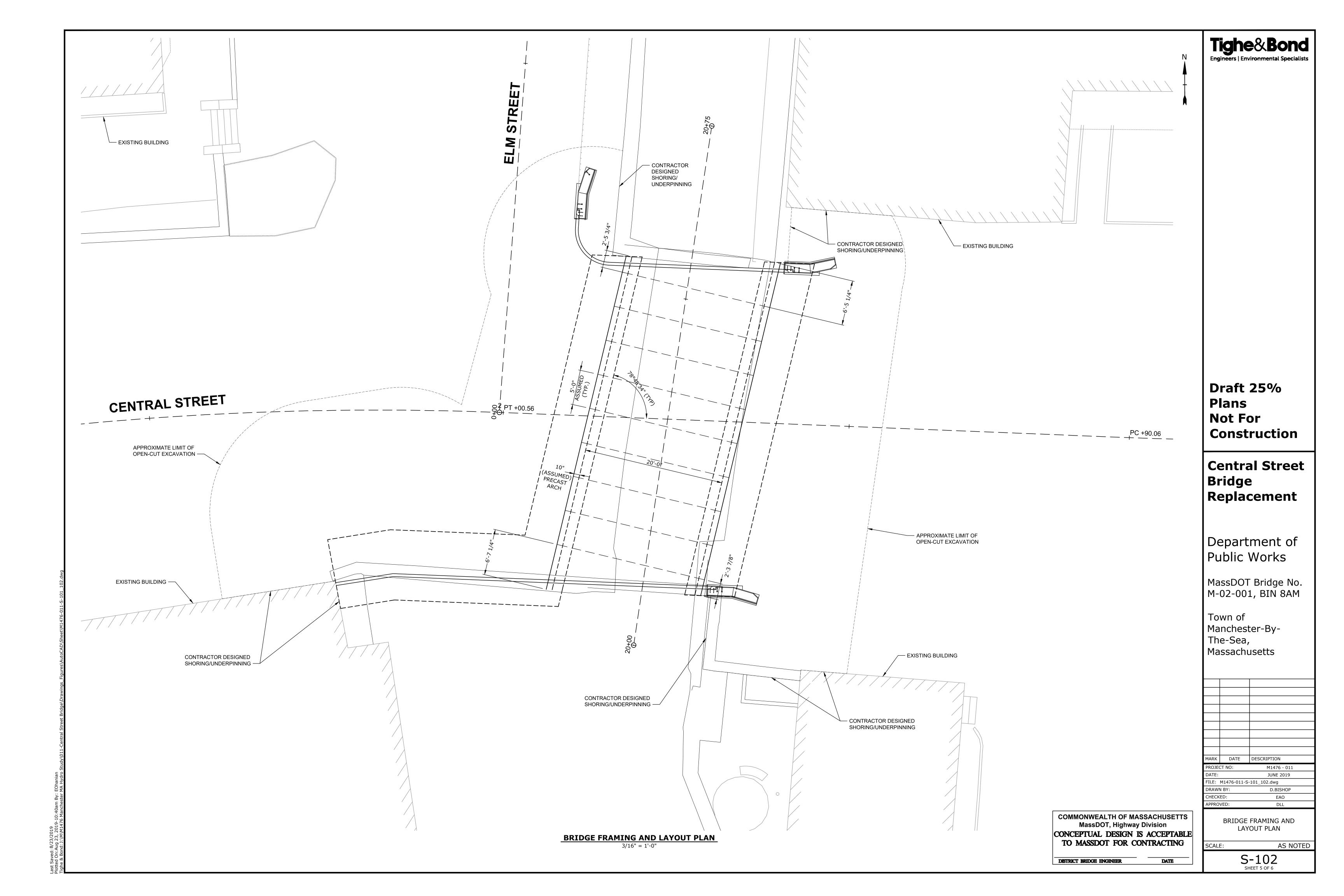
Draft 25% Plans Not For Construction

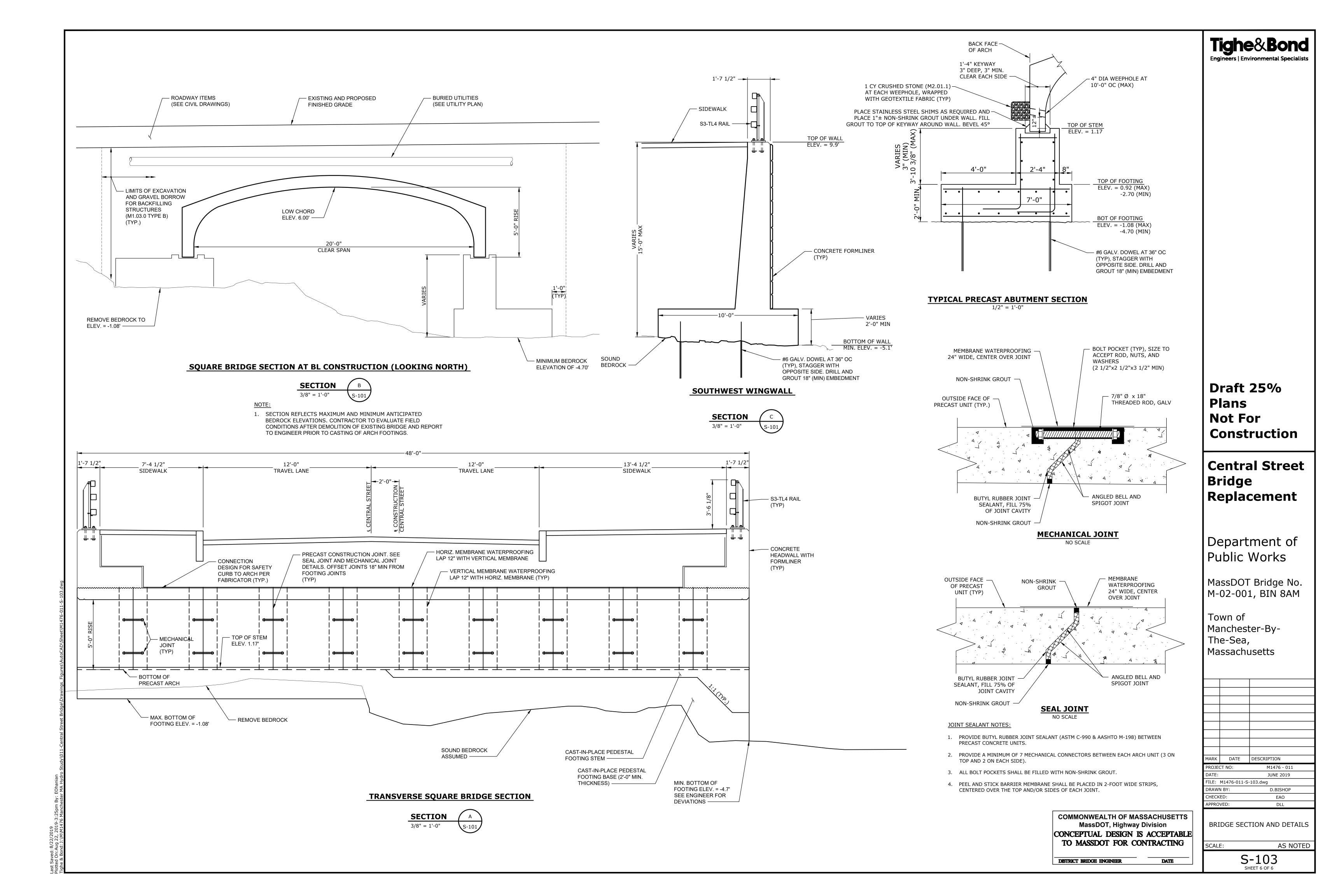
Central Street Bridge Replacement

Department of Public Works


MassDOT Bridge No. M-02-001, BIN 8AM

Town of Manchester-By-The-Sea, Massachusetts


MARK	DATE	DESCRIPTION		
PROJE	PROJECT NO: M1476 - 011			
DATE: JUNE 2019				
FILE:	M1476-011-S-	003.dwg		
DRAW	N BY:	D.BISHOP		
CHECK	ED:	EAO		
APPRO	VED:	DLL		
		G LOGS AND ING NOTES		
SCAL	E:	AS NOTED		
	S	-003		


SHEET 3 OF 6

COMMONWEALTH OF MASSACHUSETTS MassDOT, Highway Division CONCEPTUAL DESIGN IS ACCEPTABLE TO MASSDOT FOR CONTRACTING

		Tighe&Bond Engineers Environmental Specialists
X.		
ACTOR DESIGNED G/UNDERPINNING		
VAY		
TION		
EDGE OF PAVEMENT		
Щ CONSTRUC CENTRAL ST	CTION REET	
		Draft 25%
EDGE OF PAVEMENT		Plans Not For
		Construction
		Central Street Bridge
		Replacement
ACTOR DESIGNED		Department of
NG/UNDERPINNING		Department of Public Works
		MassDOT Bridge No. M-02-001, BIN 8AM
		Town of
		Manchester-By- The-Sea,
		Massachusetts
		MARK DATE DESCRIPTION
		PROJECT NO: M1476 - 011 DATE: JUNE 2019
		FILE:M1476-011-S-101_102.dwgDRAWN BY:D.BISHOPCHECKED:EAO
	COMMONWEALTH OF MASSACHUSETTS	APPROVED: DLL
	MassDOT, Highway Division CONCEPTUAL DESIGN IS ACCEPTABLE	GENERAL BRIDGE PLAN AND ELEVATION
	TO MASSDOT FOR CONTRACTING	SCALE: AS NOTED
	DISTRICT BRIDGE ENGINEER DATE	S-LUL SHEET 4 OF 6

Appendix F Opinion of Probable Construction Cost

Engineer's Opinion of Probable Construction Cost 25% Design Submission Central Street Bridge Town of Manchester-by-the-Sea, MA

Town of Manchester-by-the-Sea, MA							
ITEM	MASSDOT DESCRIPTION	QTY	UNITS	UN	IIT PRICE ¹		AMOUNT
115.1	Demolition of Bridge No. 1	1	LS	\$	175,000.00	\$	175,000.00
120.	Earth Excavation	670	CY	\$	35.00	\$	23,450.00
140.	Bridge Excavation	700	CY	\$	55.00	\$	38,500.00
144.	Class B Rock Excavation	1	LS	\$	30,000.00	\$	30,000.00
146.	Drainage Structure Removed	3	EA	\$	600.00	\$	1,800.00
151.	Gravel Borrow	380	CY	\$	45.00	\$	17,100.00
151.1	Gravel Borrow for for Backfilling Structures and Pipes	550	CY	\$	51.00	\$	28,050.00
170.	Fine Grading and Compacting	1540	SY	\$	7.00	\$	10,780.00
201.	Catch Basin	2	EA	\$	4,500.00	\$	9,000.00
202.	Manhole	2	EA	\$	4,500.00	\$	9,000.00
203.	Special Manhole (Stormwater Treatment Unit)	1	EA	\$	15,000.00	\$	15,000.00
210.	Sanitary Sewer Manhole	3	EA	\$	4,500.00	\$	13,500.00
221.	Frame and Cover	5	EA	\$	800.00	\$	4,000.00
222.2	Frame and Grate - Municiple Standard	2	EA	\$	950.00	\$	1,900.00
224.15	12 Inch Hood	2	EA	\$	500.00	\$	1,000.00
250.06	6 Inch Polyvinyl Chloride Sanitary Sewer Pipe	50	FT	\$	95.00	\$	4,750.00
250.15	15 Inch Polyvinyl Chloride Sanitary Sewer Pipe	250	FT	\$	120.00	\$	30,000.00
252.12	12 Inch Corrugated Plastic Pipe	30	FT	\$	80.00	\$	2,400.00
252.15	15 Inch Corrugated Plastic Pipe	50	FT	\$	85.00	\$	4,250.00
	6 Inch Ductile Iron Water Pipe (Rubber Gasket)	20	FT	\$	120.00	\$	2,400.00
302.12	12 Inch Ductile Iron Water Pipe (Rubber Gasket)	150	FT	\$	150.00	\$	22,500.00
309.	Ductile Iron Fittings for Water Pipe	500	LB	\$	8.00	\$	4,000.00
350.12		1	EA	\$	3,750.00	\$	3,750.00
402.	Dense Graded Crushed Stone for Sub-base	120	CY	\$	75.00	\$	9,000.00
415.	Pavement Micromilling	100	SY	\$	5.00	\$	500.00
450.23	Superpave Surface Course - 12.5 (SSC - 12.5)	120	TON	\$	130.00	\$	15,600.00
	Superpave Intermediate Course - 19.0 (SIC - 19.0)	210	TON	\$	135.00	\$	28,350.00
580.	Curb Removed and Reset	600	FT	\$	30.00	\$	18,000.00
	Guardrail - TL-2 (Single Faced)	80	FT	\$	34.00	\$	2,720.00
	Guardrail End Treatment, TL-2	3	EA	\$	3,750.00	\$	11,250.00
	Transition to Bridge Rail	3	EA	\$	4,200.00	\$	12,600.00
697.	Sedimentation Fence	250	FT	\$	6.00	↓ \$	1,500.00
697.2	Floating Silt Fence	100	FT	\$	35.00	\$	3,500.00
701.	Cement Concrete Sidewalk	200	SY	\$	65.00	\$	13,000.00
701.2	Cement Concrete Wheelchair Ramp	200	SY	\$	95.00	↓ \$	1,900.00
748.	Mobilization	1	LS	↓ \$	59,000.00	.↓ \$	59,000.00
756.	NPDES Stormwater Pollution Prevention Plan	1	LS	\$	5,000.00	↓ \$	5,000.00
	12 Inch Reflectorized White Line	120	LF	↓ \$	2.50	↓ \$	300.00
	4 Inch Reflectorized Yellow Line	580	LF	.₽ \$	2.00	.⊅ \$	1,160.00
993.1	Temporary Bridge	1	LS	₽ \$	65,000.00	.⊋ \$	65,000.00
991.1	Control of Water, Structure No. 1	1	LS	₽ \$	150,000.00	₽ \$	150,000.00
991.1 995.01		1	LS		765,000.00		765,000.00
995.01 996.01	5 , 5	1	LS	\$ \$	450,500.00	\$ \$	-
990.01	Wall Structure, Wall No. 1	T	LS	P	450,500.00	Þ	450,500.00
	Maintenance of Traffic - Central Street Detour (During Closure)	1	LS	\$	10,000.00	\$	10,000.00
	Maintenance of Traffic - Central Street Phasing (Temp. Signal)	1	LS	\$	60,000.00	\$	60,000.00
	Elm Street Shoring system	1	LS	\$	65,000.00	\$	65,000.00
	Temporary Utility Relocation - Water	1	LS	\$	20,000.00	\$	20,000.00
	Temporary Utility Relocation - Sewer	1	LS	\$	50,000.00	\$	50,000.00
	Temporary Utility Relocation - Gas	1	LS	\$	20,000.00	\$	20,000.00
				Ψ	20,000.00	Ψ	20,000.00
	Temporary Utility Relocation - Electric	1	LS	↓ \$	50,000.00	\$	50,000.00

M1476-011

Tighe & Bond June 19, 2019

Construction Contingency	20%	\$ 468,20
Bidding & Material Contingency	25%	\$ 585,25
Police Details	5%	\$ 117,05
Utility Relocation - National Grid (Gas)		\$ 20,00
Utility Relocation - National Grid (Power)		\$ 80,00
Utility Relocation - Verizon/Comcast		\$ 85,00
	Total	\$ 3,696,51
	Say	\$ 3,700,00
Notes:		
1. Unit prices are based on MassDOT Weighted Bid Prices as of June 2019.		

This is an engineer's Opinion of probable Construction Cost (OPCC). Tighe & Bond has no control over the cost or availability of labor, equipment or materials, market conditions, or the Contractor's method of pricing. The OPCC is made on the basis of Tighe & Bond's professional judgment and experience. Tighe & Bond makes no guarantee nor warranty, expressed or implied, that the bids or the negotiated cost of the Work will not vary from this OPCC.

Appendix G Backup Calculations

CONCEPTUAL ARCH FRAME CALCULATIONS

INDEX OF SHEETS

- 1 TITLE SHEET
- 2 ANALYSIS CRITERIA
- 3-5 ERIKSSON CULVERT INPUT
- 6-19 ERIKSSON CULVERT OUTPUT
- 20 SUMMARY OF ARCH FRAME REACTIONS

REFERENCES

- 1 2017 AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, 8th EDITION, WITH INTERIM REVISIONS
- 2 2013 MASSDOT BRIDGE DESIGN MANUAL

	JOB NO	M1476-011			SHEET	2	OF	20
Tighe&Bond	CLIENT	TOWN OF M	ANCHESTER	-BY-THE-SEA				
Engineers Environmental Specialists	SUBJECT	CENTRAL ST	REET BRIDO	GE - ARCH FRAI	ME REACTIONS			
	PREPARED BY	EAO	DATE	JAN. '19	CHECKED BY		DATE	

ASSUMPTIONS

1 FINAL CALCULATIONS TO BE PERFORMED BY MANUFACTURER.

METHODOLOGY

1 DESIGN IN ACCORDANCE WITH AASHTO LRFD REFERENCE 1

2 DESIGN IN ACCORDANCE WITH MASSDOT BDM REFERENCE 2

3 DETERMINE MAXIMUM REACTIONS FOR FOOTING DESIGN.

4 USE ERIKSSON CULVERT SOFTWARE BY ERIKSSON TECHNOLOGIES, INC. TO PERFOM CONCEPTUAL FRAME DESIGN.

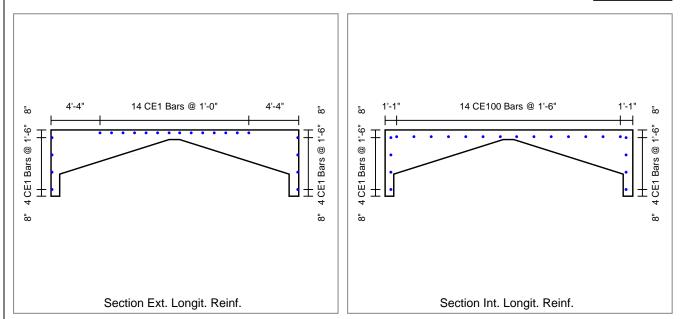
5 FOR SOFTWARE CONVENIENCE, EVALUATE ARCH AS A 3-SIDED RIGID FRAME WITH OVERSIZED HAUNCHES

MATERIALS AND DESIGN PARAMETERS

DESIGN LIVE LOAD:	HL-93	
CONCRETE UNIT WEIGHT (AASHTO 3.5.1-1):	150	PCF
CONCRETE STRENGTH:	5000	PSI
SOIL UNIT WEIGHT (GEOTECHNICAL RECOMMENDATIONS):	130	PCF
REINFORCING YIELD STRENGTH, F _Y :	60000	PSI
REINFORCING MODULUS OF ELASTICITY, E _s :	29000	KSI
CLEAR SPAN:	20.00	FT

FIGHE & BOND, II	NC.		Shtof By:EAO
roject : Central St Bridge Replaem			By.EAO Ck:
ask : Conceptual Frame Design		ent: Town of MBTS, MA	1/2/2019 5:01:45 PM
ob No. : M1476-011	File: Eriksson Culvert_	Central Street Bridge.etcx	p. 1 of 3
Spec.: LRFD 8th ed.			
Type of Culvert: Precast			
Physical Dimensions			
Clear Span:	20'-0"		
Clear Height:	5'-0"		
Top Slab:	10"		
Ext. Wall:	10"		
Fill Depth Range		Z	i
Maximum:	4.00 ft		
Minimum:	3.00 ft		-x - x -
Increment:	1.00 ft		
Length:	5'-0"		
Skew Angle:	0.00 deg	+	+ •
Bottom Slab Support:	Pinned	21'-8	3"
Top Haunch, Width:	9'-6"		
Top Haunch, Height:	3'-0"		
Material Properties			
Concrete			
Strength, f'c:	5.000 ksi		
Density:	0.150 kcf	Plan	View
Elasticity, Ec:	4287 ksi		
Туре:	Normal wt		
Steel			
Yield, fy:	60 ksi		
Allow Stress:	24 ksi		
Elasticity, Es:	29000 ksi		
Soil			
Density:	0.130 kcf	· · · · · · · · · · · · · · · · · · ·	••••••••••••••••••••••••••••••••••••••
Exposure Factor			
Class 1 Exposure		y y	
Reinforcement Covers			-x [] ₅
Ext. Cover Top Slab:	2"		-x - x -
Ext. Cover Walls	_ 1 1/2"		
Int. Cover Walls	1 1/2"		
Int. Top Slab	1 1/2"		↓ ↓
		10 [°] 20'-0)" 10"
Loads			
Live Load			
Vehicle Names:	HL-93		
Traffic Direction:	Parallel		
Eq. Height of Soil:	2.00 ft (Entered)		
Max No. of Lanes:	2		
Dead Load		Tvpical	Section
Future Wearing Surface:	0.100 klf	,p.e.e.e	
Additional Dead Load:	0.000 klf		
Concentrated Loads:	none		
Lateral Soil Loads			
Eq. Fluid Press. Max:	60.00 pcf		
Eq. Fluid Press. Min:	30.00 pcf		
Consider Int. Water Press.:	no		

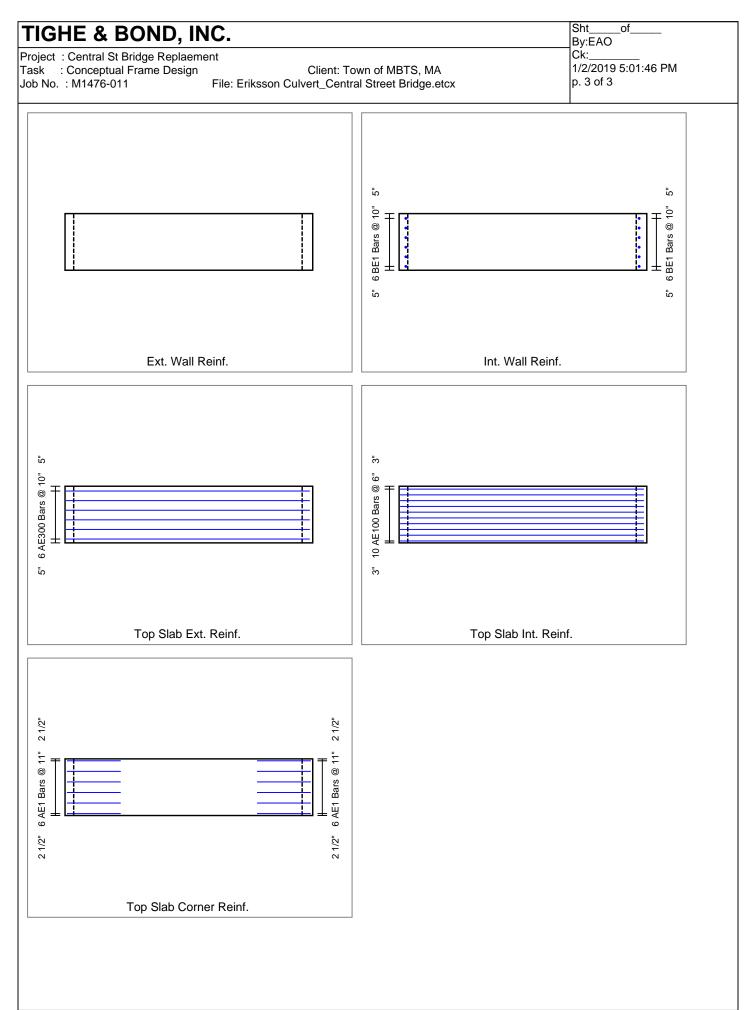
TIGHE & BOND, INC.


	D, INC.	By:EAO
Project : Central St Bridge R	eplaement	Ck:
Task : Conceptual Frame	Design Client: Town of MBT	S, MA 1/2/2019 5:01:45 F
Job No. : M1476-011	File: Eriksson Culvert_Central Street Bri	dge.etcx p. 2 of 3

Concrete Summary

Volume of Concrete: 1.311 cy/ft Total Volume of Concrete: 6.553 cy

Reinforcing Steel Bar Schedule (lb)


Iteline engleteer									
Location	Mark	Qty	Size	Spacing	Туре	Length	Hor.Leg	Ver.Leg	Tot.Weight
Top Slab(Int)	AE100	10	10	6"	s	21'-4"			918.0
Top Slab(Ext)	AE300	6	4	10"	S	21'-4"			86.0
Corner(Top)	AE1	12	5	11"	L	10'-2"	4'-9"	5'-5"	127.0
Wall(Int)	BE1	12	4	10"	S	5'-6"			44.0
Longit. Top (Ext)	CE1	14	1	1'-0"	S	4'-11"			0.0
Longit. Top (Int)	CE100	14	3	1'-6"	S	4'-11"			26.0
Longit. Wall (Ext)	CE1	8	3	1'-6"	S	4'-11"			15.0
Longit. Wall (Int)	CE1	8	3	1'-6"	S	4'-11"			15.0
									1231

Sht_

of

ΡM

Sht: of By: EAO Chk: 1/2/2019 4: 57: 50 PM Eriksson Culvert v4.0.8 Copyright © 2010-2018 Eriksson Software, Inc. (www.ErikssonSoftware.com) Filename: Eriksson Culvert_Central Street Bridge.etcx Culvert p. 1 of 14 Project: Central St Bridge Replaement Task : Conceptual Frame Design Client : Town of MBTS, MA Job No.: M1476-011 CULVERT PROPERTIES _____ Type of Culvert: Precast Operating Mode : Design Specification : LRFD 8th Edition Physical Dimensions No. of Boxes: 1 Clear Span : 20.0000 ft Clear Height: 5.0000 ft Name: ThreeSi dedCul vert Skew Angle : 0.00 deg Bottom Slab Support: No Bottom Slab, Pinned Supports Maximum : 4.00 ft Minimum : 3.00 ft Inc D0 in Height: 36.0000 in Top Slab: 10.0000 in Bot Slab: 0.0000 in Ext Wall: 10.0000 in Length : 5.0000 ft Botto Fill Depth Range: Maxim Haunches: Top, Length: 114.0000 in Increment : 1.00 ft Minimum Thicknesses: Wall Joint: None Material Properties Strength, f'c : 5.000 ksi 0.150 kcf 4287 ksi Concrete: Density El asti ci ty, Ec: Normal Weight Density Modification Factor : Туре 1.00 1.60 Fr' Factor 0.24 Gamma1 Gamma3 0.75 : 0.60fy 1.125 in Yi el d, fy Yi el d, fyv Densi ty Poi sson' s Steel : 60.00 ksi fss Limit El asti ci ty, Es: 29000 ksi Туре 60.00 ksi : Rebar Diameter Soil: 0.130 kcf Slope Factor: 1.150 (B1 Installation) 0.5 1.150 (Maximum for Compacted Fill) Fe Factor Serviceability, Gamma-e: 1.00 Loads Live Load: Vehicle: (AA) HL-93 - Design Vehicle Weight(k) Dist. From Previous(ft) 8.00 0.00 Axle No. 1 32.00 14.00 3 32.00 14.00 Gage Width: 6.00 ft, Tread Width: 20.00 in, Tread Length: 10.00 in Include Tandem: yes Tandem: Axle 1: 25.00 k, Axle 2: 25.00 k, Axle Spacing: 4.00 ft Lane Load: 0.64 klf, P-Moment: 0.00 k, P-Shear: 0.00 k Combine: Truck + Lane Or Tandem + Lane Inventory Rating Load Factor: 1.75 (Design Load Combinations: Strength I Operating Rating Load Factor: 1.35 Override MPF: no Override DLA: no Include Lane Load : yes Max. No. of Lanes: 2 Traffic Direction : Lanes Parallel to Main Reinforcement Neglect Live Load for Large Fill Depths: yes Apply Surcharge at Fill Depths > 2 ft : yes Compute Surcharge Depth: no Future Wearing Surface : 0 Surcharge Depth : 2.00 ft 0.10 klf Dead Load: Add. Dead Load 0.00 klf Concentrated Loads none Lateral Soil Loads: Max. Equiv. Fluid Press.: 60.00 pcf Min. Equiv. Fluid Press. : 30.00 pcf Buoyancy Check : no Buoyancy Check Fluid Pressures: Apply Water Press. : no Load and Resistance Factors Min Max DC: 1.250 0.900 DW: 1.500 EV: 1.300 0.650 0.900 EH: 1.350 WA: 1.000 0.900 LL I : 1.750 LL II : 1.350 Ductility: 1.000 Condition: 1.000 Phi Shear: 0.900 Importance: 1.000 Redundancy, non-earth: 1.000 Redundancy, earth: 1.050 System : 1.000 Phi Moment: 0.950 PM Compression: 0.750 PM Tension : 0.900 Load Factor Multipliers, Design Mode: 1.00 Analysis Mode: 1.00 Reinforcement Reinforcement Covers : Interior Exterior Top Slab: 2.0000 in 1.5000 in Walls 1.5000 in 1.5000 in :

Eriksson Culvert v4.0.8 Copyright © 2010-2018 Eriksson Software, Inc.(www.ErikssonSoftware.com) Filename: Eriksson Culvert_Central Street Bridge.etcx

Sht:	of	
Bv: EAO	Chk:	
1/2/20	19 4: <u>57:5</u> 0 PM	
Cul ver	tp. 2 of 14	

Member Thick.:	Top Slab : Fixed Bottom Slab: Variable
	Ext. Wall: Fixed
LL Analysis :	Automatically Set Traffic Direction to Account for Skew Effects: no
	Limit Distribution Width to Culvert Length for Fills < 2 ft: yes
	Limit Distribution Width to Culvert Length for Fills > 2 ft: no
	Combine Longitudinal Axle Overlaps for Fills > 2 ft: yes
	Combine Transverse Axle Overlaps for Fills > 2 ft: no
	Axle Placement Increment for Moving Load Analysis: 20
	Always Distribute Wheel Load: yes
Reinforcement:	
	Distribution Slab Provided: no
	User Defined Longitudinal Steel: no, Follow Specification
	Max. As used in Vc Calcs: 2.00 in2/ft
	Distribute Minimum Reinforcement per Face: yes
	Use individual Member Thicknesses for Min Steel: no
	Epoxy coat steel: all bars
	Checked K Factor: 2.00
Analysis Model	ing: Use Haunches in the Structural Analysis Model: yes
	Left Node on Rollers for 3-Sided Frames: no
Crit. Section:	Consider Haunches when Selecting Critical Section Locations: yes
	Extend Critical Section for Shear Beyond the End of the Haunch: no
	Use Max. Moment with Max. Shear at the Critical Section for Shear: yes
Flexure :	Ignore Axial Thrust: no
	Use Eq. 12.10.4.2.4a-1: no
Shear :	Check Iterative Beta Method Only When Appropriate
Envi ronmental:	Apply environmental duribility factors: no
Live Load Defi	ection Criteria: 1/1000

Eriksson Culvert v4.0.8 Copyright © 2010-2018 Eriksson Software, Inc. (www.ErikssonSoftware.com)	Sht:of By:EAO Chk: 1/2/2019 4:57:50 PM
Filename: Eriksson Culvert_Central Street Bridge.etcx DESIGN RESULTS ====================================	Culvert p. 3 of 14
Top Slab Thickness = 10.00 in Exterior Wall Thickness = 10.00 in	
Modular Ratio (N) = 6.76 Max. Steel Ratio = 0.025 Design Span = 20.83 ft Design Height = 5.42 ft	
Volume of Concrete: 1.311 cy/ft Weight of Steel: 249 lb/ft	
M dimension = 4.80 ft (method of equivalent capacity) = 5.20 ft (method of contraflexure - ASTM)	
Reinforcing Steel Schedule	
Bar Spacing As, prv As, rqd Length Wgt H L Location Mark Qty Size Type (in) (in2/ft) (in2/ft) (ft-in) (lbs) (ft-in) Top Slab (int) AE100(AS2) 10 10 STR 6.00 2.540 2.402 21-4 918 Top Slab (ext) AE300(AS7) 6 4 STR 10.00 0.240 0.240 21-4 918 Corner (Top) AE1 (AS1) 12 5 L-BAR 11.00 0.338 0.240 10-2 127 4- Ext Wall (int) BE1 (AS4) 12 4 STR 10.00 0.240 0.240 5-6 44 Temperature (1) CE1 (AS6) 14 1 STR 12.00 0.000 0.030 4-11 0 Top Slab (int-1) CE100(AS5) 14 3 STR 18.00 0.073 0.030 4-11 15 Temperature (1) CE1 (AS6)	Leg V Leg Truck Fill -in)(ft-in) (ft) AA 3.00 AA 3.00 - 9 5- 5 AA 3.00 AA 3.00 AA 3.00 AA 3.00 AA 3.00 AA 3.00 AA 3.00 AA 3.00
Note: A denotes flexural steel, B denotes vertical steel, C denotes longitudinal ste	eel
AS Bar Marks	
LocationControling CaseReq Area in2Transverse Side Wall- Outside Face (AS1)c0.24Transverse Top Slab- Inside Face (AS2)a2.402Transverse Bottom Slab- Inside Face (AS3)a0Transverse Side Wall- Inside Face (AS4)c0.24Distribution Top Slab- Inside Face (AS5)0.03Distribution Top Slab- OutSide Face (AS6)0.03Transverse Top Slab- OutSide Face (AS7)cOutside Face (AS8)- Outside Face (AS8)0.24	2/ft
As Controlled By: a - Flexure, b - Crack Control, c - Minimum Steel, d - Fatigue	
Splice Lengths Table:	
Bar Splice Length Mark Size (ft-in) B1 4 1-5 C1 3 1-4 CE1 3 1-7 C100 3 1-4	
>>>Warning: This is a three sided culvert, therefore foundation has not been design Engineer should design the foundation. This program output reflects fina conditions only. Handling, shipping and erection stresses are neither ch incorporated into program design and must be analyzed by the producer's External bracing is an acceptable method to mitigate overstress and poss damage during the course of handling, shipping and erection.	al service load hecked nor
Summary of Ratings Table:	
Flexure Shear Truck Fill Member Location IR OR Fill Member Location	on IR OR
(AA) HL-93 4.00 1 MID- 0.62 0.81 4.00 1 TOP	
Critical Sections Summary: Flexure	
Member 1: (Exterior Wall), Thickness = 10.00 in Design Corr. Load Ra Loc Dist. Moment A. F. Mu ds Ma As Mcr IR	atings Fill OR Truck Depth
(in) (k-ft) (k) (k-ft) (in) (k-ft) phi (in2) (k-ft) BOT 0.00 0.00 11.79 0.00 8.19 3.34 0.90 0.00c 10.73 NC	(ft) NC AA 3.00
MI D 26.00 0.00 7.52 9.24 8.25 10.80 0.90 0.24c 10.73 NC MI D- 32.50 -19.79 21.74 12.93 8.25 18.06* 0.90 0.34a 10.73 0.62 TOP 36.00 -1.81 21.74 12.83 8.19 17.98 0.90 0.34b 10.73 27.24	NC AA 3.00 0.81 AA 4.00

Copyı Filer	sson Cul right © name: Er er 2: (T	2010-20 i ksson op SI ab	018 Eriks Culvert_C), Thickn	entral St	reet Bri	c. (www. E dge. etc	ri ksson X	Softwa	e.com)		B 1 C	ulvert	Chk: 9 4:57: p. 4 c	of 14
Loc	Dist. (in)	Desigi Momen (k-ft	t A.F.	Mu (k-ft)	ds (in) (Ma (k-ft)	phi	As (in2)	Mcr (k-ft		bad Rati IR O		ruck [ill Depth ft)
LT MI D RT	36.00 125.00 36.00	-1.43 68.02 -3.02	3 9.79 2 5.62	`54.13́ 76.86	33.90 7.86 33.90	51.08 66.19* 51.08	0. 90 0. 82 0. 90	0. 34b 2. 54a 0. 34b	10. 7 10. 7 10. 7	3 3		NC 1. 24 5. 91	AA AA AA	4.00 3.00 4.00
As Co	ontrolle	d By: a	- Flexur	e, b - Cr	ack Cont	trol, c	- Minim	um Ste	el, d -	Fatigu	le			
Criti	cal Sec	tions S	ummary: V	ertical S	hear									
Membe	er 1: (E		Wall), T		= 10.00	in				Mox		atingo		F : 1 1
Loc	Dist. (in)	Design Shear (k)	Moment A	orr. . F. Dv (k) (in)	phi *Vn	Beta	Vc (k)	Vs (k	Av (in2)	Max. Spac (in)	Load R IR	OR	Truck	Fill Depth (ft)
BOT MI D	0.00	-1.48	1.1 13	. 76 8. 19 . 75 8. 11	12. 50 12. 38	2.000 2.000	13. 88b 13. 75b	0.0) Ò. OÓ	0.00 0.00	NC NC	NC NC	AA AA	4.00 4.00
MID- TOP	32.50 12.20	4.01 -9.15	-19.8 21 -1.8 21	. 74 8. 05	12.29	2.000	13. 65b 13. 55b	0.0	0.00	0.00 0.00	3. 72 2. 47	4.82 3.20	AA AA	4.00 4.00
Member 2: (Top Slab), Thickness = 10.00 in														
Loc	Dist.	Shear	Moment A	orr. . F. Dv	phi *Vn	Beta	Vc	Vs	Av	Max. Spac	Load R IR	OR	Truck	Fill Depth
LT MI D	(in) 27.89 125.00	(k) 16. 92 3. 36	-1.4 9 68.0 5	(k) (in) .79 33.70 .62 7.20	10.99	2.000	(k) 57. 15b 12. 21b	(k) 0. 0 0. 0) 0.00) 0.00	(in) 0.00 0.00	6. 10 3. 27	7.90 4.24	AA	(ft) 4.00 3.00
RT	27.89	16. 92		. 79 33. 70		2.000	57.15b	0.0		0.00	6. 10	7.90	AA	4.00
Vc Calculation By: a - Iterative Beta, b - Constant Beta, c - Box Culvert, d - Standard/Arema														

				============	======	======
	Design Results:			============		======
Parameters:						
- 1.03						
ied Horizontal Loads: (k/ft						
izontal Earth Load ve Load Surcharge	om of Wall Top of V 0.530 0.20 0.120 0.120 0.000 0.000	5 0				
actored Moments due to All L	.oads: (k-ft)	Unfactor	ed Shears du	e to All Loads	s: (k)	
PT Mdc Mev Mdw N	leh MIs Mwa	 М-РТ	Vdc Vev	Vdw Veh	 VI s	Vwa
per 1: (Exterior Wall)			: (Exterior	Wall)		
	00 0.00 0.00 51 0.15 0.00	Bottom 1-0- 1-1-	1.32 -1.95 1.32 -1.95	-0.49 1.07 -0.49 0.79		0.00 0.00
2 -1.43 -2.11 -0.53 0.	86 0.26 0.00 09 0.33 0.00	1-2 -	1.32 -1.95 1.32 -1.95	-0. 49 0. 53 -0. 49 0. 29	0.17	0.00
4 -2.85 -4.21 -1.05 1. 5 -3.56 -5.27 -1.32 1.	18 0.37 0.00 16 0.37 0.00	1-4- 1-5-	1.32 -1.95 1.32 -1.95	-0.49 0.06 -0.49 -0.14	0.04	0.00 0.00
7 -4.99 -7.38 -1.84 0.	03 0.34 0.00 81 0.28 0.00	1-7-	1.32 -1.95 1.32 -1.95	-0. 49 -0. 33 -0. 49 -0. 51	-0.09 -0.15	0.00
9 -6.41 -9.48 -2.37 0.	49 0.18 0.00 09 0.04 0.00 27 0.12 0.00	1-9-	1.32 -1.95 1.32 -1.95	-0.49 -0.66 -0.49 -0.80	-0.28	0.00
0 -7.13 -10.54 -2.63 -0.	37 -0.13 0.00	1-10 - Top	1.32 -1.95	-0.49 -0.92	-0.35	0.00
per 2: (Top SLab) Ft		Member 2 Left	: (Top SI ab)			
0 -7.13 -10.54 -2.63 -0. 1 -0.76 -2.71 -0.68 -0.		2-0	3.634.172.493.34	1.04 0.00 0.83 0.00		0.00 0.00
2 3. 47 3. 37 0. 84 -0. 3 5. 97 7. 72 1. 93 -0.	38 -0.13 0.00	2-3	1.56 2.50 0.84 1.67	0.63 0.00 0.42 0.00	0.00	0.00 0.00
4 7. 18 10. 33 2. 58 -0. 5 7. 50 11. 20 2. 80 -0.	38 -0.13 0.00	2-5	0.32 0.83 0.00 0.00	0.21 0.00 0.00 0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38 -0.13 0.00	2-7-	0.32 -0.83 0.84 -1.67	-0.21 0.00 -0.42 0.00	0.00	0.00 0.00 0.00
8 3. 47 3. 37 0. 84 -0. 9 -0. 76 -2. 71 -0. 68 -0. 0 -7. 13 -10. 54 -2. 63 -0.	38 -0.13 0.00	2-9-	1.56 -2.50 2.49 -3.34 3.63 -4.17		0.00	0.00
jht	0.10 0.00	Right	5.05 4.17	1.04 0.00	0.00	0.00
actored Thrusts due to All L		th = 3.00 ft)				
3.63 4.17 1.04	Peh PI s Pwa 0.00 0.00 0.00 0.92 0.35 0.00					
	Analysi	s Truck, HL-9	3			
	Vehicle Axle No.	Weight (k/ft)	Length (ft)	Dist. Fro Previous		
	Truck 1 2	0. 219 0. 878	4.28 4.28	14.00		
	3	0.878	4. 28	14.00		
) Distributed loads may have b	Tandem 1	0.709	8.28	lanos		
i sti i butcu i baus may nave t	an intensi i eu uue		Tap Derween			
e Load Parameters:						

Vertical Horizontal DC 4.30 1.32 DW 1.04 0.49 EV 4.17 1.95 EH 00 -1.07 LS 0.00 -0.30 WA 0.00 0.00 LL 5.30 1.16 Without LL 9.52 2.37 With LL 14.82 3.54
Note: Reactions as shown - positive Truck Positions That Cause Maximum Results:
Maximum +Moment in Top SI abMaximum -Moment in Top SI abVehicle Axle Weight Length Dist. From No. (k) (ft) Left End (ft)Maximum -Moment in Top SI ab Vehicle Axle Weight Length Dist. From No. (k) (ft) Left End (ft)Truck 10.2194.2826.4420.8784.2812.4430.8784.28-1.563Maximum +Moment:15.47 k-ftMaximum -Moment:-4.84 k-ftCorresponding Moment at End :-1.40 k-ftCorresponding Moment at Mid :10.83 k-ft
Maximum +Shear in Top Slab Maximum -Shear in Top Slab Truck 1 0.219 4.28 30.14 2 0.878 4.28 16.14 3 0.878 4.28 2.14 Maximum +Shear : 4.22 k Corresponding Shear at Mid : 0.46 k
Maximum Deflection in Top Slab = 0.009 in Vehicle Axle Weight Dist. From No. (k) Left End (ft) Truck 1 0.00 44.61 2 0.00 30.61 3 0.00 16.61
Maximum +Moment in Top SlabMaximum -Moment in Top SlabTandem 10.7098.2811.43Maximum +Moment:19.97 k-ftTandem 10.7098.287.32Corresponding Moment at End :-4.18 k-ftCorresponding Moment at Mid :15.35 k-ft
Maximum +Shear in Top SlabMaximum -Shear in Top SlabTandem 10.7098.284.14Maximum +Shear:4.71 kTandem 10.7098.2816.69Corresponding Shear at Mid ::-1.17 kMaximum -Shear:-4.71 k
Maximum Deflection in Top Slab = 0.024 in Vehicle Axle Weight Dist. From No. (k) Left End (ft) Tandem 1 0.00 16.69
Unfactored Moments and Shears due to Truck Loads: (k-ft, k)
Truck Tandem Lane M-PT MII+ MII- VII+ VII- MII+ MII- VII+ VII-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Filename: Eriksson Culver	riksson Software, rt_Central Stree1 00 -0.89 0.00	t Bridge.etcx			Sht:of By:EAO Chk: 1/2/2019 4:57:50 PM Culvert p. 7 of 14 -0.10
Member 2: (Top Slab) Left					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccccc} -0.55 & 0.59 \\ 0.00 & 0.48 \\ 0.00 & 0.38 \\ 0.00 & 0.29 \\ 0.00 & 0.21 \\ 0.00 & 0.15 \\ 0.00 & 0.15 \\ 0.00 & 0.05 \\ 0.00 & 0.02 \\ -0.14 & 0.01 \\ -0.55 & 0.00 \end{array}$	0.00 -0.01 -0.02 -0.05 -0.10 -0.15 -0.21 -0.29 -0.38 -0.48 -0.59
Note: Unfactored live loa	ad results comput	ted at 3.00 ft	and O ft fill	depths, per LR	RFD 3.6.1.2.6

Eriksson Culvert v4.0.8Sht:ofCopyright © 2010-2018 Eriksson Software, Inc. (www.ErikssonSoftware.com)By: EAO Chk:Filename: Eriksson Culvert_Central Street Bridge.etcx1/2/2019 4: 57: 50 PM					
Serviceability Check: Crack Control					
Bar Moment Thrust Fss Spacing Allow Mark Location (k-ft) (k) (ksi) (in) (in) A100 Top Slab (int) 43.8 4.21 30.11 6.00 12.48					
Serviceability Check: Live Load Deflection					
Deflection Ratio of Top Slab = 1/19860 (Limit = 1/1000)					
Strength Limit State at Critical Sections: Flexure					
Member 1: (Exterior Wall), Thickness = 10.00 in Design Corr.Load Ratings Load RatingsLocDist.MomentA. F.MudsMaAsMcrIROR (in2)(in)(k-ft)(k)(k-ft)(in)(k-ft)phi(in2)(k-ft)BOT0.000.0011.790.008.193.340.900.00c10.73NCNCMID26.000.007.529.248.2510.800.900.24c10.73NCNCMID-32.50-18.3921.0712.938.2517.88*0.900.34a10.730.911.18TOP36.00-1.7621.0712.838.1917.800.900.34b10.7327.1235.16					
Member 2:(Top Slab), Thickness = 10.00 in DesignLoad Ratings Load					
As Controlled By: a - Flexure, b - Crack Control, c - Minimum Steel, d - Fatigue					
Note: Mu - Resisting moment under pure flexure, Ma - Allowable moment under applied axial load					
Strength Limit State at Critical Sections: Vertical Shear					
Member 1: (Exterior Wall), Thickness = 10.00 in Design Max. Load Ratings Loc Dist. Shear Moment A. F. Dv phi*Vn Beta Theta Vc Vs Av Spac IR OR (in) (k) (k-ft) (k) (in) (k) (k) (in) NC NC BOT 0.00 -1.12 1.0 11.79 8.19 12.50 2.000 45.00 13.88b 0.00 0.00 NC NC MID 32.50 3.41 0.0 7.52 8.11 12.38 2.000 45.00 13.65b 0.00 0.00 NC NC MID- 32.50 3.41 -18.4 21.07 8.05 12.29 2.000 45.00 13.65b 0.00 0.00 0.00 3.52 4.56 TOP 12.20 -8.42 -1.8 21.07 7.99 12.19 2.000 45.00 13.55b 0.00 0.00 2.55 3.30					
Member 2: (Top Sl ab), Thickness = 10.00 in Design Max. Corr. Corr. (in) Max. (k) Load Ratings (k) Loc Dist. Shear Moment A. F. Dv phi*Vn Beta Theta Vc Vs Av Spac IR OR (in) (k) (k-ft) (k) (in) (k) (k) (in2) (in) LT 27.89 16.54 -1.1 8.98 33.70 51.43 2.000 45.00 57.15b 0.00 0.00 5.41 7.01 MID 125.00 3.36 68.0 5.62 7.20 10.99 2.000 45.00 57.15b 0.00 0.00 3.27 4.24 RT 27.89 16.54 -2.9 8.98 33.70 51.43 2.000 45.00 57.15b 0.00 0.00 5.41 7.01					
Vc Calculation By: a - Iterative Beta, b - Constant Beta, c - Box Culvert, d - Standard/Arema >>>Warning: Overstress due to fixed thickness					

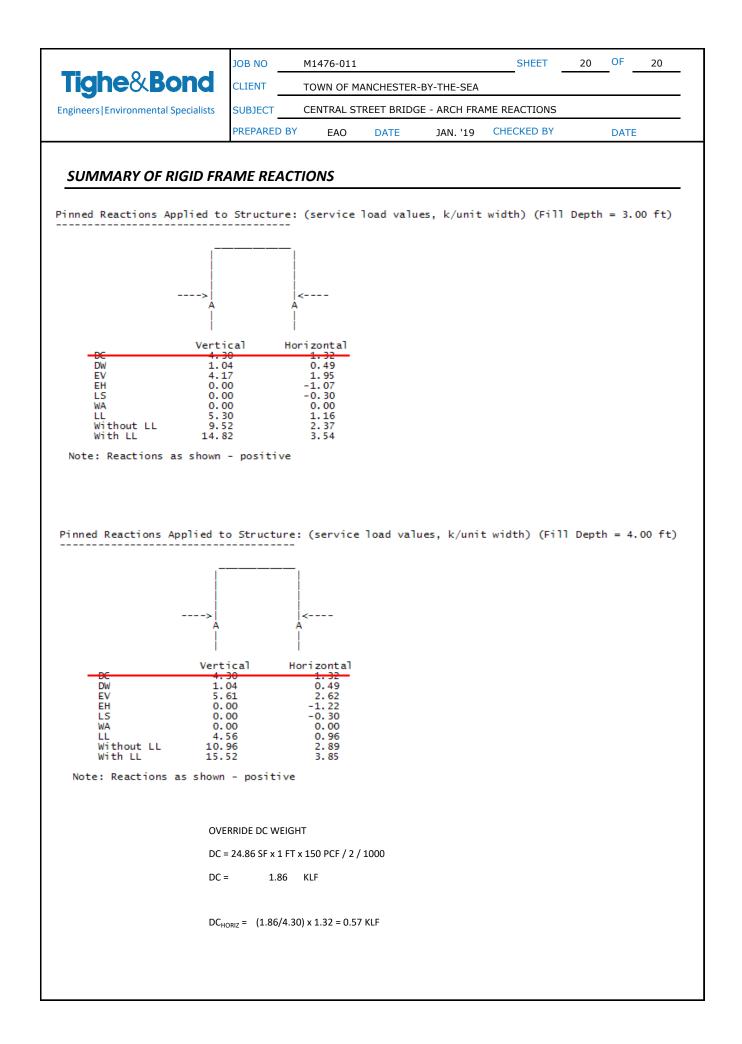
Eriksson Culvert v4.0.8 Copyright © 2010-2018 Eriksson Software, Inc. (www.ErikssonSoftware.com) Filename: Eriksson Culvert_Central Street Bridge.etcx Sht: ____of____ By:EAO Chk: ____ 1/2/2019 4:57:50 PM Culvert p. 9 of 14

Load Combina	ation Resul	ts at Tenth	Points:	(k-ft,	k)(Fill	Depth = 3	.00 ft)
M-PT	+Moment	-Moment	+Axi al	-A:	ki al	+Shear	-Shear
Member 1: Bottom	(Exterior	Wall)					
1-0 1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-10 Top	0.000 -0.745 -1.758 -3.027 -4.536 -6.274 -8.227 -10.380 -12.721 -15.235 -17.910	0.000 -3.502 -7.099 -10.783 -14.548 -18.389 -22.300 -26.273 -30.304 -34.385 -39.028	$\begin{array}{c} 11.\ 793\\ 7.\ 519\\ 7.\ 519\\ 7.\ 519\\ 7.\ 519\\ 7.\ 519\\ 7.\ 519\\ 7.\ 519\\ 7.\ 519\\ 7.\ 519\\ 7.\ 519\\ 7.\ 519\\ 7.\ 519\\ 7.\ 519\\ 7.\ 519\\ 7.\ 519\\ 7.\ 519\\ 7.\ 519\end{array}$	21. 21. 21. 21. 21. 21. 21. 21. 21. 21.	073 073 073 073 073 073 073 073 073 073	-1. 121 -1. 629 -2. 112 -2. 571 -3. 004 -3. 413 -3. 796 -4. 154 -4. 488 -4. 797 -5. 080	-6.377 -6.555 -6.723 -6.879 -7.024 -7.311 -7.695 -8.053 -8.387 -8.695 -8.979
Member 2: Left	(Top SI ab)						
2- 0 2- 1 2- 2 2- 3 2- 4 2- 5 2- 6 2- 7 2- 8 2- 9 2-10 Right	-17. 921 5. 612 31. 241 50. 232 62. 741 68. 021 65. 862 55. 768 38. 450 12. 144 -17. 921	-39.040 -6.560 5.792 12.477 16.222 17.395 16.222 12.477 5.792 -9.732 -39.040	5.080 5.619 5.619 5.619 5.619 5.619 5.619 5.619 5.619 5.619 5.619 5.619 5.619 5.619	8.5.5.5.5.5.5.8.	979 979 080 080 080 080 080 080 080 080 979 979	21.073 16.980 13.159 9.617 6.352 3.358 0.384 -2.457 -3.960 -5.649 -7.519	7.519 5.649 3.960 2.457 -0.384 -3.358 -6.352 -9.617 -13.159 -16.980 -21.073

Eriksson Culvert v4.0.8 Copyright © 2010-2018 Erikss Filename: Eriksson Culvert_Ce	ntral Street Bridge.et	cx	Sht:of By:EAO Chk: 1/2/2019 4:57:51 Culvert p. 10 of			
	Design Results:	Fill Depth = 4.00 ft				
Load Parameters: Fe = 1.04						
Applied Horizontal Loads: (k/	ft)					
Load Description Bot Horizontal Earth Load Live Load Surcharge Internal Water Pressure	tom of Wall Top of W 0.590 0.265 0.120 0.120 0.000 0.000					
Jnfactored Moments due to All	Loads: (k-ft)	Unfactored Shears du	e to All Loads: (k)			
M-PT Mdc Mev Mdw	Meh MIs Mwa	M-PT Vdc Vev	Vdw Veh VIs Vwa			
Member 1: (Exterior Wall)		Member 1: (Exterior	Wall)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bottom 1- 0 -1.32 -2.62 1- 1 -1.32 -2.62 1- 2 -1.32 -2.62 1- 3 -1.32 -2.62 1- 4 -1.32 -2.62 1- 5 -1.32 -2.62 1- 6 -1.32 -2.62 1- 7 -1.32 -2.62 1- 8 -1.32 -2.62 1- 9 -1.32 -2.62	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
1-10 -7.13 -14.17 -2.63 - Top Member 2: (Top Slab) Left	0.44 -0.13 0.00	1-10 -1.32 -2.62 Top Member 2: (Top Slab) Left	-0.49 -1.09 -0.35 0.00			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
Unfactored Thrusts due to All	Loads: (k) (Fill Dept	h = 4.00 ft)				
Member Pdc Pev Pdw 1 3.63 5.61 1.04 2 1.32 2.62 0.49	Peh PI s Pwa 0.00 0.00 0.00 1.00 1.09 0.35 0.00					
	Analysis Vehicle Axle No.	Weight Length (k/ft) (ft)	Dist. From Previous (ft)			
	Truck 1 2 3	0. 153 5. 43 0. 611 5. 43 0. 611 5. 43 0. 611 5. 43	14.00 14.00			
Tandem10.5509.43***Distributed loads may have been intensified due to axle overlap between lanes						
Live Load Parameters:						
Traffic Direction is Parallel Distribution Width : 13.47 f Impact Factor : 1.17 Distribution Width : 14.60 Lane Load: 0.053 k/ft	ť					

Pinned Reactions Applied to Structure: (service load values, k/unit width) (Fill Depth = 4.00 ft)

-	> A	A	
DC DW EV EH LS WA LL Without LL With LL	Verti cal 4.30 1.04 5.61 0.00 0.00 0.00 4.56 10.96 15.52	Hori zontal 1. 32 0. 49 2. 62 -1. 22 -0. 30 0. 00 0. 96 2. 89 3. 85	
Note: Reactions as Truck Positions That			
Maximum +Moment in Tr Vehicle Axle Weig No. (K Truck 1 0.1 2 0.6 3 0.6 Maximum +Moment Corresponding Moment	op Slab ht Length) (ft) 53 5.43 11 5.43 11 5.43 11 5.43 : 13.1	Dist. From Left End (ft) 26.91 12.91 -1.09 5 k-ft	Maximum -Moment in Top Slab Vehicle Axle Weight Length Dist. From No. (k) (ft) Left End (ft) Truck 1 0.611 5.43 7.70 2 0.611 5.43 -6.30 3 0.153 5.43 -20.30 Maximum -Moment : -4.05 k-ft Corresponding Moment at Mid : 8.74 k-ft
Maximum +Shear in To Truck 1 0.1 2 0.6 3 0.6 Maximum +Shear Corresponding Shear	53 5.43 11 5.43 11 5.43 11 5.43 : 3.5!	30. 72 16. 72 2. 72 5 k 2 k	Maximum -Shear in Top Slab Truck 1 0.153 5.43 32.12 2 0.611 5.43 18.12 3 0.611 5.43 4.12 Maximum -Shear : -3.55 k Corresponding Shear at Mid : -0.22 k
Maximum Deflection i Vehicle Axle No. Truck 1 2 3	Neight Di	010 in ist. From ft End (ft) 45.08 31.08 17.08	
Maximum +Moment in To Tandem 1 0.55 Maximum +Moment Corresponding Moment	50 9.43 : 16.8	11.46 7 k-ft 4 k-ft	Maximum -Moment in Top Slab Tandem 1 0.550 9.43 7.84 Maximum -Moment : -4.70 k-ft Corresponding Moment at Mid : 14.39 k-ft
Maximum +Shear in To Tandem 1 0.5 Maximum +Shear Corresponding Shear	50	2 k	Maximum -Shear in Top Slab Tandem 1 0.550 9.43 16.12 Maximum -Shear : -4.02 k Corresponding Shear at Mid : 1.18 k
Maximum Deflection i Vehicle Axle No. Tandem 1	Neight Di	.019 in ist. From ft End (ft) 17.22	
Unfactored Moments a	nd Shears due to		(k-ft, k)
Tru M-PT MII+ MII-		Tander	n Lane /II+ VII- MII+ MII- VII+ VII-
Member 1: (Exterior) Bottom 1- 0 0.00 0.00 1- 1 0.00 -0.41 1- 2 0.00 -0.81 1- 3 0.00 -1.22 1- 4 0.00 -1.62 1- 5 0.00 -2.03 1- 6 0.00 -2.43 1- 7 0.00 -2.84 1- 8 0.00 -3.24 1- 9 0.00 -3.65	Wall) 0.00 -0.75 0.00 -0.75 0.00 -0.75 0.00 -0.75 0.00 -0.75 0.00 -0.75 0.00 -0.75 0.00 -0.75 0.00 -0.75 0.00 -0.75 0.00 -0.75 0.00 -0.75 0.00 -0.75 0.00 -0.75 0.00 -0.75 0.00 -0.75 0.00 -0.75	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$


Eriksson Culvert v4.0.8 Copyright© 2010-2018 Eriksson Software, Inc.(www.ErikssonSoftware.com) Filename: Eriksson Culvert_Central Street Bridge.etcx 1-10 0.00 -4.05 0.00 -0.75 0.00 -4.70 0.00 -0.87 0.00 -0.50 0. Top	Sht:of By:EAO Chk: 1/2/2019 4:57:51 PM Culvert p. 12 of 14 00 -0.09
Member 2: (Top Slab) Left	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Note: Unfactored live load results computed at 4.00 ft and 0 ft fill depths, per	LRFD 3.6.1.2.6

Eriksson Culvert v4.0.8 Copyright © 2010-2018 Eriksson Software, Inc. (www.ErikssonSoftware.com) Sht:By: EAO Chk: Filename: Eriksson Culvert_Central Street Bridge.etcx Culvert p. 13 of 14				
Serviceability Check: Crack Control				
Bar Moment Thrust Fss Spacing Allow Mark Location (k-ft) (k) (ksi) (in) (in) A100 Top Slab (int) 44.4 4.96 30.33 6.00 12.36				
Serviceability Check: Live Load Deflection				
Deflection Ratio of Top Slab = 1/20563 (Limit = 1/1000)				
Strength Limit State at Critical Sections: Flexure				
Member 1: (Exterior Wall), Thickness = 10.00 in Design Corr. Load Ratings Loc Dist. Moment A. F. Mu ds Ma As Mcr IR OR (in) (k-ft) (k) (k-ft) (in) (k-ft) NC NC BOT 0.00 0.00 13.76 0.00 8.19 3.89 0.90 0.00c 10.73 NC NC MID 26.00 0.00 8.75 9.24 8.25 11.13 0.90 0.24c 10.73 NC NC MID- 32.50 -19.79 21.74 12.93 8.25 18.06* 0.90 0.34a 10.73 0.62 0.81 TOP 36.00 -1.81 21.74 12.83 8.19 17.98 0.90 0.34b 10.73 27.24 35.31				
Member 2: (Top Slab), Thickness = 10.00 in Load Ratings Design Corr. Load Ratings Loc Dist. Moment A. F. Mu ds Ma As Mcr IR OR (in) (k-ft) (k) (k-ft) (in) (k-ft) (in) (k-ft) LT 36.00 -1.43 9.79 54.13 33.90 51.08 0.90 0.34b 10.73 NC NC MID 125.00 67.48 6.65 76.86 7.86 66.15* 0.82 2.54a 10.73 0.96 1.25 RT 36.00 -3.02 9.79 54.13 33.90 51.08 0.90 0.34b 10.73 27.70 35.91				
As Controlled By: a - Flexure, b - Crack Control, c - Minimum Steel, d - Fatigue				
Note: Mu - Resisting moment under pure flexure, Ma - Allowable moment under applied axial load				
Strength Limit State at Critical Sections: Vertical Shear				
Member 1: (Exterior Wall), Thickness = 10.00 in Design Corr. Corr. Max. Load Ratings Loc Dist. Shear Moment A. F. Dv phi*Vn Beta Theta Vc Vs Av Spac IR OR (in) (k) (k-ft) (k) (in) (k) Notestimular (k) (k) (in2) (in) BOT 0.00 -1.48 1.1 13.76 8.19 12.50 2.000 45.00 13.88b 0.000 0.00 0.00 NC NC MID 32.50 4.01 0.0 8.75 8.11 12.38 2.000 45.00 13.75b 0.00 0.00 0.00 NC NC MID- 32.50 4.01 -19.8 21.74 8.05 12.29 2.000 45.00 13.65b 0.00 0.00 0.00 3.72 4.82 TOP 12.20 -9.15 -1.8 21.74 7.99 12.19 2.000 45.00 13.55b 0.00 0.00 0.00 2.47 3.20				
Member 2: (Top Slab), Thickness = 10.00 in Design Corr. Corr. Max. Load Ratings Max. Load Ratings Loc Dist. Shear Moment A. F. Dv phi*Vn Beta Theta Vc Vs Av Spac IR OR (in) (k) (k-ft) (k) (in) (k) LT 27.89 16.92 -1.4 9.79 33.70 51.43 2.000 45.00 57.15b 0.00 0.00 0.00 6.10 7.90 MID 125.00 2.72 67.5 6.65 7.20 10.99 2.000 45.00 12.21b 0.00 0.00 0.00 4.03 5.23 RT 27.89 16.92 -3.0 9.79 33.70 51.43 2.000 45.00 57.15b 0.00 0.00 0.00 6.10 7.90				
Vc Calculation By: a - Iterative Beta, b - Constant Beta, c - Box Culvert, d - Standard/Arema >>>Warning: Overstress due to fixed thickness				

Eriksson Culvert v4.0.8 Copyright © 2010-2018 Eriksson Software, Inc. (www.ErikssonSoftware.com) Filename: Eriksson Culvert_Central Street Bridge.etcx

Sht:	of	
By: EAO	Chk:	_
1/2/20	19 4: <u>57: </u>	51 PM
Cul ver	tp.140	of 14

Load Combina	ation Resul	ts at Tenth	Points:	(k-ft,	k) (Fill	Depth = 4	.00 ft)
M-PT	+Moment	-Moment	+Axi al	-A	xi al	+Shear	-Shear
Member 1: Bottom	(Exterior	Wall)					
1-0 1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-10 Top	0.000 -0.954 -2.201 -3.728 -5.521 -7.567 -9.853 -12.365 -15.089 -18.012 -21.120	0.000 -3.759 -7.623 -11.586 -15.642 -19.784 -24.008 -28.305 -32.671 -37.100 -42.152	13.759 8.753 8.753 8.753 8.753 8.753 8.753 8.753 8.753 8.753 8.753 8.753 8.753	21 21 21 21 21 21 21 21 21 21	. 745 . 745	-1.483 -2.038 -2.567 -3.071 -3.551 -4.005 -4.435 -4.839 -5.219 -5.573 -5.903	-6.839 -7.039 -7.228 -7.405 -7.571 -7.888 -8.317 -8.722 -9.102 -9.456 -9.786
Member 2: Left	(Top SI ab)						
2- 0 2- 1 2- 2 2- 3 2- 4 2- 5 2- 6 2- 7 2- 8 2- 9 2-10 Right	-21. 131 3. 217 32. 264 50. 733 62. 704 67. 481 64. 607 53. 659 34. 825 7. 106 -21. 131	-42. 163 -7. 807 6. 697 14. 668 19. 185 20. 615 19. 185 14. 668 6. 697 -10. 647 -42. 163	$\begin{array}{c} 5. \ 903 \\ 6. \ 647 \\ 6. \ 647 \\ 6. \ 647 \\ 6. \ 647 \\ 6. \ 647 \\ 6. \ 647 \\ 6. \ 647 \\ 6. \ 647 \\ 6. \ 647 \\ 5. \ 903 \end{array}$	9555555 5555 9	. 786 . 786 . 903 . 903 . 903 . 903 . 903 . 903 . 903 . 903 . 786 . 786	21. 745 17. 394 13. 314 9. 511 5. 984 2. 725 -0. 486 -2. 951 -4. 701 -6. 636 -8. 753	8. 753 6. 636 4. 701 2. 951 0. 486 -2. 725 -5. 984 -9. 511 -13. 314 -17. 394 -21. 745

	JOB NO	M1476-011			SHEET	1	OF	24
Tighe&Bond	CLIENT	TOWN OF M	ANCHESTER	BY-THE-SEA,	, MA			
ngineers Environmental Specialists	SUBJECT	CENTRAL ST	FREET BRIDG	E - FOOTING	CALCULATIONS			
	PREPARED BY	EAO	DATE	JUL. '19	CHECKED BY		DATE	
CON	CEPTUA	AL FOO	TING	CALCU	LATIONS			
INDEX OF SHEETS								
1 TITLE SHEET								
2 ASSUMPTIONS, METHOD	DLOGY, AND MA	TERIALS						
3-6 FOOTING GEOMETRY & LO	DADS							
7-14 FACTORED MOMENTS AN	D FORCES & STR	ENGTH LIMIT S	STATES					
14 SERVICE LIMIT STATES								
15-17 PRIMARY REINFORCING D	ESIGN							
18 CONTROL OF CRACKING B	Y DISTRIBUTION	OF REINFORCE	EMENT					
19 SHRINKAGE AND TEMPER	ATURE REINFOR	CEMENT						
20 SHEAR CHECK								
21 INTERFACE SHEAR TRANS	FER							
22 DEVELOPMENT OF REINFO	DRCEMENT							
23 SUMMARY OF CHECKS								
24 SKETCH								
APPENDIX								
A PAGES FROM HATZINIKOL	AS MASONRY DI	ESIGN TEXTBO	ОК					
REFERENCES								
1 2017 AASHTO LRFD BRIDG	E DESIGN SPECI	FICATIONS, 8th	n EDITION, W	ITH INTERIM R	EVISIONS			
2 2013 MASSDOT BRIDGE D	ESIGN MANUAL							
3 CIVIL ENGINEERING REFER	RENCE MANUAL	(LINDEBURG) 1	15 TH EDITION					
4 2005 HATZINIKOLAS & KO	RANY MASONRY	DESIGN TEXT	воок					
5 CONCEPTUAL ARCH RIGID	FRAME CALCUL	ATIONS (EAO J	AN. '19)					
6 GEOTECHNICAL EVALUAT	ON REPORT (SEF	PTEMBER 26, 2	018)					
7 HYDRAULIC REPORT (OCT								

	JOB NO	M1476-011			SHEET	2	OF	24
Tighe&Bond	CLIENT	TOWN OF M	ANCHESTER	-BY-THE-SEA,	MA			
Engineers Environmental Specialists	SUBJECT	CENTRAL ST	REET BRIDG	E - FOOTING (CALCULATIONS			
	PREPARED BY	EAO	DATE	JUL. '19	CHECKED BY		DATE	

ASSUMPTIONS

1 ASSUME 20' SPAN PRECAST CONCRETE ARCH RIGID FRAME

2 ASSUME CAST-IN-PLACE CONCRETE PEDESTAL FOOTINGS

METHODOLOGY

1 DESIGN IN ACCORDANCE WITH AASHTO LRFD REFERENCE 1

MATERIALS

CONCRETE:	FOOTING STRENGTH, f'c @ 28 DAYS	4000	PSI
	STEM STRENGTH, f'c @ 28 DAYS	4000	PSI
	UNIT WEIGHT, Yc	0.150	KCF
REINFORCING:	YIELD STRENGTH, Fy	60	KSI
	MODULUS OF ELASTICITY, Es	29000	KSI
	CLEAR COVER (DIRECT EXPOSURE TO SALT WATER, AASHTO TABLE 5.10.1-1)	4.00	IN
BACKFILL:	GRAVEL BORROW FOR BRIDGE FOUNDATION (MASSDOT M1.03.0, TYPE B)		
	SOIL UNIT WEIGHT, γ_{s} (REF 2, 3.1.6)	0.120	KCF
	INTERNAL FRICTION ANGLE, ϕ_f (REF 6)	32	deg.
	AT-REST EARTH PRESSURE COEFFICIENT, K_0 (GEOTECH. RECOMMENDATIONS)	0.470	
	BACKFILL ANGLE, β	0	deg.
	MIN. DEPTH OF COVER FOR FROST PROTECTION - N/A ON LEDGE	0.00	FT
	MIN. DEPTH OF COVER FOR SCOUR PROTECTION (REF 7) - N/A ON LEDGE	0.00	FT
SUBGRADE:	ASSUME BEDROCK (REF 6)		
	NOMINAL BEARING RESISTANCE, q _n (REF 6)	200	KSF
	BEARING RESISTANCE FACTOR, φ_b (AASHTO TABLE 10.5.5.2.2-1 & REF. 6)	0.45	
	SLIDING RESISTANCE FACTOR, Փլ (AASHTO TABLE 10.5.5.2.2-1)	0.80	

		JOB NO	M1476-011				SHEET	OF	24
Tigh	ne&Bond	CLIENT	TOWN OF MA	ANCHESTER-	BY-THE-SE	A, MA			
Engineers	Environmental Specialists	SUBJECT	CENTRAL ST	REET BRIDG	E - FOOTING	G CALCU	ILATIONS		
		PREPARED	BY EAO	DATE	JUL. '19	CHE	CKED BY	DAT	E
ASSU	MED FOOTING GEO	OMETRY							
H _{FOOT}	FOOTING THICKNESS						2.00)	FT
H_{STEM}	STEM HEIGHT (TO TO	P OF KEYW	/AY)				4.50)	FT
${\sf H}_{\sf BW}$	BACKWALL HEIGHT						0.00)	FT
Н	TOTAL FOOTING HEIC	GHT	ELEV. 1.17	7 - ELEV5	.33		6.50)	FT
H _{BRG}	HEIGHT OF BEARING	(3" KEYWA	Y-1" OF GROU	Т)			-0.17	7	FT
B _{TOE}	TOE WIDTH						0.67	,	FT
B _{HEEL}	HEEL WIDTH						4.00)	FT
B _{STEM}	STEM WIDTH						2.33	}	FT
B _{FOOT}	TOTAL FOOTING WID	тн					7.00)	FT
L _{FOOT}	TOTAL FOOTING LEN	GTH					48.0	0	FT
e_{BRG}	DIST. CL BEARING TO	FACE OF S	TEM				1.17	,	FT
B_{BW}	BACKWALL WIDTH						0.00)	FT

SUPERSTRUCTURE FORCES

CONTROLLING FORCES FROM RIGID FRAME REACTION CALCULATIONS (REFERENCE 5):

	VERT	HORIZ*	*POSITIVE FORCES ACT IN DIRECTION FROM STREAM TOWAR
DC	1.86	-0.57	BACKFILL WITH RESISTING EFFECTS
DW	1.04	-0.49	
EV	5.61	-2.62	
EH	0	1.22	
LS	0	0.30	
LL	5.30	-1.16	

DEAD LOADS (DC) (3.5.1)

DETERMINE LOADS PER 1-FOOT LENGTH OF FOOTING

MOMENT ARMS DETERMINED FROM THE BOTTOM, TOE, OF THE FOOTING

SUPERSTRUCTURE DEAD LOADS

DC _{SUPER, VERT}	1.86	K/FT
MOMENT ARM = $B_{TOE} + e_{BRG}$	1.83	FT
DC _{SUPER, HORIZ}	-0.57	K/FT
$MOMENT ARM = H_{FOOT} + H_{STEM} + H_{BRG}$	6.33	FT

	JOB NO	M1476-011			SHEET		OF 24
Tighe & Bond	CLIENT		ANCHESTER	-BY-THE-SEA,			
ngineers Environmental Specialists	SUBJECT				CALCULATIONS	5	
	PREPARED BY	EAO	DATE	JUL. '19	CHECKED BY		DATE
SUBSTRUCTURE DEAD LO	ADS						
FOOTING							
$DC_{FOOT} = (B_{FOOT})(H_{FOOT})(\gamma c)$						2.10	K/FT
MOMENT ARM = (0.5)B _{FOOT}						3.50	FT
STEM							
$DC_{STEM} = (B_{STEM})(H_{STEM})(\gamma c)$						1.58	K/FT
MOMENT ARM = B_{TOE} + (0.5)	B _{STEM}					1.83	FT
BACKWALL							
$\frac{BACKWALL}{DC_{BW}} = (B_{BW})(H_{BW})(\gamma c)$						0.00	K/FT
$\frac{BACKWALL}{DC_{BW}} = (B_{BW})(H_{BW})(\gamma c)$ MOMENT ARM = $B_{TOE} + B_{STEM}$	- (0.5)B _{BW}					0.00 3.00	K/FT FT
DC _{BW} = (B _{BW})(H _{BW})(γc) MOMENT ARM = B _{TOE} + B _{STEM}		(DW) (3.5	5.1)				
$DC_{BW} = (B_{BW})(H_{BW})(\gamma c)$ MOMENT ARM = $B_{TOE} + B_{STEM}$		(DW) (3.5	5.1)			3.00	FT
$DC_{BW} = (B_{BW})(H_{BW})(\gamma c)$ MOMENT ARM = $B_{TOE} + B_{STEM}$ WEARING SURFACE AN $DW_{SUPER, VERT}$ MOMENT ARM = $B_{TOE} + e_{BRG}$		(DW) (3.5	5.1)			3.00 1.04	FT K/FT
DC _{BW} = (B _{BW})(H _{BW})(yc) MOMENT ARM = B _{TOE} + B _{STEM} WEARING SURFACE AN DW _{SUPER, VERT}	D UTILITIES	(DW) (3.5	5.1)			3.00 1.04 1.83	FT K/FT FT
$DC_{BW} = (B_{BW})(H_{BW})(\gamma c)$ MOMENT ARM = $B_{TOE} + B_{STEM}$ WEARING SURFACE AN DW _{SUPER, VERT} MOMENT ARM = $B_{TOE} + e_{BRG}$ DW _{SUPER, HORIZ} . MOMENT ARM = $H_{FOOT} + H_{STE}$	D UTILITIES		5.1)			3.00 1.04 1.83 -0.49	FT K/FT FT K/FT
$DC_{BW} = (B_{BW})(H_{BW})(\gamma c)$ MOMENT ARM = $B_{TOE} + B_{STEM}$ WEARING SURFACE AN DW _{SUPER, VERT} MOMENT ARM = $B_{TOE} + e_{BRG}$ DW _{SUPER, HORIZ} .	D UTILITIES		5.1)			3.00 1.04 1.83 -0.49	FT K/FT FT K/FT
$DC_{BW} = (B_{BW})(H_{BW})(\gamma c)$ $MOMENT ARM = B_{TOE} + B_{STEM}$ $WEARING SURFACE AN$ $DW_{SUPER, VERT}$ $MOMENT ARM = B_{TOE} + e_{BRG}$ $DW_{SUPER, HORIZ}$ $MOMENT ARM = H_{FOOT} + H_{STE}$ $VEHICULAR LIVE LOADS$ $DESIGN FOR FULL HL-93$	D UTILITIES		5.1)			3.00 1.04 1.83 -0.49 6.33	FT K/FT FT K/FT FT
$DC_{BW} = (B_{BW})(H_{BW})(\gamma c)$ $MOMENT ARM = B_{TOE} + B_{STEM}$ $WEARING SURFACE AN$ $DW_{SUPER, VERT}$ $MOMENT ARM = B_{TOE} + e_{BRG}$ $DW_{SUPER, HORIZ}$ $MOMENT ARM = H_{FOOT} + H_{STE}$ $VEHICULAR LIVE LOADS$ $DESIGN FOR FULL HL-93$ $LL_{SUPER, VERT}$	D UTILITIES		5.1)			3.00 1.04 1.83 -0.49 6.33 5.30	FT K/FT FT FT K/FT
$DC_{BW} = (B_{BW})(H_{BW})(\gamma c)$ $MOMENT ARM = B_{TOE} + B_{STEM}$ $WEARING SURFACE AN$ $DW_{SUPER, VERT}$ $MOMENT ARM = B_{TOE} + e_{BRG}$ $DW_{SUPER, HORIZ}$ $MOMENT ARM = H_{FOOT} + H_{STE}$ $VEHICULAR LIVE LOADS$ $DESIGN FOR FULL HL-93$	D UTILITIES		5.1)			3.00 1.04 1.83 -0.49 6.33	FT K/FT FT K/FT FT
$DC_{BW} = (B_{BW})(H_{BW})(\gamma c)$ $MOMENT ARM = B_{TOE} + B_{STEM}$ $WEARING SURFACE AN$ $DW_{SUPER, VERT}$ $MOMENT ARM = B_{TOE} + e_{BRG}$ $DW_{SUPER, HORIZ}$ $MOMENT ARM = H_{FOOT} + H_{STE}$ $VEHICULAR LIVE LOADS$ $DESIGN FOR FULL HL-93$ $LL_{SUPER, VERT}$	D UTILITIES		5.1)			3.00 1.04 1.83 -0.49 6.33 5.30	FT K/FT FT FT K/FT

	JOB NO M1476-0)11		SHEET		OF 24
Tighe&Bond	CLIENT TOWN O	F MANCHESTER-	BY-THE-SEA,	MA		
ngineers Environmental Specialists	SUBJECT CENTRAL	L STREET BRIDG	E - FOOTING	CALCULATIONS	;	
	PREPARED BY EAC) DATE	JUL. '19	CHECKED BY		DATE
EARTH PRESSURE (EH) (-					
AT-REST EARTH PRESSURE CC	DEFFICIENT, K_0				0.470	
SOIL UNIT WEIGHT, $\gamma_{\rm s}$					0.120	KCF
H _{soilStem} DEPTH OF SOIL ABO	VE TOP OF PEDESTAL S	STEM			9.51	FT
<u>SUBSTRUCTURE</u>						
CONSIDER EARTH PRESSURE	EFFECTS BETWEEN BO	TTOM OF FOO	TING AND T	OP OF PEDES	TAL STEM	
	1 1		*			
		-				
	Hsore					
	CULVERT					
K	Pi X		1			
	• SEH H FOOTING		L			
6 0 3						
P3 1						
E P2	-					
P=KXH-	EH	OTING = 12 (P	+ P.) (H))		
P1 = K8 H2011 P2 = K8 (H+H3	Lair)	= 2KX+	1 (H+ 2Hso	12)		
P3 = KX H		-				
= (0.12)	H) (20 W) (H)					
$y = (r_1, p_1)($	$\left(\frac{1}{2}\right) + \left(\frac{1}{2}\right) + \left(\frac{1}{2}\right) + \left(\frac{1}{2}\right)$					
= (KK Hsoil)	(H)+(1 K8H)(H)					
(KX Hs	oir)+(=K&H)	12				
	H)					
= <u>H</u> (H _{soil} 2H _{soil} +	$\frac{+\frac{H}{3}}{H} = \frac{H(3H)}{3(2H)}$	tsoil + H)				
ZHsoil +	H 3121	750il+H)				
					4.00	
			n _{soilStem})		4.68	K/FT
MOMENT ARM = H (3 H _{soilSterr}	+ H) / 3 (2 H _{soilStem} + H))			2.97	FT
<u>CULVERT</u>					4 22	
EH _{CULVERT}					1.22	K/FT
MOMENT ARM = $H_{FOOT} + H_{STE}$	_M + H _{BRG}				6.33	FT

		JOB NO	M1476-011			SHEET		OF 24
Tigh	e&Bond	CLIENT	TOWN OF M	ANCHESTER	-BY-THE-SEA,	MA		
ngineers E	nvironmental Specialists	SUBJECT	CENTRAL ST	REET BRIDO	E - FOOTING	CALCULATION	S	
		PREPARED BY	Y EAO	DATE	JUL. '19	CHECKED BY	(DATE
VERTI	CAL PRESSURE FRO	OM DEAD	LOAD OF E	ARTH FIL	.L (EV) (3.	5.1)		
$\mathbf{H}_{\text{soilStem}}$	DEPTH OF SOIL ABOV	/E TOP OF PE	DESTAL STE	N			9.51	FT
H _{soilheel}	SOIL HEIGHT ABOVE	FOOTING HE	EL = H +H _{soil}	_{Stem} - H _{FOO} -	Г		14.01	FT
H _{soiltoe}	SOIL HEIGHT ABOVE	FOOTING TO	'E				0.00	FT
EV _{HEEL}	SELF WEIGHT OF SOI	L ABOVE FOO	DTING HEEL =	= H _{soilheel} B _l	ieel γs		6.72	K/FT
MOMEN	$\mathbf{MT} \mathbf{ARM} = \mathbf{B}_{TOE} + \mathbf{B}_{STEM}$	+ (0.5)B _{HEEL}					5.00	FT
EV _{TOE}	SELF WEIGHT OF SOI	L ABOVE FOO	DTING TOE =	H _{soiltoe} B _{TOP}	ΞŶs		0.00	K/FT
MOMEN	NT ARM = (0.5)B _{TOE}						0.33	FT
<u>CULVER</u>	<u>T</u>							
EV _{CULVER}	T, VERT						5.61	K/FT
MOMEN	$\mathbf{NT} \mathbf{ARM} = \mathbf{B}_{TOE} + \mathbf{e}_{BRG}$						1.83	FT
EV _{CULVER}	T, HORIZ						-2.62	K/FT
MOMEN	NT ARM = H _{FOOT} + H _{STEN}	_M + H _{BRG}					6.33	FT
LIVE LO	OAD SURCHARGE	(LS) (3.11.	6.4)					
H + H _{soi}	Stem TOTAL ABUTME	NT + FRAME	HEIGHT				16.01	FT
h _{eq}	EQUIVALENT HEIGHT	OF SOIL (TA	BLE 3.11.6.4	.1)			2.40	FT
	Abutment Height (ft) 5.0 10.0		h _{eq} (ft) 4.0 3.0	-				
	≥20.0		2.0]				
$\Delta_{\rm p}$	CONSTANT HORIZON	ITAL LS EART	H PRESSURE	= k γ_{s} h _{eq} (3.11.6.4-1)		0.135	KSF
LS	LIVE LOAD SURCHAR	$GE = (\Delta_p) (H -$	+ H _{soilStem})				2.17	k/ft

			JOB NO	M14	76-011			SH	HEET	OF	24
Tighe	ХВО	nq	CLIENT	TOW	/N OF MA	NCHESTER	-BY-THE-SEA	, MA			
ngineers Enviror	nmental Spo	ecialists	SUBJECT	CEN	TRAL STR	REET BRIDG	E - FOOTING	CALCULA	TIONS		
			PREPARE	D BY	EAO	DATE	JUL. '19	CHECK	ED BY	DAT	E
SUMMARY	Y OF LO	ADS									
LOAD	FORCE (K/FT)	ARM (FT)	M	OMENT EFF (K-FT/FT)	ECT						
DC (CUL. V)	1.86	1.83	3.41	RESISTING	i (+)						
DC (CUL. H)	0.57	6.33	3.61	RESISTING	i (+)						
DC (FOOT)	2.10	3.50	7.35	RESISTING	i (+)						
DC (STEM)	1.58	1.83	2.89	RESISTING	i (+)						
DW (CUL. V)	1.04	1.83	1.91	RESISTING	i (+)						
DW (CUL. H)	0.49	6.33	3.10	RESISTING	i (+)						
EV (HEEL)	6.72	5.00	33.62	RESISTING	i (+)						
EV (TOE)	0.00	0.33	0.00	RESISTING	i (+)	(ZERO F	OR MINIMUM)			
EV (CUL. V)	5.61	1.83	10.28	RESISTING	i (+)						
EV (CUL. H)	2.62	6.33	16.59	RESISTING	i (+)						
LL (CUL. V)	5.30	1.83	9.72	RESISTING	i (+)	(ZERO F	OR MINIMUM)			

(ZERO FOR MINIMUM)

(ZERO FOR MINIMUM)

LOAD COMBINATIONS AND LOAD FACTORS (TABLES 3.4.1-1 & 3.4.1-2)

7.35 RESISTING (+)

13.91 OVERTURNING (-)

7.73 OVERTURNING (-)

17.34 OVERTURNING (-)

LL (CUL. H)

EH (SUB)

EH (CUL.)

(CUL.)

LS

1.16

4.68

1.22

2.17

6.33

2.97

6.33

8.01

LIMIT	D	с	D	w	E	н	E	v	LL BR	ws	WL
STATES	МАХ	MIN	МАХ	MIN	мах	MIN	МАХ	MIN	LS		
STR. I	1.25	0.90	1.50	0.65	1.50	0.90	1.35	1.00	1.75	-	-
STR. II	1.25	0.90	1.50	0.65	1.50	0.90	1.35	1.00	1.35	-	-
STR. III	1.25	0.90	1.50	0.65	1.50	0.90	1.35	1.00	-	1.00	-
STR. IV	1.50	0.90	1.50	0.65	1.50	0.90	1.35	1.00	-	-	-
STR. V	1.25	0.90	1.50	0.65	1.50	0.90	1.35	1.00	1.35	1.00	1.00
EXTR. I	1.25	0.90	1.50	0.65	1.50	0.90	1.35	1.00	1.35	-	-
EXTR. II	1.25	0.90	1.50	0.65	1.50	0.90	1.35	1.00	0.50	-	-
SER. I	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
SER. II	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.30	-	-
SER. III	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.80	-	-
SER. IV	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	-	1.00	-

			B NO	M147	6-011		SHE	ET	OF 24
līgh	e&Bo		IENT	TOWN	OF MANCHES	STER-BY-THE-SE	A, MA		
ngineers Ei	nvironmental Sp	ecialists SI	JBJECT	CENTI	RAL STREET B	RIDGE - FOOTIN	G CALCULATI	ONS	
		PF	REPARED	BY	EAO DAT	E JUL. '19	CHECKED) BY	DATE
FACTO	RED MOM	ENTS AN	D FOR	CES					
	{a}	{b}		{c}	{d}	{e}	{ f }	{g}	{h}
LIMIT STATES	MAX. DRIVING MOMENT (K-FT/FT)	MIN. DRIVII MOMENT (K-FT/FT)	NG RES MON	MAX. SISTING IENT (K- T/FT)	MIN. RESISTING MOMENT (K-FT/FT)	MAX. VERTICAL FORCE (K/FT)	MIN. VERTICAL FORCE (K/FT)	MAX. HORIZONTAL FORCE (K/FT)	MIN. HORIZONTAL FORCE (K/FT)
STR. I	62.8	19.5	1	140.6	79.3	34.4	18.0	9.2	-1.7
STR. II			N/A	- NO OWNE	R-SPECIFIED SF	PECIAL DESIGN VEI	HICLES (3.4.1)		
STR. III	32.5	19.5	1	110.8	79.3	25.1	18.0	5.4	0.3
STR. IV	32.5	19.5	1	115.1	79.3	26.5	18.0	5.4	0.2
STR. V	55.9	19.5	1	133.8	79.3	32.3	18.0	8.3	-1.2
EXTR. I EXTR. II				N/A I	FOR SINGLE SPA	AN BRIDGES (4.7.4	.2)		
SER. I	39.0	21.6		99.8	82.8	24.2	18.9	4.4	1.1
SER. II				N/A -	NOT A STEEL S	UBSTRUCTURE (3.4	4.1)		

N/A - NOT A PRESTRESSED CONCRETE SUBSTRUCTURE (3.4.1)

STRENGTH LIMIT STATE (11.5.3)

SER. III

SER. IV

OVERT	URNING & ECCENTRICITY LIMITS (11.6.3.3 <u>)</u>			
Χ,	RESULTANT VERT. FORCE LOCA	TION FROM	TOE FOUNDATON ON ROCK		
	11.6.3.3—Eccentricity Limits		MIN. $X_i = (B_{FOOT} / 20)$	0.35	FT
of th third resul	For foundations on soil, the locatio ne reaction forces shall be within is of the base width. For foundations on rock, the ttant of the reaction forces shall be w -tenths of the base width.	the middle t location of	the	6.65	FT
CACE 4		V	{MIN. RESIST. MOM} - {MAX. DRIV. MOM.}	{d} - {a}	
CASE I	- MIN. VERT & MAX. HORIZ.	X ₁ =	{MIN. VERT FORCE}	{ f }	
CASE 2	- MAX. VERT & MAX. HORIZ.	<i>X</i> ₂ =	{MAX. RESIST. MOM} - {MAX. DRIV. MOM.}	{c} - {a}	
			{MAX. VERT FORCE}	{e}	
CACE 2	- MAX. VERT & MIN. HORIZ.	× -	{MAX. RESIST. MOM} - {MIN. DRIV. MOM.}	{c} - {b}	
CASE 3	- MAX. VERT & MIN. HORIZ.	X ₃ =	{MAX. VERT FORCE}	{e}	
	- MIN, VERT & MIN, HORIZ.	<i>X</i> ₄ =	{MIN. RESIST. MOM} - {MIN. DRIV. MOM.}	{d} - {b}	
CASE 4	- IVIIIN, VEKT & IVIIN, HUKIZ.	^ ₄ -	{MIN. VERT FORCE}	{ f }	
	<u>REFER TO</u>	O TABLE BEL	OW FOR X, ANALYSIS		

	JOB NO	M1476-011			SHEET	OF 24
Tighe&Bond	CLIENT	TOWN OF MA	NCHESTER	-BY-THE-SEA,	МА	
Engineers Environmental Specialists	SUBJECT	CENTRAL ST	REET BRIDO	GE - FOOTING	CALCULATIONS	
	PREPARED BY	EAO	DATE	JUL. '19	CHECKED BY	DATE
LATERAL SLIDING (11.6.3.6)						
φ R _n FACTORED SLIDING RESIS	TANCE = φ _t V ta	n δ (10.6.3.4-1)			
φ _t SLIDING RESISTANCE FAC	TOR					0.80
V TOTAL MIN. VERTICAL FO	RCE = COLUMN {	{f}				
tan δ COEFFICIENT OF FRICTION	I (SLIDING) = (RE	F6)				0.70
FS, SLIDING FACTOR OF SAFETY =			(φ _t) (ta	n δ) {MIN. VER	T. FORCE}	(φ_t) (tan δ) {f}
			{M	iax. Horiz. Foi	RCE} *	{g} or {h}
FOR LRFD ANALYSIS, VERIFY FS _{SLIDING}	≥ 1.0	*NOTE - DESIG	GNER MAY C	ONSIDER PASSI	VE PRESSURE TO RE	SIST THRUST OF FRAME

REFER TO TABLE BELOW FOR FS SUDING ANALYSIS

		OVERT	JRNING		SLIDING
LIMIT STATES	Х ₁ (FT.)	Х ₂ (FT.)	Х ₃ (FT.)	Х ₄ (FT.)	FS
STR. I	0.92	2.26	3.52	3.32	1.10
STR. II			N/A		-
STR. III	2.60	3.12	3.63	3.32	1.87
STR. IV	2.60	3.12	3.61	3.32	1.87
STR. V	1.30	2.41	3.54	3.32	1.21
EXTR. I			N/A		
EXTR. II					
SER. I	2.32	2.51	3.23	3.23	2.42
SER. II			N/A		
SER. III			N/A		
SER. IV					
ALLOW MIN.		0.	35		1.00
ALLOW MAX.		6.	65		-
OK?		C	к		ОК

T

	JOB NO	M1476-01	11			SHEE	T	OF	24
Tighe&Bond	CLIENT	TOWN OF	MANCHES	STER-BY-T	HE-SEA, N	1A			
ngineers Environmental Specialists	SUBJECT	CENTRAL	STREET B	RIDGE - F	OOTING C	ALCULATIC	NS		
	PREPARED BY	EAO	DAT	E JI	JL. '19	CHECKED	BY	DATI	Ξ
BEARING RESISTANCE (11.6.3.2)	FOUNDATON	ON <u>ROCK</u>							
IF RESULTANT IS WITHIN THE MID	DLE 1/3 OF THE BA	SE:							
σ _{v,max} LINEARLY DISTRIBUTED	, MAX APPLIED VE	RTICAL STRE	SS = (∑V / E	3) (1 + 6e/B) (11.6.3.	2-2)			
σ _{v,min} LINEARLY DISTRIBUTED	, MIN APPLIED VEF	TICAL STRES	SS = (∑V / B) (1 - 6e/B)	(11.6.3.2	-3)			
IF RESULTANT IS OUTSIDE THE MI	DDLE 1/3 OF THE B	ASE:							
σ _{v,max} LINEARLY DISTRIBUTED	, MAX APPLIED VE	RTICAL STRE	SS = 2∑V / 3	3[(B/2)-e]	(11.6.3.2-	4)			
σ _{v,min} LINEARLY DISTRIBUTED	, MIN APPLIED VEF	TICAL STRES	SS = 0 (11	.6.3.2-5)					
V APPLIED VERTICAL FOR	CE = COLUMN {e} (DR {f}							
X _i RESULTANT VERT. FOR	CE LOCATION FROM	A TOE.							
e _i RESULTANT VERT. FOR	CE LOCATION FROM	A CENTER OI	F FOOTING	= (0.5) (B _f	- оот) - (Х ;)				
RESULTANT IS OUTSIDE	MIDDLE 1/3 OF B	ASE IF	e ≤ B/6 =					1.167	FT
RESULTANT IS WITHIN	MIDDLE 1/3 OF BA	SE IF	e > B/6 =					1.167	FT
$\phi_b q_n$ NET BEARING RESISTAN	ICE (REFER TO SHE	ET 2) =		0.45	x 200	0.00 KSF	=	90.00	KSF
	EFER TO TABLE BE	,	, ANALYSIS	5					
-				-					
			BEA	RING					
LIMIT e ₁ e ₂	e ₃ e ₄	σ _{vmax,1}	$\sigma_{\rm vmin,1}$	σ _{vmax,2}	$\sigma_{vmin,2}$	σ _{vmax,3}	σ _{vmin,3}	σ _{vmax,4}	σ _{vmin,4}
STATES (FT.) (FT.)	(FT.) (FT.)	(KSF)	(KSF)	(KSF)	(KSF)	(KSF)	(KSF)	(KSF)	(KSF)

LIMIT STATES	е ₁ (FT.)	e ₂ (FT.)	е _з (FT.)	е ₄ (FT.)	σ _{vmax,1} (KSF)	σ _{vmin,1} (KSF)	σ _{vmax,2} (KSF)	σ _{vmin,2} (KSF)	σ _{vmax,3} (KSF)	σ _{vmin,3} (KSF)	σ _{vmax,4} (KSF)	σ _{vmin,4} (KSF)
STR. I	2.58	1.24	0.02	0.18	25.03	0.00	10.14	0.00	5.00	4.83	5.65	4.18
STR. II						N	/A					
STR. III	0.90	0.38	0.13	0.18	6.35	0.83	4.77	2.41	4.00	3.18	4.13	3.05
STR. IV	0.90	0.38	0.11	0.18	6.70	0.88	5.03	2.54	4.13	3.44	4.36	3.22
STR. V	2.20	1.09	0.04	0.18	16.53	0.00	8.91	0.32	4.77	4.45	5.31	3.92
EXTR. I						Ν	/A					
EXTR. II						IN,	/A					
SER. I	1.18	0.99	0.27	0.27	6.97	0.00	6.38	0.53	4.26	2.66	4.25	2.67
SER. II						N	/A					
SER. III						N	/^					
SER. IV						IN,	/A					
ALLOW MIN.									-			
ALLOW MAX.		-	-					90	.00			
ОК?			-					c	к			

	JOB NO	M1476-011		SHEET	C C	DF 24
lighe&Bo		TOWN OF MANCHE	STER-BY-THE-SEA,	MA		
gineers Environmental Sp		CENTRAL STREET	BRIDGE - FOOTING	CALCULATIONS		
	PREPARED B	Y EAO DA	E JUL. '19	CHECKED BY	D	DATE
LOSS OF BASE CONTACT I	DUE TO ECCENTRIC LOADI	NG				
11.6.3.4—Subsu	urface Erosion		10.6.1.2—Bearing	Denth		
For walls const	tructed along rivers and	streams,	Where the poter		erosion o	r
design, as specified i problem conditions a	materials shall be evaluate n[Article 2.6.4.4.2.]Where are anticipated, adequate p orporated in the design.	potential be	dermining exists, spr ar below the maxim osion, or undermining	ead footings shall um anticipated de	be located to pth of scour	D
		DEPTH O	SCOUR POTENTIAL:		0.00	FT
		MIN. DEF	TH OF EARTH COVER	(D _E)	0.00	FT
		CHECK: D	> SCOUR DEPTH?		ОК	
FOR FOOTING DESIGN, DE	<mark>URAL FAILURE (11.6.4)</mark> EL OF INDIVIDUAL WALL E TERMINE WORST-CASE CC	DNTACT PRESSURE.	STRUCTURAL FAILUI			ECTS
DESIGN REINFORCING STE FOR FOOTING DESIGN, DE NTERPOLATE BETWEEN C σ _{v,FF} VERTICAL	EL OF INDIVIDUAL WALL E	DNTACT PRESSURE. HEEL: STEM σ _{vmax} - [B	STRUCTURAL FAILUI _{ΟΕ} (σ _{vmax} - σ _{vmin}) / Β _{FC} _{ΙΕΕL} (σ _{vmax} - σ _{vmin}) / Β _F	orl g		:
DESIGN REINFORCING STE FOR FOOTING DESIGN, DE NTERPOLATE BETWEEN α σ _{v,FF} VERTICAL σ _{v,BF} VERTICAL	EL OF INDIVIDUAL WALL E TERMINE WORST-CASE CC i _{vmax} AT TOE AND σ _{vmin} AT I STRESS AT BACK FACE OF	DNTACT PRESSURE. HEEL: STEM σ _{vmax} - [B	_{OE} (σ _{vmax} - σ _{vmin}) / B _{FC} _{IEEL} (σ _{vmax} - σ _{vmin}) / B _F	orl g		V2
DESIGN REINFORCING STE FOR FOOTING DESIGN, DE NTERPOLATE BETWEEN α σ _{v,FF} VERTICAL σ _{v,BF} VERTICAL CENTROID FOR RIGH	EL OF INDIVIDUAL WALL E TERMINE WORST-CASE CC i _{vmax} AT TOE AND σ _{vmin} AT I STRESS AT BACK FACE OF STRESS AT FRONT FACE O	DNTACT PRESSURE. HEEL: STEM σ_{vmax} - [B F STEM σ_{vmin} + [B $ar{y}=rac{b+}{3(a+)}$	_{OE} (σ _{vmax} - σ _{vmin}) / B _{FC} _{IEEL} (σ _{vmax} - σ _{vmin}) / B _F	orl g		V2
DESIGN REINFORCING STE FOR FOOTING DESIGN, DE NTERPOLATE BETWEEN α σ _{v,FF} VERTICAL σ _{v,BF} VERTICAL CENTROID FOR RIGH	EL OF INDIVIDUAL WALL E TERMINE WORST-CASE CC wmax AT TOE AND σ _{vmin} AT I STRESS AT BACK FACE OF STRESS AT FRONT FACE O T-ANGLED TRAPEZOID:	DNTACT PRESSURE. HEEL: STEM σ_{vmax} - [B F STEM σ_{vmin} + [B $ar{y}=rac{b+}{3(a+)}$ ON TOE AND HEEL:	$\frac{\partial G}{\partial G} \left(\sigma_{vmax} - \sigma_{vmin} \right) / B_{FC} \left($	orl g		V2
DESIGN REINFORCING STE FOR FOOTING DESIGN, DE NTERPOLATE BETWEEN G $\sigma_{v,FF}$ VERTICAL $\sigma_{v,BF}$ VERTICAL CENTROID FOR RIGH CALCULATE MAX RESULTA V _{U, TOE} FACTORE	EL OF INDIVIDUAL WALL E TERMINE WORST-CASE CC i _{vmax} AT TOE AND σ _{vmin} AT I STRESS AT BACK FACE OF STRESS AT FRONT FACE O T-ANGLED TRAPEZOID:	DNTACT PRESSURE. HEEL: STEM σ_{vmax} - [B FF STEM σ_{vmin} + [B $ar{y}=rac{b+}{3(a+3)}$ ON TOE AND HEEL: TO TOE = $0.5(\sigma_{vmax}+3)$	$\frac{\partial c}{\partial c} \left(\sigma_{vmax} - \sigma_{vmin} \right) / B_{FC}$ $\frac{2a}{b} h.$ $v_{v,FF} \left(B_{TOE} \right)$	oor] σ_{vmax} .		V2
DESIGN REINFORCING STE FOR FOOTING DESIGN, DE NTERPOLATE BETWEEN C G _{V,FF} VERTICAL G _{V,BF} VERTICAL CENTROID FOR RIGH CALCULATE MAX RESULTA V _{U, TOE} FACTORE M _{U, TOE} FACTORE	EL OF INDIVIDUAL WALL E TERMINE WORST-CASE CC wmax AT TOE AND σ _{vmin} AT I STRESS AT BACK FACE OF STRESS AT FRONT FACE O T-ANGLED TRAPEZOID:	DNTACT PRESSURE. HEEL: STEM $\sigma_{vmax} - [B]$ IF STEM $\sigma_{vmin} + [B]$ $\bar{y} = \frac{b+}{3(a+3)}$ ON TOE AND HEEL: TO TOE = $0.5(\sigma_{vmax} + 4)$ ED TO TOE = $(V_{u,TOE})(a+3)$	$\sum_{i \in EL} (\sigma_{vmax} - \sigma_{vmin}) / B_{FC}$ $\frac{2a}{b} h.$ $v_{v,FF} (B_{TOE})$ $v_{v,FF} + 2 \sigma_{vmax}) (B_{TOE}) / B_{TOE} / $	oor] σ_{vmax} .		V2

_			ЈОВ	NO	M1476-0	11			SHEET	OF	24
līgh	e &E	Bond	CLI		TOWN O	F MANCHES	TER-BY-1	THE-SEA, N	МА		
ngineers Er	nvironment	al Specialist	s SUE	JECT	CENTRAL	STREET B	RIDGE - F	OOTING C	ALCULATIONS		
			PRE	PARED BY	EAC) DATE	J	UL. '19	CHECKED BY	DATE	
LIMIT STATES	σ _{vmax,1} (KSF)	σ _{vFF,1} (KSF)	σ _{vBF,1} (KSF)	σ _{vmin,1} (KSF)	V _{U,TOE,1} (K/FT)	M _{U,TOE,1} (K-FT/FT)	V _{U,HEEL,1} (K/FT)	M _{U,HEEL,1} (K-FT/FT)			
STR. I	25.03	22.65	14.31	0.00	15.89	5.39	28.61	38.15			
STR. II				Ν	I/A						
STR. III	6.35	5.83	3.98	0.83	4.06	1.37	9.63	15.05			
STR. IV	6.70	6.15	4.20	0.88	4.28	1.45	10.16	15.88			
STR. V	16.53	14.96	9.45	0.00	10.50	3.56	18.90	25.20			
EXTR. I				Ν	I/A						
EXTR. II					, 1				-		
SER. I	6.97	6.31	3.98	0.00	4.42	1.50	7.97	10.62	-		
SER. II											
SER. III				N	I/A						
SER. IV											
LIMIT STATES	σ _{vmax,2} (KSF)	σ _{vFF,2} (KSF)	σ _{vBF,2} (KSF)	σ _{vmin,2} (KSF)	V _{U,TOE,2} (K/FT)	M _{U,TOE,2} (K-FT/FT)	V _{U,HEEL,2} (K/FT)	M _{U,HEEL,2} (K-FT/FT)			
STR. I	10.14	9.18	5.79	0.00	6.44	2.18	11.59	15.45			
STR. II				Ν	I/A						
STR. III	4.77	4.55	3.76	2.41	3.11	1.04	12.33	22.87			
STR. IV	5.03	4.80	3.97	2.54	3.28	1.10	13.01	24.13			
STR. V	8.91	8.09	5.23	0.32	5.66	1.92	11.09	15.63			
EXTR. I				N	I/A						
EXTR. II					, · 						
SER. I	6.38	5.83	3.88	0.53	4.07	1.38	8.82	13.19			
SER. II											
SER. III				N	I/A						
SER. IV											

			JOB	NO	M1476-0	11			SHEET		OF	24
lign	e &E	lond	CLIE	NT	TOWN O	F MANCHES	TER-BY-T	THE-SEA, N	1A			
igineers Er	nvironment	al Specialis	its SUBJ	JECT	CENTRAL	STREET B	RIDGE - F	OOTING C	ALCULATIONS	5		
			PREP	PARED BY	EAC) DATE	J	UL. '19	CHECKED BY		DATE	
LIMIT STATES	σ _{vmax,3} (KSF)	σ _{vFF,3} (KSF)	σ _{vBF,3} (KSF)	σ _{vmin,3} (KSF)	V _{u,тое,з} (K/FT)	M _{U,TOE,3} (K-FT/FT)	V _{U,HEEL,3} (K/FT)	M _{U,HEEL,3} (K-FT/FT)				
STR. I	5.00	4.99	4.93	4.83	3.33	1.11	19.51	38.88	r			
STR. II				N	/A							
STR. III	4.00	3.92	3.65	3.18	2.64	0.88	13.66	26.70				
STR. IV	4.13	4.07	3.84	3.44	2.73	0.91	14.56	28.60				
STR. V	4.77	4.74	4.64	4.45	3.17	1.06	18.17	36.10				
EXTR. I				N	/A							
EXTR. II												
SER. I	4.26	4.11	3.57	2.66	2.79	0.94	12.46	23.70				
SER. II												
				NI	/A							
SER. III				IN	,,,,							
SER. III SER. IV				IN	,,,							
				N	, I							
	σ _{vmax,4} (KSF)	σ _{vFF,4} (KSF)	σ _{vBF,4} (KSF)	σ _{vmin,4} (KSF)	V _{U,TOE,4} (K/FT)	M _{U,TOE,4} (K-FT/FT)	V _{U,HEEL,4} (K/FT)	M _{U,HEEL,4} (K-FT/FT)				
SER. IV LIMIT				σ _{vmin,4}	V _{U,TOE,4}							
SER. IV LIMIT STATES	(KSF)	(KSF)	(KSF)	σ _{vmin,4} (KSF) 4.18	V _{U,TOE,4} (K/FT)	(K-FT/FT)	(K/FT)	(K-FT/FT)				
LIMIT STATES STR. I	(KSF)	(KSF)	(KSF)	σ _{vmin,4} (KSF) 4.18	V _{U,TOE,4} (K/FT) 3.72	(K-FT/FT)	(K/FT)	(K-FT/FT)				
SER. IV LIMIT STATES STR. I STR. II	(KSF) 5.65	(KSF) 5.51	(KSF) 5.02	σ _{umin,4} (KSF) 4.18 Ν	V _{U,TOE,4} (K/FT) 3.72 /A	(K-FT/FT) 1.25	(K/FT) 18.39	(K-FT/FT) 35.66				
SER. IV LIMIT STATES STR. I STR. II STR. III	(KSF) 5.65 4.13	(KSF) 5.51 4.03	(KSF) 5.02 3.67	σ _{vmin,4} (KSF) 4.18 N 3.05	V _{U,TOE,4} (K/FT) 3.72 /A 2.72	(К-FT/FT) 1.25 0.91	(K/FT) 18.39 13.43	(K-FT/FT) 35.66 26.05				
SER. IV LIMIT STATES STR. I STR. II STR. III STR. IV	(KSF) 5.65 4.13 4.36	(KSF) 5.51 4.03 4.25	(KSF) 5.02 3.67 3.87	σ _{vmin,4} (KSF) 4.18 N 3.05 3.22 3.92	V _{U,TOE,4} (K/FT) 3.72 /A 2.72 2.87 3.49	(K-FT/FT) 1.25 0.91 0.96	(K/FT) 18.39 13.43 14.17	(K-FT/FT) 35.66 26.05 27.48				
SER. IV LIMIT STATES STR. I STR. II STR. III STR. IV STR. V	(KSF) 5.65 4.13 4.36	(KSF) 5.51 4.03 4.25	(KSF) 5.02 3.67 3.87	σ _{vmin,4} (KSF) 4.18 N 3.05 3.22 3.92	V _{U,TOE,4} (K/FT) 3.72 /А 2.72 2.87	(K-FT/FT) 1.25 0.91 0.96	(K/FT) 18.39 13.43 14.17	(K-FT/FT) 35.66 26.05 27.48				
SER. IV LIMIT STATES STR. I STR. II STR. III STR. IV STR. V EXTR. I	(KSF) 5.65 4.13 4.36	(KSF) 5.51 4.03 4.25	(KSF) 5.02 3.67 3.87	σ _{vmin,4} (KSF) 4.18 N 3.05 3.22 3.92	V _{U,TOE,4} (K/FT) 3.72 /A 2.72 2.87 3.49	(K-FT/FT) 1.25 0.91 0.96	(K/FT) 18.39 13.43 14.17	(K-FT/FT) 35.66 26.05 27.48				
SER. IV LIMIT STATES STR. I STR. II STR. IV STR. V EXTR. I EXTR. I	(KSF) 5.65 4.13 4.36 5.31	(KSF) 5.51 4.03 4.25 5.17	(KSF) 5.02 3.67 3.87 4.71	σ _{υmin,4} (KSF) 4.18 N 3.05 3.22 3.92 N	V _{U,TOE,4} (K/FT) 3.72 /A 2.72 2.87 3.49 /A	(K-FT/FT) 1.25 0.91 0.96 1.17	(K/FT) 18.39 13.43 14.17 17.26	(K-FT/FT) 35.66 26.05 27.48 33.46				
SER. IV LIMIT STATES STR. I STR. II STR. IV STR. V EXTR. I EXTR. I SER. I	(KSF) 5.65 4.13 4.36 5.31	(KSF) 5.51 4.03 4.25 5.17	(KSF) 5.02 3.67 3.87 4.71	σ _{vmin,4} (KSF) 4.18 N 3.05 3.22 3.92 N 2.67	V _{U,TOE,4} (K/FT) 3.72 /A 2.72 2.87 3.49 /A	(K-FT/FT) 1.25 0.91 0.96 1.17	(K/FT) 18.39 13.43 14.17 17.26	(K-FT/FT) 35.66 26.05 27.48 33.46				

 M_{U, HEEL, STR.}
 FACTORED STRENGTH DESIGN MOMENT APPLIED TO HEEL =
 38.88
 K-FT / FT

 M_{U, HEEL, SER.}
 FACTORED SERVICE DESIGN MOMENT APPLIED TO HEEL =
 23.74
 K-FT / FT

 V_{U, HEEL}
 FACTORED DESIGN SHEAR APPLIED TO HEEL =
 28.61
 K /FT

	JOB NO	M1476-011		SHEET		OF 24
Tighe&Bc	CLIENT	TOWN OF MANCHES	TER-BY-THE-SEA,	MA		
ngineers Environmental S	pecialists SUBJECT	CENTRAL STREET BE	RIDGE - FOOTING	CALCULATIONS		
	PREPARED B	BY EAO DATE	JUL. '19	CHECKED BY		DATE
M _{U, STEM,STR.} FACTORE	ED STRENGTH DESIGN MOI	MENT APPLIED TO STEM	= MAX({a})		62.8	K-FT / FT
M _{U, STEM, SER.} FACTORE	ED SERVICE DESIGN MOME	ENT APPLIED TO STEM =	MAX({a})		39.0	K-FT / FT
	VATIVE, COULD SUBTRACT	FOOTING DEPTH FROM N	MOMENT ARM			
	ED DESIGN SHEAR APPLIED				9.19	K /FT
O, STEINI						,
SERVICE LIMIT S	TATES (11.5.2)					
SERVICE LIMIT S						
	(10.6.2.4)					
SETTLEMENT ANALYSES	(10.6.2.4)					
SETTLEMENT ANALYSES	(10.6.2.4)					
SEE GEOTECHNICAL	(10.6.2.4) REPORT		DNS			
SEE GEOTECHNICAL	(10.6.2.4) REPORT	INICAL RECOMMENDATIO	DNS			
SEE GEOTECHNICAL	(10.6.2.4) REPORT	INICAL RECOMMENDATIO	DNS			
SEE GEOTECHNICAL OVERALL STABILITY (11.6 11.6.2.3—Overall Stal The overall stability of	(10.6.2.4) REPORT 5.2.3) SEE GEOTECH bility f the retaining wall, retained	C11.6.2.3		XXV/XXV/		
SEE GEOTECHNICAL SEE GEOTECHNICAL OVERALL STABILITY (11.6 11.6.2.3—Overall Stal The overall stability or slope and foundation soil o all walls using limiting equ	(10.6.2.4) REPORT 5.2.3) SEE GEOTECH bility f the retaining wall, retained r rock shall be evaluated fi ilibrium methods of analysi	C11.6.2.3 ed for is.				
SEE GEOTECHNICAL SEE GEOTECHNICAL OVERALL STABILITY (11.6 11.6.2.3—Overall Stal The overall stability of lope and foundation soil o il walls using limiting equ the overall stability of tem	(10.6.2.4) REPORT 5.2.3) SEE GEOTECH bility f the retaining wall, retained r rock shall be evaluated fi ilibrium methods of analysi porary cut slopes to facilita	C11.6.2.3 ed for is. ite				
SETTLEMENT ANALYSES SEE GEOTECHNICAL OVERALL STABILITY (11.6 11.6.2.3—Overall Stal The overall stability of dope and foundation soil o all walls using limiting equ The overall stability of tem construction shall also be et esting and analyses ma	(10.6.2.4) .REPORT 5.2.3) SEE GEOTECH bility f the retaining wall, retained r rock shall be evaluated fi librium methods of analysi porary cut slopes to facilita valuated. Special exploratio y be required for bridg	C11.6.2.3 ed for is. ite m, ge				
SEE GEOTECHNICAL SEE GEOTECHNICAL OVERALL STABILITY (11.6 11.6.2.3—Overall Stal The overall stability of clope and foundation soil o all walls using limiting equ The overall stability of tem construction shall also be ev- esting and analyses ma butments or retaining w	(10.6.2.4) (10.6.2.4) REPORT 5.2.3) SEE GEOTECH bility f the retaining wall, retained rr rock shall be evaluated fi ilibrium methods of analysi porary cut slopes to facilita valuated. Special exploratio	C11.6.2.3 ed for is. ite m, ge		Wall rotates backward Sliding		
SEE GEOTECHNICAL SEE GEOTECHNICAL OVERALL STABILITY (11.6 11.6.2.3—Overall Stal The overall stability of clope and foundation soil o ull walls using limiting equ Che overall stability of tem construction shall also be er esting and analyses ma boutments or retaining w leposits. The evaluation of ove	(10.6.2.4) (10.6.2.4) REPORT 5.2.3) SEE GEOTECH bility f the retaining wall, retained r rock shall be evaluated fi librium methods of analysi porary cut slopes to facilita valuated. Special exploratio y be required for bridg valls constructed over so rall stability of earth slope	C11.6.2.3 ed for is. is. is. is. is. ift es		Wall rotates backward Sliding		
SEE GEOTECHNICAL SEE GEOTECHNICAL OVERALL STABILITY (11.6 11.6.2.3—Overall Stal The overall stability or clope and foundation soil o dl walls using limiting equ The overall stability of tem construction shall also be er esting and analyses ma butments or retaining w leposits. The evaluation of ove with or without a foundatio	(10.6.2.4) (10.6.2.4) REPORT 5.2.3) SEE GEOTECH bility f the retaining wall, retained r rock shall be evaluated fi librium methods of analysi porary cut slopes to facilita valuated. Special exploration y be required for bridg valls constructed over so rall stability of earth slopen n unit should be investigate	C11.6.2.3 ed for is. is. is. is. is. es ed Figure C11.6.2.3-1-	WAVELAND WAVEL	Wall rotates backward Sliding surface		
SEE GEOTECHNICAL SEE GEOTECHNICAL OVERALL STABILITY (11.6 11.6.2.3—Overall Stal The overall stability of clope and foundation soil o all walls using limiting equ the overall stability of tem construction shall also be ev- esting and analyses ma abutments or retaining w leposits. The evaluation of over with or without a foundation at the Service I Load Com- resistance factor. In lieu	(10.6.2.4) (10.6.2.4) REPORT 5.2.3) SEE GEOTECH bility f the retaining wall, retained r rock shall be evaluated for ilibrium methods of analysis porary cut slopes to facilita valuated. Special exploration y be required for bridg valuated. Special exploration y be required for bridg valuated. Special exploration y be required for bridg valuated over so rrall stability of earth slop- n unit should be investigated abination and an appropria of better information, th	C11.6.2.3 ed for is. is. ite off es Figure C11.6.2.3-1— te Failure he	Retaining Wall Over	Wall rotates backward Sliding surface		
SEE GEOTECHNICAL SEE GEOTECHNICAL OVERALL STABILITY (11.6 11.6.2.3—Overall Stal The overall stability of slope and foundation soil o all walls using limiting equ The overall stability of tem construction shall also be ev- esting and analyses ma abutments or retaining w deposits. The evaluation of over with or without a foundation at the Service I Load Con- resistance factor. In lieu	(10.6.2.4) (10.6.2.4) REPORT 5.2.3) SEE GEOTECH bility f the retaining wall, retained r rock shall be evaluated for ilibrium methods of analysis porary cut slopes to facilita valuated. Special exploration y be required for bridg valuated. Special exploration y be required for bridg valuated. Special exploration y be required for bridg valuated over so rrall stability of earth slop- n unit should be investigated abination and an appropria of better information, th	C11.6.2.3 ed for is. is. is. is. is. is. is. is. is. is.	Retaining Wall Over	Wall rotates backward Sliding surface rall Stability ning wall overall a slope stability		
SEE GEOTECHNICAL SEE GEOTECHNICAL OVERALL STABILITY (11.6 11.6.2.3—Overall Stal) The overall stability of slope and foundation soil of all walls using limiting equ The overall stability of tem construction shall also be et esting and analyses ma abutments or retaining w deposits. The evaluation of over with or without a foundation at the Service I Load Con- resistance factor. In lieu resistance factor, ϕ , may be Where the geotechm	(10.6.2.4) (10.6.2.4) REPORT 5.2.3) SEE GEOTECH bility f the retaining wall, retained r rock shall be evaluated fi librium methods of analysi porary cut slopes to facilita valuated. Special exploratio y be required for bridg valus constructed over so rall stability of earth slop- n unit should be investigate abination and an appropria of better information, the taken as: tical parameters are we	C11.6.2.3 ed for is. te off es ed Figure C11.6.2.3-1— Failure he Figure C11.6.2.3-1— Failure he entite stability failure. O issue, and, therefor	Retaining Wall Over	Wall rotates backward Sliding surface rall Stability ning wall overall a slope stability		
SEE GEOTECHNICAL SEE GEOTECHNICAL OVERALL STABILITY (11.6 11.6.2.3—Overall Stal The overall stability of slope and foundation soil o all walls using limiting equ The overall stability of tem construction shall also be et esting and analyses ma abutments or retaining w deposits. The evaluation of over with or without a foundation at the Service I Load Con resistance factor. In lieu resistance factor, ϕ , may be Where the geotechm defined, and the slope of	(10.6.2.4) (10.6.2.4) REPORT 5.2.3) SEE GEOTECH bility f the retaining wall, retained r rock shall be evaluated fi librium methods of analysis porary cut slopes to facilita valuated. Special exploratio y be required for bridge valls constructed over so rall stability of earth slopen n unit should be investigated ubination and an appropria of better information, the taken as: tical parameters are we does not support or contain	C11.6.2.3 ed for is. te on, ge off es es es Figure C11.6.2.3-1- Failure Figure C11.6.2 stability failure. off issue, and, therefor check. 75	Retaining Wall Over	Wall rotates backward Sliding surface rall Stability ning wall overall a slope stability ervice limit state		
SETTLEMENT ANALYSES SEE GEOTECHNICAL OVERALL STABILITY (11.6 11.6.2.3—Overall Stability of slope and foundation soil of all walls using limiting equ The overall stability of tem construction shall also be ev- esting and analyses ma abutments or retaining w deposits. The evaluation of over with or without a foundation at the Service I Load Con- resistance factor. In lieu resistance factor. In lieu resistance factor. In lieu resistance factor. In lieu resistance factor. May be	(10.6.2.4) (10.6.2.4) REPORT 5.2.3) SEE GEOTECH bility f the retaining wall, retained r rock shall be evaluated fi librium methods of analysi porary cut slopes to facilita valuated. Special exploration y be required for bridg valuated. Special exploration the state of the state of the state of the state better information, the state of the state of the state taken as: ical parameters are we does not support or contain 	C11.6.2.3 ed for is. tte es es es ed Figure C11.6.2.3-1- Failure Figure C11.6.2 stability failure. O effl issue, and, therefor check. 75 The Modified methods of analysis	Retaining Wall Over 3-1 shows a retain verall stability is e, is considered a s Bishop, simplified if may be used.	Wall rotates backward Sliding surface rall Stability ning wall overall a slope stability ervice limit state Janbu or Spencer		
SEE GEOTECHNICAL SEE GEOTECHNICAL OVERALL STABILITY (11.6 11.6.2.3—Overall Stal) The overall stability of slope and foundation soil o all walls using limiting equ The overall stability of tem construction shall also be et esting and analyses ma abutments or retaining w deposits. The evaluation of over with or without a foundation at the Service I Load Con resistance factor. In lieu resistance factor. In lieu resistance factor, ϕ , may be Where the geotechnic defined, and the slope of structural element	(10.6.2.4) (10.6.2.4) REPORT 5.2.3) SEE GEOTECH bility f the retaining wall, retained r rock shall be evaluated fi librium methods of analysis porary cut slopes to facilita valuated. Special exploration y be required for bridge valls constructed over so rall stability of earth slopen n unit should be investigated bination and an appropria of better information, the taken as: tical parameters are we does not support or contain 	C11.6.2.3 ed for is. te off es es ed Figure C11.6.2.3-1— Failure he Figure C11.6.2 stability failure. O issue, and, therefor check. 75 The Modified 1 methods of analysis Soft soil depos or and/or lateral flow	Retaining Wall Over 3-1 shows a retain verall stability is e, is considered a s Bishop, simplified 1 may be used. sits may be subject which could result	Wall rotates backward Sliding surface rall Stability a slope stability ervice limit state Janbu or Spencer to consolidation in unacceptable		
SEE GEOTECHNICAL SEE GEOTECHNICAL OVERALL STABILITY (11.6 11.6.2.3—Overall Stal) The overall stability of slope and foundation soil o all walls using limiting equ The overall stability of tem construction shall also be et esting and analyses ma abutments or retaining w deposits. The evaluation of over with or without a foundation at the Service I Load Con resistance factor. In lieu resistance factor. In lieu resistance factor, ϕ , may be Where the geotechnic defined, and the slope of structural element	(10.6.2.4) (10.6.2.4) REPORT 5.2.3) SEE GEOTECH bility f the retaining wall, retained r rock shall be evaluated fi librium methods of analysi porary cut slopes to facilita valuated. Special exploration y be required for bridg valuated. Special exploration to be the required for be the require	C11.6.2.3 ed for is. te off es ed Figure C11.6.2.3-1— Failure he Figure C11.6.2.3-1— Failure he Figure C11.6.2.3-1— Failure he frigure C11.6.2.3-1— Failure he Stability failure. O issue, and, therefor check. The Modified i methods of analysis Soft soil depos and/or lateral flow long-term settlemen	Retaining Wall Over 3-1 shows a retain verall stability is e, is considered a s Bishop, simplified : may be used. its may be subject which could result ts or horizontal mov	Wall rotates backward Sliding surface all Stability ming wall overall a slope stability ervice limit state Janbu or Spencer to consolidation in unacceptable vements.		
SEE GEOTECHNICAL SEE GEOTECHNICAL OVERALL STABILITY (11.6 11.6.2.3—Overall Stal) The overall stability of slope and foundation soil o all walls using limiting equ The overall stability of tem construction shall also be et esting and analyses ma abutments or retaining w deposits. The evaluation of over with or without a foundation at the Service I Load Con resistance factor. In lieu resistance factor. In lieu resistance factor, ϕ , may be Where the geotechnic defined, and the slope of structural element	(10.6.2.4) (10.6.2.4) REPORT 5.2.3) SEE GEOTECH bility f the retaining wall, retained r rock shall be evaluated fi librium methods of analysis porary cut slopes to facilita valuated. Special exploration y be required for bridge valls constructed over so rall stability of earth slopen n unit should be investigated bination and an appropria of better information, the taken as: tical parameters are we does not support or contain 	C11.6.2.3 ed for is. te off es ed Figure C11.6.2.3-1— Failure he Figure C11.6.2.3-1— Failure he Figure C11.6.2.3-1— Failure he frigure C11.6.2.3-1— Failure he Stability failure. O issue, and, therefor check. The Modified i methods of analysis Soft soil depos and/or lateral flow long-term settlemen	Retaining Wall Over 3-1 shows a retain verall stability is e, is considered a s Bishop, simplified i may be used. sits may be subject which could result ts or horizontal mov selection of a resi	Wall rotates backward Sliding surface all Stability ning wall overall a slope stability ervice limit state Janbu or Spencer to consolidation in unacceptable rements. istance factor for		

_		JOB NO	M1476-011				SHEET		OF	24
Tighe	& Bond	CLIENT	TOWN OF M	IANCHESTER-BY-	THE-SE	A, MA				
ngineers Enviro	nmental Specialists	SUBJECT	CENTRAL S	TREET BRIDGE -	FOOTIN	IG CALCUL	ATION	S		
		PREPARED BY	EAO	DATE	JUL. '19	CHEC	KED BY	(DATE	
PRIMARY	REINFORCING	DESIGN - 1	TOE OF FO	DOTING						
BOTTOM MAT	PRIMARY REINFORCI	NG DUE TO BEAR	ING PRESSURE	I						
STRENGTH DES	lign									
CRITERIA	1: TENSION = CO	MPRESSION								
	T = As * Fy	C = 0.85	5 * f'c * a * b		Fy :	= 60	KS	I As	UNKOWN	
	EQ. 1 a = [Fy / (0.85	* f'c * b)] As			f'c ÷	= 4.0) KS	l al	JNKOWN	
					b :	= 12	IN			
CRITERIA	2: FACTORED MC	MENT < FACTOR	RED FLEXURAL	RESISTANCE						
		n = φ * As * Fy (d - 0.5 a)		φ :	= 0.9	0 (A.	ASHTO 5.5.	4.2)	
	EQ. 2 As = Mu / (φ *	Fy * (d - 0.5 a))		CLF	R. CVR.	= 4.0	0 IN			
					h :	= 24.0	00 IN			
				ASSUMED BAR	DIAM. :	= 0.7	5 IN			
SOLVE SY	STEM OF EQUATIONS	TO SOLVE FOR A	s_required		d :	= 19.6	53 IN			
	1.00 0.063 0.09 0.061			1 ² / - 						7
	0.09 0.061		0.061 IN			PROVI		#6 @	12 IN	I
	0.09 0.061	As_prov =		ı²/ft				AL, BOTTON		
	0.09 0.061	CHECK:	ОК			BAR D	IAM =	0.75	IN	
						d =		19.63		
Mr = φ	* Mn = φ * As * Fy (α	d-0.5a) = 4	58.6 =	38.2 K-FT/FT		a =		0.65	IN	
		2)								
	NFORCEMENT (5.6.3.		(1 22 Mu)							
Mr SHALL BE G	REATER THAN THE LE CRACKING MOMEN				/Δ) = v	v.fS				
	RATIO OF MIN. YIEL								0.67	
¥3	FLEXURAL CRACKING)		1.6	
¥1 f _r	MODULUS OF RUPT			THECAST ON 1.0			,		0.480	KSI
'r S _c	SECTION MODULUS		c						1152	IN ³
Jc		~				M _{cr}			49.4	K-FT/
		SMALI	ER VALUE. CO	MPARE TO Mr BE	LOW >			=	7.2	K-FT/
		2					u, i UE			
						Mr		=	38.2	K-FT/

		JOB NO	M1476-01	1			SHE	ET		OF	24
lighe	& Bond	CLIENT	TOWN OF	MANCHESTER	-BY-THE-9	SEA,	MA				
ngineers Enviro	nmental Specialists	SUBJECT	CENTRAL S	STREET BRID	GE - FOOT	ING	CALCULAT	IONS			
		PREPARED BY	EAO	DATE	JUL. '	19	CHECKE	D BY		DATE	
	REINFORCING				DEAD LOAI	5					
STRENGTH DES	<u>SIGN</u>										
CRITERIA	1: TENSION = COM	MPRESSION									
	T = As * Fy	C = 0.85	* f'c * a * b		Fy	=	60	KSI	As l	JNKOWN	
	EQ. 1 a = [Fy / (0.85 *	' f'c * b)] As			f'c	=	4.0	KSI	a Ul	NKOWN	
					b	=	12	IN			
CRITERIA	2: FACTORED MO	MENT < FACTOR	ED FLEXURA	L RESISTANCE							
	Mu > φ*Mn	= φ * As * Fy (α	d - 0.5 a)		ф	=	0.90	(AASHT	0 5.5.4	.2)	
	EQ. 2 As = Mu / (φ *	Fy * (d - 0.5 a))			CLR. CVR.	=	4.00	IN			
					h	=	24.00	IN			
				ASSUMED	BAR DIAM	. =	0.75	IN			
SOLVE SY	STEM OF EQUATIONS	TO SOLVE FOR A	s_required		d	=	19.63	IN			
	1.000.4520.660.448										
	0.66 0.448	As_req =	0.448 l	IN ² /FT			PROVIDE	: #6	@	6 IN	
	0.66 0.448	As_prov =	: 0.880 l	IN ² /FT			LONGITU	DINAL, B	оттом	, INT	
	0.66 0.448	CHECK:	ОК				BAR DIAN	/I =	0.75	IN	
							d =		19.63	IN	
				75.2 K-FT			a =		1.29	IN	
Mr = ϕ	* Mn = φ * As * Fy (c	I-0.5a) = 90)1.8 =	75.2 КТ	/FT						
)1.8 =	75.2 ((1)	/FT						
MINIMUM REI	* Mn = φ * As * Fy (c NFORCEMENT (5.6.3. REATER THAN THE LES	<u>3)</u>			/FT						
MINIMUM REI	NFORCEMENT (5.6.3.	<u>3)</u> SSER OF (Mcr) AN	ND (1.33 Mu)			′3 ¥1 f	Fr Sc				
<u>MINIMUM REI</u> Mr SHALL BE G	NFORCEMENT (5.6.3. REATER THAN THE LES	<mark>3)</mark> SSER OF (Mcr) AN ⁻ (5.6.3.3-1 NOTE	ND (1.33 Mu) PRESTRESSE	ED & COMPOSI	TE N/A) = γ					0.67	
<u>MINIMUM REI</u> Mr SHALL BE G M _{cr}	NFORCEMENT (5.6.3. REATER THAN THE LES CRACKING MOMENT	<mark>3)</mark> SSER OF (Mcr) AN (5.6.3.3-1 NOTE O STRENGTH TO (ND (1.33 Mu) E PRESTRESSE ULTIMATE TE	ED & COMPOSI	TE N/A) = ɣ TH (A615, ¢	GRAD	DE 60)			0.67	
<u>MINIMUM REI</u> Mr SHALL BE G M _{cr} Y3	NFORCEMENT (5.6.3. REATER THAN THE LES CRACKING MOMENT RATIO OF MIN. YIELE	3) SSER OF (Mcr) AN (5.6.3.3-1 NOTE S STRENGTH TO 1 S VARIABILITY FA	ND (1.33 Mu) E PRESTRESSE ULTIMATE TE CTOR: 1.2 FC	ED & COMPOSI	TE N/A) = ɣ TH (A615, ¢	GRAD	DE 60)				KSI
<u>MINIMUM REI</u> Mr SHALL BE G M _{cr} Y ₃ Y ₁	NFORCEMENT (5.6.3. REATER THAN THE LES CRACKING MOMENT RATIO OF MIN. YIELE FLEXURAL CRACKING	3) SSER OF (Mcr) AN (5.6.3.3-1 NOTE O STRENGTH TO I G VARIABILITY FA JRE (5.4.2.6) = 0.	ND (1.33 Mu) E PRESTRESSE ULTIMATE TE CTOR: 1.2 FC	ED & COMPOSI	TE N/A) = ɣ TH (A615, ¢	GRAD	DE 60)			1.6	KSI IN ³
<u>MINIMUM REI</u> Mr SHALL BE G M _{cr} Y ₃ Y ₁ f _r	NFORCEMENT (5.6.3. REATER THAN THE LES CRACKING MOMENT RATIO OF MIN. YIELD FLEXURAL CRACKING MODULUS OF RUPTO	3) SSER OF (Mcr) AN (5.6.3.3-1 NOTE O STRENGTH TO I S VARIABILITY FA JRE (5.4.2.6) = 0. = b H _{FOOT} ² /6 =	ND (1.33 Mu) : PRESTRESSE ULTIMATE TE CTOR: 1.2 FC 24 √f'c	ED & COMPOSI	TE N/A) = ¥ TH (A615, 0 t 1.6 FOR O	GRAD THEF	DE 60) RS (C.I.P.)	=		1.6 0.480	IN ³
<u>MINIMUM REI</u> Mr SHALL BE G M _{cr} Y ₃ Y ₁ f _r	NFORCEMENT (5.6.3. REATER THAN THE LES CRACKING MOMENT RATIO OF MIN. YIELD FLEXURAL CRACKING MODULUS OF RUPTO	3) SSER OF (Mcr) AN (5.6.3.3-1 NOTE O STRENGTH TO I S VARIABILITY FA JRE (5.4.2.6) = 0. = b H _{FOOT} ² /6 =	ND (1.33 Mu) : PRESTRESSE ULTIMATE TE CTOR: 1.2 FC 24 √f'c	ED & COMPOSI ENSILE STRENG DR PRECAST OF	TE N/A) = ¥ TH (A615, 0 t 1.6 FOR O	GRAD THEF	DE 60) RS (C.I.P.)			1.6 0.480 1152	
<u>MINIMUM REI</u> Mr SHALL BE G M _{cr} Y ₃ Y ₁ f _r	NFORCEMENT (5.6.3. REATER THAN THE LES CRACKING MOMENT RATIO OF MIN. YIELD FLEXURAL CRACKING MODULUS OF RUPTO	3) SSER OF (Mcr) AN (5.6.3.3-1 NOTE O STRENGTH TO I S VARIABILITY FA JRE (5.4.2.6) = 0. = b H _{FOOT} ² /6 =	ND (1.33 Mu) : PRESTRESSE ULTIMATE TE CTOR: 1.2 FC 24 √f'c	ED & COMPOSI ENSILE STRENG DR PRECAST OF	TE N/A) = ¥ TH (A615, 0 t 1.6 FOR O	GRAD THEF	DE 60) RS (C.I.P.) M _{cr}			1.6 0.480 1152 49.4	IN ³ K-FT,

		JOB NO	M1476-011			SHE	ET		OF	24
Fighe a	Bond	CLIENT	TOWN OF N	IANCHESTER-BY-THE-	-SEA,	MA				
igineers Environ	mental Specialists	SUBJECT	CENTRAL S	TREET BRIDGE - FOO	TING	CALCULAT	IONS			
		PREPARED B	Y EAO	DATE JUL.	'19	CHECKE	O BY		DATE	
				STEM (AT BASE	-					
STRENGTH DESI			U HURIZUNTA	LUADS AT BASE OF ST	EIVI					
CRITERIA 1		MPRESSION								
Charlenaver	T = As * Fy		5 * f'c * a * b	Fv	=	60	KSI	As U	NKOWN	
E	Q. 1 a = [Fy / (0.85 *				=	4.0	KSI		KOWN	
_		,, - ,		b	=	12	IN			
CRITERIA 2	: FACTORED MO	MENT < FACTO	RED FLEXURAL			-				
	Mu > φ*Mn			ф	=	0.90	(AASHT	0 5.5.4.	2)	
E	Q. 2 As = Mu / (φ *			CLR. CVF		4.00	IN		-	
				h	=	28.00	IN			
				ASSUMED BAR DIAN	∕I. =	0.75	IN			
SOLVE SYS	TEM OF EQUATIONS	TO SOLVE FOR	As required	d	=	23.63	IN			
	0.89 0.602									-
	0.89 0.602	As_req =	0.602	N ² /FT		PROVIDE:	#6	@	6 IN	
	0.89 0.602	As_prov	= 0.880 I	N ² /FT		LONGITU	DINAL, BO	оттом,	INT	
	0.89 0.602	CHECK:	ОК			BAR DIAN	/1 =	0.75	IN	
						d =		23.63	IN	
Mr = φ*	Mn = φ * As * Fy (d	I - 0.5 a) = 1	091.9 =	91.0 K-FT/FT		a =		1.29	IN	
MINIMUM REIN	FORCEMENT (5.6.3.	<u>3)</u>								
Mr SHALL BE GR	EATER THAN THE LES	SSER OF (Mcr) A	ND (1.33 Mu)							
M _{cr}	CRACKING MOMENT	(5.6.3.3-1 NOT	E PRESTRESSE	D & COMPOSITE N/A) =	γ ₃ γ ₁ f	f _r S _c				
¥з	RATIO OF MIN. YIELD	O STRENGTH TO	ULTIMATE TEI	NSILE STRENGTH (A615,	GRAD	DE 60)			0.67	
	FLEXURAL CRACKING	6 VARIABILITY F	ACTOR: 1.2 FO	R PRECAST OR 1.6 FOR (OTHEF	RS (C.I.P.)			1.6	
Yı		JRE (5.4.2.6) = ().24 √f' _c						0.480	KSI
	MODULUS OF RUPTU								1568	IN ³
f _r	MODULUS OF RUPTI SECTION MODULUS	$= b H_{FOOT}^2/6 =$								
f _r				OMPARE TO Mr BELOW	>>>	M _{cr}	=		67.2	K-FT/
f _r				OMPARE TO Mr BELOW	>>>	M _{cr} 1.33 M _{u,ST}			67.2 83.5	K-FT/
f _r				OMPARE TO Mr BELOW	>>>	-				

	JOB NO	M1476-011			SHEET	OF	24
Tighe&Bond	CLIENT	TOWN OF M	ANCHESTER-	-BY-THE-SEA, I	МА		
Engineers Environmental Specialists	SUBJECT	CENTRAL ST	REET BRIDG	E - FOOTING C	CALCULATIONS		
	PREPARED BY	EAO	DATE	JUL. '19	CHECKED BY	DATE	

CONTROL OF CRACKING BY DISTRIBUTION OF REINFORCEMENT (5.6.7)

The spacing, s, of nonprestressed reinforcement in the layer closest to the tension face shall satisfy the following:

$$s \leq \frac{700\gamma_e}{\beta_s f_{sr}} - 2d_e \qquad (5.6.7-1)$$

in which:

$$\beta_s = 1 + \frac{d_c}{0.7(h - d_c)}$$
(5.6.7-2)

where:

βs	_	ratio of flexural strain at the extreme tension	γ _e (IN.)	1.00	1.00	1.00
PS		face to the strain at the centroid of the reinforcement layer nearest the tension face	d _c (IN.)	4.38	4.38	4.38
γe		exposure factor 1.00 for Class 1 exposure condition	d (IN.)	19.63	19.63	23.63
d.	=	0.75 for Class 2 exposure condition thickness of concrete cover measured from	h (IN.)	24.00	24.00	28.00
uc		extreme tension fiber to center of the flexural reinforcement located closest thereto (in.)	b (IN.)		12.00	
fss	-	calculated tensile stress in nonprestressed reinforcement at the service limit state not to	A _{s, PROV} (IN ²)	0.44	0.88	0.88
		exceed 0.60 f_y (ksi)	M _{u, SER} (K-FT/FT)	1.50	23.74	38.98
h	=	overall thickness or depth of the component (in.)	Es (KSI)		29000	

Ec = 1820 vf'c (AASHTO C5.4.2.4-3)

REFER TO REFERENCE 4 FOR CALCULATING TENSILE STRESS IN STEEL REINFORCEMENT AT THE SERVICE LEVEL

ρ = Α	s_prov / bo	b		k = v	/[(np) ² +	2np] -	nρ		fs = N	//serv / (/	As_prov * j	*d)	
n = E	s / Ec			j = 1	- k/3								
									60% Fy =	36.00	KSI		
TOE OF FOO	<u>DTING</u>												
ρ =	0.001868	n =	7.97	k =	0.158		j =	0.947	fs =	2.20	KSI	β ₁ =	1.318
	s ≤	232.60	IN	s_pro	•v =	12	IN			ОК		CHECK	(= ОК
HEEL OF FO	OTING												
ρ =	0.003737	n =	7.97	k =	0.216		j =	0.928	fs =	17.78	KSI	β ₁ =	1.318
	s ≤	21.11	IN	s_pro	•v =	6	IN			ОК		CHECK	(= ОК
<u>STEM (BASE</u>	<u>E)</u>												
ρ =	0.003104	n =	7.97	k =	0.199		j =	0.934	fs =	24.10	KSI	β ₁ =	1.265
	s ≤	14.22	IN	s_pro	•v =	6	IN			ОК		CHECK	(= ОК

Ec (KSI)

Class 1 exposure condition applies when cracks can be tolerated due to reduced concerns of appearance, corrosion, or both. Class 2 exposure condition applies to transverse design of segmental concrete box girders for any loads applied prior to attaining full design concrete compressive strength or when there is increased concern of appearance, corrosion, or both.

TOE

3640

3640

3640

HEEL STEMBOT

	JOB NO	M1476-011			SHEET	OF	24
Tighe&Bond	CLIENT	TOWN OF M	ANCHESTER	-BY-THE-SEA,	MA		
Engineers Environmental Specialists	SUBJECT	CENTRAL ST	REET BRIDO	GE - FOOTING	CALCULATIONS		
	PREPARED BY	EAO	DATE	JUL. '19	CHECKED BY	DATE	

SHRINKAGE AND TEMPERATURE REINFORCEMENT

5.10.6-Shrinkage and Temperature Reinforcement

Reinforcement for shrinkage and temperature stresses shall be provided near surfaces of concrete exposed to daily temperature changes and in structural mass concrete. Temperature and shrinkage reinforcement to ensure that the total reinforcement on exposed surfaces is not less than that specified herein.

Reinforcement for shrinkage and temperature may be in the form of bars, welded wire reinforcement, or prestressing tendons.

For bars or welded wire reinforcement, the area of reinforcement per foot, on each face and in each direction, shall satisfy the following:

$A_s \ge \frac{1.30bh}{2(b+h)f_y}$	(5.10.6-1)
------------------------------------	------------

except that:

$$0.11 \le A_r \le 0.60$$
 (5.10.6-2)

where:

- A_s = area of reinforcement in each direction and each face (in.²/ft)
- b = least width of component section (in.)
- h = least thickness of component section (in.)
- fy = specified minimum yield strength of reinforcement <75.0 ksi

Where the least dimension varies along the length of wall, footing, or other component, multiple sections should be examined to represent the average condition at each section. Spacing shall not exceed the following:

- 12.0 in. for walls and footings greater than 18.0 in. thick
- 12.0 in. for other components greater than 36.0 in. thick
- For all other situations, 3.0 times the component thickness but not less than 18.0 in.

Fy = 60 KSI

FOOTING - LONGITUDINAL

$b = B_{FOOT} =$	84 IN	h = H _{FOOT} = 24.00	IN
As, _{REQ.} ≥	0.202 IN ² /FT	MAX SPACING REQ. =	12.0 IN PROV
As, _{PROV.} =	0.310 IN ² /FT	SPACING PROVIDED =	12.0 IN

STEM - LONGITUDINAL

b = b =	12 IN	h = B _{STEM} = 28.00	IN
As, _{REQ.} ≥	0.110 IN ² /FT	MAX SPACING REQ. =	18.0 IN
As, _{PROV.} =	0.310 IN ² /FT	SPACING PROVIDED =	12.0 IN

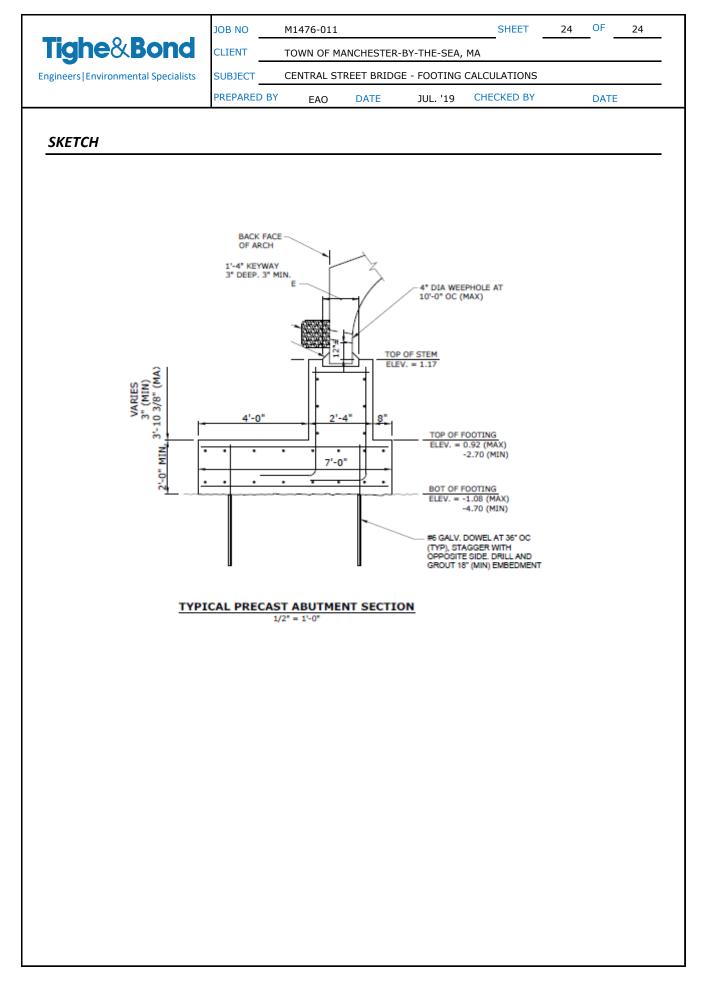
STEM - VERTICAL (FRONT FACE)

b = b = As, _{REQ.} As, _{PROV.}

	12	IN	h = B _{STEM} =	28.00	IN	
≥	0.110 IN	N ² /FT	MAX SPACING RE	EQ. =	18.0	IN
. =	0.310 IN	N ² /FT	SPACING PROVID	DED =	12.0	IN

PROVIDE:	#5	@	12 IN
		CHE	CK = OK

PROVIDE: #5 @ 12 IN			CHE	СК = ОК
	PROVIDE:	#5	@	12 IN


	CUE	ск= ок
PROVIDE: #5	@	12 IN

		JOB NO	M1476-011			SHEET	OF	24
Tighe	Bond	CLIENT	TOWN OF M	IANCHESTER	-BY-THE-SEA,	MA		
ngineers Enviror	nmental Specialists	SUBJECT	CENTRAL S	TREET BRIDO	GE - FOOTING	CALCULATIONS		
		PREPARED B	Y EAO	DATE	JUL. '19	CHECKED BY	DATE	
SHEAR CH	ЕСК							
SHEAR REINFOR	RCEMENT REQUIRED	F Vu ≥ φV _{n,CON}	CRETE					
φ _v	RESISTANCE FACTOR	R FOR SHEAR, 0.	9 FOR NORMAL	WEIGHT CO	NCRETE (5.5.4.2	2)	0.9	
V _{n,CONCRETE}	NOMINAL CONCRET	E SHEAR RESIST	ANCE(5.7.3.3) =	= MIN[0.0316	δβν(f' _c) b _v d _v ,	$0.25 f_c' b_v' d_v]$		
β	SHEAR CAPACITY FA	CTOR, CONSER	ATIVELY TAKE	N AS 2.0 (5.7.3	3.4.1)		2.0	
b _v	EFFECTIVE (MINIMU	12	IN					
d _v	EFFECTIVE SHEAR DE	EPTH, EQUAL TO	N RESULTANT					
	= MAX (I.M.A. , 0.9	9d , 0.72h) (!	5.7.2.8)					
TOE OF FOOTIN	IG							
d _v	I.M.A.	19.30	IN <<< CO	NTROLS			19.30	IN
	0.9d	17.66	IN					
	0.72h	17.28	IN					
V _{n,CONCRETE}	0.0316 β V(f' _c) b _v d _v	29.3	K/FT <<< CO	NTROLS			29.3	K/FT
	$0.25 {f'}_c b_v d_v$	231.6	K/FT					
φV _{n,CONCR}	ETE						26.3	K/FT
V _{u,TOE}							15.9	K/FT
CHECK:		r	NO SHEAR REIN	FORCEMENT	REQUIRED FOR	R TOE		
HEEL OF FOOTI	NG							
d _v	I.M.A.	18.98	IN				18.98	IN
	0.9d	17.66	IN					
	0.72h	17.28	IN					
V _{n,CONCRETE}	0.0316 $\beta v(f_c) b_v d_v$	28.8	K/FT				28.8	K/FT
	$0.25 \; f'_{c} b_{v} d_{v}$	227.7	K/FT					
$\phi V_{n,CONCR}$	ETE						25.9	K/FT
$V_{u,\text{HEEL}}$							28.6	K/FT
CHECK:			SHEAR RE	EINFORCEME	NT REQUIRED			
STENA								
<u>STEM</u> d _v	I.M.A.	22.98	IN				22.98	IN
v	0.9d	21.26	IN					•
	0.72h	20.16	IN					
V _{n CONCRETE}	0.0316 β V(f' _c) b _v d _v		K/FT				34.9	K/FT
- II,CUNCKETE	0.25 f' _c b _v d _v	275.7	K/FT				2	
φV _{n,CONCR}							31.4	K/FT
V _{u,STEM}							9.2	K/FT
CHECK:			O SHEAR REINF				-	, .

_	• -	JOB NO	M1476-011			SHEET	OF	24
Tigh	ne&Bond	CLIENT	TOWN OF M	ANCHESTER	R-BY-THE-SEA	A, MA		
	Environmental Specialists	SUBJECT	CENTRAL ST	REET BRID	GE - FOOTING	G CALCULATIONS		
		PREPARED B	Y EAO	DATE	JUL. '19	CHECKED BY	DATE	
INTER	RFACE SHEAR TRAN	ISFER - SHI	EAR FRICTI	ON (5.7	.4)			
CHECK A	T INTERFACE OF STEM AND	FOOTING						
b _{vi}	INTERFACE WIDTH ENGAG	GED IN SHEAR T	RANSFER = B _{STEN}	1			28	IN
L _{vi}	INTERFACE LENGTH ENGA	GED IN SHEAR	TRANSFER = 12"	DESIGN LEN	IGTH		12	IN/FT
A _{cv}	AREA OF CONCRETE ENGA	AGED IN INTERF	ACE SHEAR TRA	NSFER = b _{vi}	-vi		336	IN ² /F
с	COHESION FACTOR (5.7.4	.4)					0.24	
μ	FRICTION FACTOR (5.7.4.4	L)					1.0	
К1	CONCRETE STRENGTH FRA	ACTION (5.7.4.4)				0.25	
K ₂	LIMITING INTERFACE SHE	AR RESISTANCE	(5.7.4.4)				1.5	
A _{vf}	AREA OF INTERFACE SHEA	R REINFORCEN	IENT CROSSING	THE SHEAR	PLANE		0.88	IN ² /F
f _y	YIELD STRENGTH OF REIN	FORCEMENT					60	KSI
f' _c	CONCRETE COMPRESSIVE	STRENGTH = M	IIN (F'c _{stem} , F'c _{fc}	от)			4	KSI
P _c	PERMANENT NET COMPR	ESSIVE FORCE N	IORMAL TO SHE	AR PLANE =	DC STEM + SUPER +	BW	3.4	K/FT
V _{ni}	NOMINAL INTERFACE SHE	AR RESISTANCE	: (5.7.4.3-3) = c A	+ μ(A _{vf} f _v -	+ P _c)		136.9	K/FT
	$V_{ni} \le K_1 f'_c A_{cv} (5.7.4.3-4)$. ,	,	c,		336.0	K/FT
	V _{ni} ≤ K ₂ A _{cv} (5.7.4.3-5)						504.0	K/FT
φ _v	RESISTANCE FACTOR FOR	SHEAR, 0.9 FOR	NORMAI WFIG	HT CONCRE	TF (5.5.4.2)		0.90	
φV _{ni}	RESISTANCE FACTOR FOR SHEAR, 0.9 FOR NORMAL WEIGHT CONCRETE (5.5.4.2) FACTORED INTERFACE SHEAR RESISTANCE						123.2	K/FT
V	FACTORED INTERFACE SH						9.19	K/FT
V _{ui}	FACTORED INTERFACE SH	EAR FORCE					9.19	N/FI
CHECK:		SH	EAR INTERFACE	TRANSFER	ADEQUATE			
	2-Minimum Area of Inter forcement	face Shear						
	pt as provided herein, the cr			≥ 0	.280 IN ² /FT			
	terface shear reinforcement, area, A _{cv} , shall satisfy:	A_{vf} , crossing t	he A _{vf}	= 0	.880 IN ² /FT			
$A_{if} \ge \frac{0.02}{i}$	$\frac{5A_{ev}}{f_v}$	(5.7.4.2-) SHEAR I	NTERFACE /	AREA ADEQUA	TE		
where:	-							
	area of concrete considered	to be engaged	in					
i	nterface shear transfer (in. ²) area of interface shear reinf							
ť	he shear plane within the are yield stress of reinforcement	a A _{cv} (in.²)						
	not to exceed 60.0 (ksi)	. Sas acorgo vai						

Tighe&Bond		CLIENT TOWN OF MANCHESTER-BY-THE-SEA, MA SUBJECT CENTRAL STREET BRIDGE - FOOTING CALCULATIONS							
ngineer	s Environmental Specialists							D. I.T.	
		PREPARE	ED BY	EAO	DATE	JUL. '19	CHECKED BY	DATE	
DEV	ELOPMENT OF REIN	IFORCE	MEN	IT (5.10.8	.2)				
1	TENSION DEVELOPMENT	LENGTH /E	10.9.7	2 1) - MAY/ I	ک ۱۵۳۱				
l _d I _{db}	BASIC TENSION DEVELOP					_			
λ _{rl}	TOP BARS OR NEARLY HO					-		1.3	
λ _{er}	FULL YIELD STRENGTH NO								
'ei				- , s, neu. ,	3, FIOV.				
LONGI	TUDINAL FOOTING								
I_{db}	$2.4 d_b f_y / v f'_c$	45.00	IN					45.00	IN
λ_{rl}								1.30	
λ_{er}								0.65	
I _d	l _{db} λrl λer	38.16	IN	<<< CONTRO	LS			38.16	IN
	12"	12.00	IN						
							USE:	39.00	IN
							PROVI	DE 39 IN. MIN LA	AP
	TUDINAL STEM								
I _{db}	2.4 d _b f _y / √f' _c	45.00	IN					45.00	IN
λ _{rl}	2,1. 2							1.30	
λ _{er}								0.35	
l _d	l _{db} λrl λer	20.76	IN					20.76	IN
	12"	12.00	IN						
							USE:	21.00	IN
							PROVI	DE 21 IN. MIN LA	AP
VERTIC	CAL STEM								
I _{db}	$2.4 d_{b} f_{\gamma} / v f_{c}^{\prime}$	54.00	IN					54.00	IN
λ _{er}		26.24						0.68	
l _d	l _{db} λer	36.94	IN					36.94	IN
	12"	12.00	IN					27.65	
							USE:	37.00	IN
							PROVI	DE 37 IN. MIN LA	чP

_		JOB NO	M1476-011			SHEET	OF	24
lighe	& Bond	CLIENT	TOWN OF MA	NCHESTER-	BY-THE-SEA,	MA		
ngineers Envir	ronmental Specialists	SUBJECT	CALCULATIONS					
		PREPARED BY	EAO	DATE	JUL. '19	CHECKED BY	DATE	
SUMMA	RY OF CHECKS							
OVERTURNIN	G						ОК	
SLIDING *NOTE - DESIGNER MAY CONSIDER PASSIVE PRESSURE TO RESIST OUTWARD THRUST OF FRAME							ОК	
BEARING	OR CONSIDER DOW	ELS INTO BEDRO	СК				ОК	
SCOUR							ОК	
SETTLEMENT							PER GEOTEC	Ή
OVERALL STA	BILITY						PER GEOTEC	Ή
REINFORCING	: TOE OF FOOTING STR	ENGTH					ОК	
REINFORCING	: TOE OF FOOTING MIN	IIMUM					ОК	
REINFORCING	: TOE OF FOOTING CRA	CKING					ОК	
REINFORCING	E: HEEL OF FOOTING ST	RENGTH					ОК	
REINFORCING	E: HEEL OF FOOTING MI	NIMUM					ОК	
REINFORCING	E: HEEL OF FOOTING CR	ACKING					ОК	
REINFORCING	BASE OF STEM STREN	GTH					ОК	
REINFORCING	BASE OF STEM MININ	1UM					ОК	
REINFORCING	BASE OF STEM CRACK	ING					ОК	
REINFORCING	S: SHRINKAGE AND TEM	ERATURE FOOT	ING LONGITUDII	NAL			ОК	
REINFORCING	S: SHRINKAGE AND TEM	ERATURE STEM	LONGITUDINAL				ОК	
REINFORCING	S: SHRINKAGE AND TEM	ERATURE STEM	VERTICAL				ОК	
SHEAR: TOE							ОК	
SHEAR: HEEL	*NOTE - PROVI	DE SHEAR REINI	ORCEMENT DU	RING FINAL [DESIGN IF NEEI	DED	NO GOOD	
SHEAR: STEM							ОК	
SHEAR INTER	FACE TRANSFER: STEM	TO FOOTING					ОК	

 $V_{ss} = \phi_{ss} 0.07\lambda \sqrt{f_{ss}} b_{ss} d$ = (0.6)0.07(1.0)\sqrt{10}(190)(1500) = 38.0 kN

Since $0.5V_{sl}=0.5(38.0)=19.0$ kN < 150.0 kN = V_{fs} shear reinforcement is required at a spacing $s \le dl = 750$ mm, or 600 mm.

Try 10M single-legged stirrups, $f_p = 400 \text{ MPa}$

The shear reinforcement must provide a resistance of at least $V_x = V_y - V_y = 150.0 - 38.0 = 112.0$ kN

Recalling that

 $V_s = \phi_s A_s f_y d/s = 0.85(100)(400)(1500)/s = 51(10)^6/s N$ That is, $V_s = 112(10)^3 = 51.0(10)^6/s$ $s = 51(10)^6/112(10)^3 = 455 mm < 600 mm = s_{min}$

Therefore, use 10M single-legged stirrups @ 400 mm

Further from the support the spacing can be increased to the maximum of 600 mm at $V_s = 51(10)^6/600 = 85.0 \text{ kN}$ That is, $V_s = V_s + V_s = 85.0 + 38.0 = 123.0 \text{ kN}$

<u>OK</u>

Ans.

The minimum area of steel for this arrangement must be checked $A_x = 0.35 b_w s/f_y = 0.35(190)(600)/400 = 99.75 < 100 \text{ mm}^2$ OK.

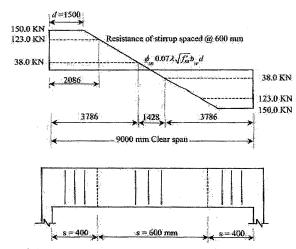


Figure 3-18 Shear Design of the Beam of Example 3-10

© 2005 Hatzinikolas & Korany

MASONRY DESIGN

Shear reinforcement is theoretically no longer required at the point where $V_f = V_w = 38.0 \text{ kN}$. However, it should be provided for a distance of at least *d* beyond that point.

Figure 3-18 shows a plot of the design shear force diagram that indicates the maximum shear force of 150.0 kN extending from the point of calculation to the support. Also shown are the values of V_c =123.0 kN corresponding to stirrups at 600 mm, and V_c = 38.0 kN corresponding to masonry shear resistance below which stirrups are not theoretically required. These values intersect the shear force diagram at distances that are easily calculated, or may be scaled if the diagram is accurately drawn to scale.

The arrangement of 10M single-legged stirrups shown in Figure 3-18 satisfies the shear requirements for the beam, and all that remains for the designer is to check that the stirrups are effectively anchored, as will be discussed in a later section.

3.5 SERVICEABILITY DESIGN

As noted in Section 1.5, the intent of the limit states design is to ensure that various limiting states are not exceeded during the reasonable life of the structure. These limiting states are *safety* (strength and stability) under specific overload, and *serviceability* (durability, stress level, cracking, deflections and vibration) under service loading. Now that safety has been covered through flexure and shear design, this section deals with serviceability requirements.

Durability is assured through selecting the appropriate materials to withstand the aggressiveness of the environment, sufficient cover on materials that can corrode, the appropriate selection and anchorage of connectors, proper construction and subsequent maintenance, all of which do not lend themselves to the type of analysis familiar to structural designers. Stress level, cracking, deflection and vibration are more quantifiable and, since they are being evaluated at service loads (linear elastic range), the analysis follows the principles of the theory of elasticity. The serviceability limit states of prime concern are deflection and crack control. Stresses at service load, where required, are readily calculated from the *transformed section analysis* discussed in the following sub-section, and vibration, as required, can be evaluated from the flexural stiffness derived from that analysis.

3.5.1 Deflection

Deflections under service load are normally calculated assuming that the materials are being stressed within the linear elastic range, and that the theory of elasticity may be applied. The deflection so calculated is of the general form

$$\delta = k \frac{wL^3}{EI}$$
 Eq. 3-26

where, w is the total uniform load on the span, L is the beam span, EI is the effective stiffness of the cross-section, and k is a factor that depends on the distribution of the load and on the support conditions. S304.1 Clause 11.4.1

© 2005 Hatzintkolas & Korany

68

69

requires the beam deflection to be checked if the span length exceeds 10 d in which case the immediate deflection due to service live load plus long-term deflection due to sustained load should not exceed L/480.

A characteristic of reinforced masonry, as of reinforced concrete, is that members in flexure generally crack in tension (an essential factor in assuring that the reinforcing steel works effectively), so there is the stiffness at the cracked sections to consider as well as the stiffness at the uncracked sections between cracks. The value of the modulus of elasticity of masonry is taken as $E_{\rm m}=850\,f_{\rm m}^{\prime}\leq 20\,000$ MPa or is obtained by testing; and the effective moment of inertia, $I_{\rm eff}$, is obtained from that of the cracked and uncracked sections,

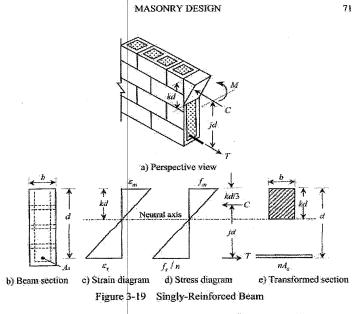
I_ and I_ respectively.

70

Where the loading is of short duration, elastic analysis gives a reasonable estimate of deflection, but an estimate of deflection under sustained load should take the effects of creep and shrinkage into account. Compressive reinforcement is known to reduce both types of deformation and thus long-term deflection. The procedure adopted by S304.1 (Clause 11.4.4) to account for the additional deflection due to creep and shrinkage and the effect of the presence of compressive steel is to multiply the immediate deflection caused by the sustained load by the factor

$$\frac{S_i}{1+50\rho'}$$
Eq. 3-27

where, $\rho' = A'_a/bd$, as before, calculated at midspan for simple and continuous spans and at the support for cantilevers.


 S_1 = time dependent factor that varies from 0.5 for loads of up to three months duration to 1.0 for loads applied for five years or more.

As was noted earlier, for tension reinforcement to be effective, tensile cracking must take place in the masonry and, once a crack starts, it is reasonable to assume that it extends to the neutral axis of the cross-section. Furthermore, if linear clastic behaviour is assumed at service loads, the situation shown in Figure 3-19 results.

Figure 3-19 shows a perspective view of a singly-reinforced multicourse masonry beam, its cross-section, the strain diagram, the stress diagram and the transformed section. Since plane sections remain plane during bending, the strain diagram is linear. It is reasonable to assume that the stress-strain relationships are linear at service loads, which leads to a linear stress diagram in which f_{w} is the maximum compressive stress in the masonry, f_{s} is the tensile stress in the steel and no tensile stress exists in the masonry.

The ratio $n = E_x/E_m$ is defined as the modular ratio, indicating that steel is *n* times as stiff as masonry. It is now convenient to consider the transformed section where the effective cracked section is converted to equivalent areas of masonry. In this case, the steel area is converted to an equivalent masonry area of nA_x , which is stressed at f_x/n . Here, it can be verified that *area* • *stress* = *force* gives the force f_xA_x at the level of steel.

© 2005 Hatzinikolas & Korany

To determine the depth to the neutral axis, *kd*, moments of the areas can be taken about the neutral axis:

$$bkd(kd)/2 = nA_s(d-kd)$$

T

Then, dividing by bd^2 and substituting ρ for A, I bd

$$0.5k^2 = n\rho(1-k)$$

The solution to this quadratic is

$$k = \sqrt{(n\rho)^2 + 2n\rho} - n\rho \qquad \qquad \text{Eq. 3-28}$$

hen
$$I_{cr} = b(kd)^3 / 3 + nA_s (d - kd)^2$$
 Eq. 3-29

If the designer wishes to calculate the stresses at service loads, this can be done as follows. Since the stress block is triangular, the resultant compressive force C is located at kd/3 and the moment arm jd is

jd = d - kd/3

The resultant compressive force is $C = 0.5 f_{w} b k d$

72

FLEXURAL MEMBERS

and the tensile force $T = A_{t}f_{x} = \rho f_{x}bd$

The moment M becomes

 $M = C jd = 0.5 f_m bkjd^2 = T jd = \rho f_r bjd^2$

and the stresses in the masonry and the steel at service load are

$$f_{w} = \frac{2M}{bkjd^{2}}$$
Eq. 3-30
$$f_{z} = \frac{M}{\rho bjd^{2}}$$
Eq. 3-31

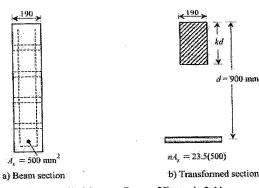
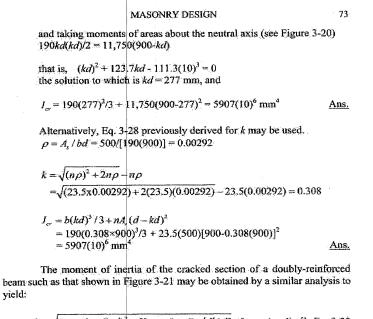


Figure 3-20 Masonry Beam of Example 3-11

EXAMPLE 3-11 A 5-course 200 mm masonry beam is reinforced with one 25M bar at an effective depth of 900 mm. If $f'_{m} = 10$ MPa, what is the moment of inertia of the cracked section?

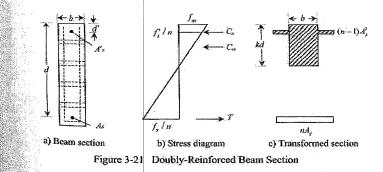

Since E_m may be taken as $850 f_m^3$ $E_m = 850(10) = 8500 \text{ MPa} < 20,000 \text{ MPa}$ and $E_s = 200(10)^3 \text{ MPa}$

Thus, the modular ratio

$$n = \frac{E_s}{E_s} = \frac{200(10)^3}{8.5(10)^3} = 23.5$$

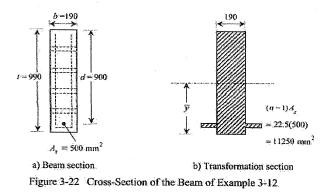
Since A_s of one 25M bar is 500 mm², the transformed area of steel is $nA_s = 23.5(500) = 11,750 \text{ mm}^2$

© 2005 Hatzinikolas & Korany



$$k = \sqrt{(n\rho + (n-1)\rho')} + 2[n\rho + (n-1)\rho'd'/d] - [n\rho + (n-1)\rho']$$
 Eq. 3-32

$$I_{ss} = b(kd)^3 / 3 + (n-1)A_s'(kd - d')^2 + nA_s(d - kd)^2$$
 Eq. 3-33


and,

OK.

The calculation of the uncracked moment of inertia, I_{o} , of reinforced sections can follow an analysis similar to that for cracked sections. However, for hand calculation, such an analysis can be unnecessarily tedious and reasonably simplifying assumptions may be made. One assumption is to use the

moment of inertia of the gross-section, $I_g = bt^3/12$, in lieu of I_o , the uncracked moment of inertia of the transformed section including reinforcement. Since for I_g the presence of steel is not taken into account, $I_g < I_o$ and deflections will be slightly overestimated. A more reasonable assumption to make is that the centroid of the section lies at the mid-depth of the cross-section, and to calculate I_o from that point. These assumptions are illustrated in the following example.

EXAMPLE 3-12 A 5-course 200 mm masonry beam is reinforced with one 25M bar at an effective depth of 900 mm. If $f'_{m} = 10$ MPa, find the moment of inertia of the gross-section, I_{r} , and the uncracked moment of inertia I_{a} .

Gross moment of inertia, I_g , $I_g = bt^3 / 12 = 190(990)^3 / 12 = 15.4(10)^9 \text{ mm}^4$ Ans.

Uncracked moment of inertia, I,

Referring to Figure 3-22 and taking moments of areas about the base, the centroid of the section is located at

Ans.

$$\overline{y} = \frac{bt^2/2 + (n-1)A_s(t-d)}{bt + (n-1)A_i}$$
$$= \frac{190(990)^2/2 + (23.5-1)(500)(990-900)}{190(990) + (23.5-1)(500)} = 472 \text{ mm}$$

$$\begin{split} &l_{\varphi} = bt^{2} / 12 + bt(t/2 - \overline{y})^{2} + (n-1)A_{s}[\overline{y} - (t-d)]^{2} \\ &= 190(990)^{3} / 12 + 190(990)(990)/2 - 472)^{2} + \\ &(23.5 - 1)(500)[472 - (990 - 900)]^{2} \end{split}$$

 $I_{o} = 17.1(10)^{9} \,\mathrm{mm}^{4}$

© 2005 Hatzinikolas & Korany

MASONRY DESIGN

As noted earlier, if the assumption is made that the centroid lies at the mid-depth of the section, that is, $\overline{y} = 990/2 = 495$ mm, the calculation simplifies to

$$\begin{split} &\Gamma_{o} \approx bt^{3} / 12 + (n-1)A_{c}(d-t/2)^{2} \\ &\approx 190(990)^{3} / 12 + (23.5-1)(500)(900-990/2)^{2} \end{split}$$

$$I_{\rm a} = 17.2(10)^{\gamma} \, {\rm mm}^{\gamma}$$
 Ans.

In this example I_g underestimates I_a by about 10%, and the approximate value is less than 1% different from the "true" value. Since deflection calculations are approximate at best, the approximation is justified.

Based on research, primarily stemming from work in reinforced concrete, the effective moment of inertia to be used in the calculation of deflection of reinforced masonry beams is obtained by combining the moments of inertia of cracked and uncracked sections as follows (Clause 11.4.3.2):

$$I_{\rm eff} = (M_{\rm er} / M_{\rm a})^3 I_{\rm a} + [1 - (M_{\rm er} / M_{\rm a})^3] I_{\rm er} < I_{\rm a}$$
 Eq. 3-34

where, $M_{cr} = \text{cracking moment} = (\phi_{cr} f_i + f_{cr})I_c / y_c$

 $f_r =$ flexural tensile strength (Table 5 of S304.1)

 $f_{\rm er} =$ unfactored axial load $PIA_{\rm er}$

 y_t = distance from centroid to extreme fibre in tension

 M_{σ} = maximum moment due to unfactored loads

and, if axial compression is also present in the beam, the bending moment resulting from the position of the axial load P relative to the centroid of the cracked section is included in the determination of I_{cr} . For the most part, of course, beams are not subjected to calculable or intentional axial load.

EXAMPLE 3-13 A 5-course 200 mm hollow block beam is reinforced with one 25M bar at an effective depth of 900 mm and is fully grouted. The beam is simply-supported at its ends over a span of 6.0 m, and carries a service dead load (including self weight) of 10 kN/m and a live load of 10 kN/m. If f_y =400

MPa, $f'_{m} = 10$ MPa, and type S mortar is used, estimate the maximum deflection.

The maximum deflection of a uniformly-loaded beam simply supported over a span L is $\delta = 5wL^4 / (384EI)$

and, for this beam

 $w = w_0 + w_L = 10.0 + 10.0 = 20.0 \text{ kN/m}$ L = 6.0 m

$$E_{\rm m} = 850 f_{\rm m}' = 8\ 500\ {\rm MPa} < 20\ 000\ {\rm MPa}$$

 $I_{gg} = (M_{\omega} / M_{a})^{3} I_{o} + [1 - (M_{\omega} / M_{a})^{3}] I_{\alpha}$

© 2005 Hatzinikolas & Korany

74

In this expression, I_{a} and I_{cc} are obtained from the previous examples $I_{a} = 17.1(10)^{9} \text{ mm}^{4}$ $I_{cc} = 5.91(10)^{9} \text{ mm}^{4}$

and $M_{vv} = (\phi_{vv}f_i + f_{vv})I_v / y_i$ $f_i = 0.65$ MPa (Table 5, S304.1), $\phi_w = 0.6$, $y_i = 472$ mm

and since there is no axial load
$$f_{\rm e} = 0.0^{\circ}$$

 $M_{cr} = [0.6(0.65) + 0.0](17.1)(10)^{9}/472 = 14.13$ kN-m and $M_{a} = (w_{D} + w_{L})L^{2}/8 = 20.0(6.0)^{2}/8 = 90.0$ kN-m

Then $I_{off} = (M_{co} / M_{a})^3 I_a + [1 - (M_{co} / M_{a})^3] I_{co}$ = $(14.13/90.0)^3 (17.1)(10)^9 + [1 - (14.13/90.0)^3](5.91)(10)^9$ = $5.95(10)^9 \text{ mm}^4$

Recalling from Eq. 3-27 that allowance must be made for creep and, since there is no compression steel, and using $S_t=1.0$ for a period longer than 5 years, the maximum expected deflection due to live load and sustained load, taken here as the dead load plus 50% of the live load, now becomes

$$\begin{split} & \mathcal{S}_{\max} = 5[1+(0.5)1.0] w_{L} L^{4} / (384 EI) + 5(1+1) w_{D} L^{4} / (384 EI) \\ & = 5(1.5)(10.0)(6000)^{4} / [384(8500)(5.95)(10)^{9}] + \\ & 5(2.0)(10.0)(6000)^{4} / [384(8500)(5.95)(10)^{9}] = 11.7 \text{ mm} \end{split}$$

Therefore, maximum deflection = 11.7 mm

Ans.

It is important that the designer keeps close track of units. In the final calculation above, units involving N and mm were used exclusively (note that 20.0 kN/m is also 20.0 N/mm) so that the final deflection is obtained in mm. It should be noted that deflection calculations are generally not as critical for beams as they are for slender walls, which are considered in detail in Chapter 5. The 11.7 mm deflection in the previous example amounts to only span/513.

3.5.2 Crack Control

Like reinforced concrete structures, masonry structures crack. Cracking may be the result of volume changes (shrinkage, creep and thermal effects), support movement, and flexural stresses. This can lead to corrosion of reinforcing steel and connectors and to the disintegration of the mortar due to freeze-thaw activity. Once mortar deterioration starts, moisture can enter more freely and the problem accelerates. Since excessive cracking can compromise strength due to corrosion and/or affect the aesthetics of masonry, a measure of control on crack width must be exercised. Cracking due to volume changes (mainly shrinkage) and support movement is an entirely different problem from cracking due to flexural stresses, one that can be controlled through the

MASONRY DESIGN

judicious use of *movement joints*, which is the subject of other discussions. This section deals with the control of cracking resulting from flexural tension.

Based on substantial research in reinforced concrete, cracking is controlled by ensuring that the quantity z does not exceed 30 kN/mm for interior exposure and 25 kN/mm for exterior exposure (Clause 11.2.6.2 of S304.1).

$$z = f_r \sqrt[3]{d_r A} (10)^{-3} < 30$$
 kN/mm for interior exposure
< 25 kN/mm for exterior exposure

In Eq. 3-35, f_i is the stress in the reinforcing steel, which can be computed directly from the analysis presented in Section 3.5.1 (see Eq. 3-31), or may be assumed as 60% $f_{\rm s}$; $d_{\rm c}$ is the cover on the tension steel measured from the

centroid of the outermost bar; and A is the area of masonry surrounding the tensile reinforcement, having the same centroid as the tensile reinforcement and divided by the number of bars. This is illustrated in Figure 3-23.

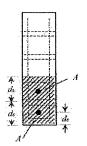


Figure 3-23 Parameters of the Crack Control Expression

These requirements have been taken directly from CSA Standard A23.3: *Design of Concrete Structures*, where the corresponding crack widths are in the order of 0.40 mm and 0.33 mm for interior and exterior exposures, respectively. S304.1 notes that in especially aggressive environments, such as in coastal regions subjected to high winds and rain, this requirement may not be sufficiently restrictive. Notwithstanding the requirements of S304.1, the reader is advised that reinforced masonry is not reinforced concrete. The maximum interior crack width limit of 0.40 mm (largely a cosmetic factor) could easily be 0.50 mm, whereas in particularly aggressive environments (wind, rain, freeze-thaw cycles) the 0.33 mm constraint should perhaps be reduced to 0.25 mm.

EXAMPLE 3-14 Considering control of cracking, is the masonry beam of the previous example adequate for an interior use?

Referring to Figure 3-24(a),

 $d_{\rm c} = 90 \ {\rm mm}$

 $A = 190(180) = 34.2(10)^3 \text{ mm}^2$

$$f_x = 0.0 f_y = 0.6(400) = 240 \text{ MP}_x$$

76

78

FLEXURAL MEMBERS

$$z = f_s \sqrt[3]{d_c} A(10)^{-3} = 240\sqrt[3]{90(34.2)(10)^3} (10)^{-3}$$

z = 34.9 kN/mm > 30.0 kN/mm

Therefore, the beam is not suitable for interior use.

To resolve this situation, the designer may choose to select two 20M bars $(A_r = 2(300) = 600 \text{ mm}^2)$, as shown in Figure 3-24(b), instead of one 25M $(A_r = 500 \text{ mm}^2)$, in which case the steel stress may be reduced to 5/6 of its former value, and A is divided by the number of bars.

NG

Ans.

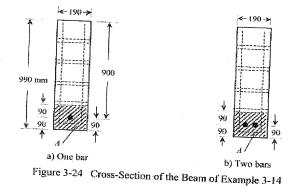
Ans.

That is, $f_r = 5(240)/6 = 200$ MPa. In that case

 $z = 200\sqrt[3]{90(34.2/2)(10)^3}(10)^{-3} = 23.1 \text{ kN/mm} \le 30 \text{ kN/mm}$

The beam now becomes suitable for interior use.

The more rigorous approach to determine the tensile stress in the steel could have been used by applying Eq. 3-31. From Example 3-11,

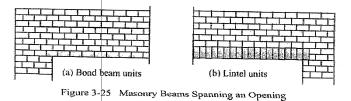

$$n = \frac{200,000}{8,500} = 23.5$$

$$\rho = \frac{A_k}{bd} = 0.00292 \text{ and } k = 0.308$$

$$j = (1 - k/3) = 0.9$$

and from Example 3-13, $M = M_a = 90$ kN-m

$$f_s = \frac{M}{\rho b j d^2} = \frac{M}{A_c j d} = \frac{90(10)^6}{500(0.9)(900)} = 222 \text{ MPa}$$


© 2005 Hatzinikolas & Korany

MASONRY DESIGN

It is clear from the previous calculations that the 60% $f_p = 240$ MPa is a very reasonable and slightly conservative estimate of f_z . For hand calculation, the use of 60% f_y would be sufficiently accurate and the complexity of calculating f_z from Eq. 3-31 can generally be avoided.

One of the difficulties with applying the S304.1 requirements is that the basic principles supporting it are rather obscure. The following explanation of crack width development is intended to make the mechanism of crack formation in reinforced masonry more understandable.

The width of flexural cracks depends on the tensile stress in the reinforcement, on the location of the bars and on the crack spacing. In reinforced concrete, the concrete is continuous and cracks form at the weak spots, generally at 100 mm to 200 mm spacing. In masonry, on the other hand, crack spacing is normally controlled by the location of the mortar joints, these being the weakest tensile component. Figure 3-25, for example, shows two alternative arrangements for the bottom course of a masonry beam spanning an opening in a wall. On side (a) 200 mm high by 400 mm long bond beam units are used and cracking may be expected to start at 400 mm high by 200 mm long lintel blocks which will lead to a 200 mm crack spacing. Flexural cracks in side (a) are likely to be about twice as wide as cracks in side (b). Generally, for outdoor exposures the use of 200 mm long lintel blocks is preferred.

The masonry, being bonded to the steel bars, will undergo an average tensile strain equal to that in the reinforcement. As the masonry can sustain very fittle tensile strain, the crack width at the level of the reinforcement will be only slightly less than the steel strain multiplied by the crack spacing. Plane sections remaining plane, the maximum crack width is related to the location of the steel relative to the neutral axis, and to the amount of cover, as shown in Figure 3-26.

Crack width at the effective depth is $\varepsilon_s s' = f_s s' / E_s$ where, s' = crack spacing. The maximum crack width, w_s , at the bottom of the beam becomes $w_c = \frac{f_s s'(t - hcl)}{E_s (d - hcl)}$

80

and this equation leads to a reasonable, although somewhat overestimated, value of the crack width. The equation also indicates the influence of crack spacing (that is, the head joint spacing) on crack width.

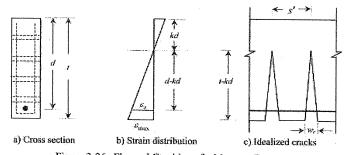


Figure 3-26 Flexural Cracking of a Masonry Beam

Given the maximum allowable stresses in the reinforcement and the head joint spacing, the maximum expected crack width at the level of the reinforcement can be readily calculated.

For example, if $f_s = 0.6 f_y = 0.6(400) = 240$ MPa and head joints are spaced at 200 mm, the maximum expected crack width at the steel location is

$$f_s s' / E_s = \frac{240(200)}{200000} = 0.24 \text{ mm}$$

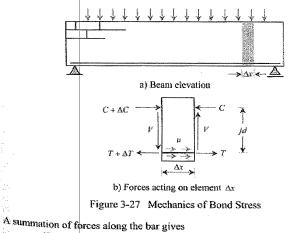
The crack control provided by satisfying the limits of the parameter z may not be sufficient to control cracking in masonry beams having a depth exceeding 600 mm. Therefore, Clause 11.2.6.3 requires that for such relatively deep beams, an intermediate reinforcement at 400 mm vertical spacing be used. A single bar 15M is required for beams less than 240 mm in width whereas two 15M bars are required for wider beams.

3.6 REINFORCEMENT REQUIREMENTS

Reinforced masonry is effective only if the reinforcement is bonded to the grout, and the grout to the masonry units. If grouting is properly carried out, the absorption by the masonry units and the large area of contact ensures an adequate grout-to-unit bond. On the other hand, the bond between reinforcement and grout is more critical, because the area of contact is comparatively small.

A shear-type *bond stress* acting along the surface of a reinforcing bat is the mechanism whereby force is transferred from grout to the bar. If the resistance to bond stress is exceeded, slip between bar and grout takes place and the reinforcing steel loses its effectiveness. Although standard deformations on the surface of normal reinforcement provide substantial resistance through the mechanical interlocking of bars with grout, the bond must be checked.

© 2005 Hatzinikolas & Korany


MASONRY DESIGN

The question of bond in beam design is largely one of performing an analytical design check. In general, the reinforcement will have been selected during the design for bending or shear, then the bar sizes and anchorage lengths are checked to ensure that the required development lengths are available. Should they not be present, then a larger number of smaller diameter bars are selected, or greater anchorage lengths, or hooks, are provided. Section 12 of S304.1, *Reinforcement: Details, Development and Splices* covers bond and development requirements, which are, for the most part, self-explanatory practical rules. A detailed treatment of this section is beyond the scope of this book.

There are two basic ways to consider bond. One is to recognize that localized bond stress is directly related to the rate of increase of the tensile force in the reinforcement of a flexural member. This is referred to as *flexural bond* stress. The other is to assume that the bond stress is uniform along the bar and to ensure that the bar has sufficient embedment length to develop the required strength. This length is referred to as the *development length*, I_d . The anchorage of the bar can be further improved through the provision of hooks at the ends of the bars.

3.6.1 Flexural Bond Stress

Figure 3-27(a) shows a beam subjected to transverse loads, and therefore to bending moments and shear forces. The forces acting on a small element of length Δx are shown in Figure 3-27(b). The change in the reinforcing bar force from a value of T to $(T + \Delta T)$ must be transmitted by the bond stress, u, acting on the contact area between the bar and grout.

 $(T + \Delta T) - T = \Delta T = \mu \sum o \Delta x$

where $\sum o$ is the summation of bar perimeters. From a consideration of equilibrium of moments,

	JOB NO	M1476-011		SHEET	1	OF	24
Tighe&Bond	CLIENT	TOWN OF MANCHES	TER-BY-THE-SEA,	MA			
ngineers Environmental Specialists	SUBJECT	SW WINGWALL (SEA	WALL) DESIGN				
	PREPARED E	BY EAO DATE	JUL. '19	CHECKED BY	-	DATE	-
PRELIMIN	NARY R	RETAINING	WALL CA	LCULAT	ION	S	
INDEX OF SHEETS							
1 TITLE SHEET							
2 ASSUMPTIONS, METHODO	DLOGY, AND M	IATERIALS					
3-6 WALL GEOMETRY & LOAD	S						
7-14 FACTORED MOMENTS AN	D FORCES & ST	TRENGTH LIMIT STATES					
15 SERVICE LIMIT STATES							
16-19 PRIMARY REINFORCING D	ESIGN <mark>N</mark>	OTE: DESIGN REINFORCI	IG DURING FINAL D	DESIGN			
20 CONTROL OF CRACKING B	Y DISTRIBUTIO	ON OF REINFORCEMENT					
21 SHRINKAGE AND TEMPER	ATURE REINFO	RCEMENT					
22 SHEAR CHECK							
23 INTERFACE SHEAR TRANS	FER						
24 DEVELOPMENT OF REINFO	DRCEMENT						
25 SUMMARY OF CHECKS							
26 SKETCH							
APPENDIX							
A PAGES FROM HATZINIKOL	AS MASONRY	DESIGN TEXTBOOK					
<u>REFERENCES</u>							
1 2012 AASHTO LRFD BRIDG	GE DESIGN SPE	CIFICATIONS, 6th EDITIO	N, WITH INTERIM R	EVISIONS			
2 2013 MASSDOT BRIDGE D	ESIGN MANUA	AL					
3 CIVIL ENGINEERING REFER	RENCE MANUA	L (LINDEBURG) 15 TH EDIT	ON				

- 5 GEOTECHNICAL EVALUATION REPORT (SEPTEMBER 26, 2018)
- 6 HYDRAULIC REPORT (OCTOBER 2018)

	JOB NO	M1476-011			SHEET	OF	24
Tighe&Bond	CLIENT	TOWN OF MANCHESTER-BY-THE-SEA, MA					
Engineers Environmental Specialists	SUBJECT	SW WINGW	ALL (SEAWA	LL) DESIGN			
	PREPARED BY	EAO	DATE	JUL. '19	CHECKED BY -	DATE	-

ASSUMPTIONS

1 ASSUME SOLID CONCRETE AND GRANITE GRAVITY WALL

METHODOLOGY

1 DESIGN IN ACCORDANCE WITH AASHTO LRFD REFERENCE 1

MATERIALS

CONCRETE:	FOOTING STRENGTH, f'c @ 28 DAYS	5000	PSI
	STEM STRENGTH, f'c @ 28 DAYS	5000	PSI
	UNIT WEIGHT, Yc	0.150	KCF
REINFORCING:	YIELD STRENGTH, Fy	60	KSI
	MODULUS OF ELASTICITY, Es	29000	KSI
	CLEAR COVER (DIRECT EXPOSURE TO SALT WATER, AASHTO TABLE 5.10.1-1)	4.00	IN
BACKFILL:	ASSUME GRAVEL BORROW FOR BRIDGE FOUNDATION (MASSDOT M1.03.0, TYPE B) <u>OR</u> I	EXISTING GRANITE W	/ALL
	SOIL UNIT WEIGHT, γ_{S} (REF 2, 3.1.6)	0.120	KCF
	INTERNAL FRICTION ANGLE, ϕ_f (GEOTECH. RECOMMENDATIONS)	32	deg.
	AT-REST EARTH PRESSURE COEFFICIENT, K_0 (GEOTECH. RECOMMENDATIONS)	0.470	
	BACKFILL ANGLE, β	0	deg.
	MIN. DEPTH OF COVER FOR FROST PROTECTION - N/A ON LEDGE	0.00	FT
	MIN. DEPTH OF COVER FOR SCOUR PROTECTION - N/A ON LEDGE	0.00	FT
SUBGRADE:	ASSUME BEDROCK (GEOTECH. RECOMMENDATIONS)		
	NOMINAL BEARING RESISTANCE, qn (GEOTECH. RECOMMENDATIONS)	200.00	KSF
	BEARING RESISTANCE FACTOR, φ_{b} (GEOTECH. RECOMMENDATIONS)	0.45	
	SLIDING RESISTANCE FACTOR, φ_t (AASHTO 11.5.5 & TABLE 11.5.7-1)	1.0	
FAÇADE:	FORMLINERS		
	UNIT WEIGHT, Yfacade (CONCRETE)	0.150	KCF
SEISMIC	ADJUSTED PEAK GROUND ACCELERATION (GEOTECH. RECOMMENDATIONS), A_{s}	0.103	g

		JOB NO	M1476-011				SHEET	OF	24
Tigh	ne&Bond	CLIENT	TOWN OF MA	NCHESTER-BY	(-THE-SEA,	, MA			
Engineers E	Environmental Specialists	SUBJECT	SW WINGWA	LL (SEAWALL)	DESIGN				
		PREPARED	BY EAO	DATE	JUL. '19	CHE	CKED BY -	DATE	
WALL	GEOMETRY								
H _{FOOT}	FOOTING THICKNESS						2.00	FT	
H _{STEM}	STEM HEIGHT						13.00	FT	
H _{BW}	BACKWALL HEIGHT						0.00	FT	_
н	TOTAL WALL HEIGHT		ELEV. 9.9	9 - ELEV4.9			15.00	FT	_
I									
B _{TOE}	TOE WIDTH						2.00	FT	
B _{HEEL}	HEEL WIDTH						6.00	FT	
B _{STEM}	STEM WIDTH						2.00	FT	_
B _{FOOT}	TOTAL FOOTING WID	TH					10.00	FT	
B _{FACADE}	FAÇADE WIDTH OVER	₹ TOE					0.167	FT	
I									
L _{WALL}	TOTAL WALL LENGTH	ļ					30.00	FT	
e _{BRG}	DIST. CL APPLIED LOA	D BEARIN	IG TO FACE OF S	STEM			0.00	FT	
B _{BW}	BACKWALL WIDTH						0.00	FT	

DEAD LOADS (DC) (3.5.1)

DETERMINE LOADS PER 1-FOOT LENGTH OF WALL

MOMENT ARMS DETERMINED FROM THE BOTTOM, TOE, OF THE FOOTING

APPLIED DEAD LOADS

NONE			
NONE		0.00	к
DCAPPLIED	(TOTAL WEIGHT) / (L _{WALL})	0.00	K/FT
TOTAL DC FRO	M APPLIED LOADS, DC _{APPLIED}	0.00	K/FT
MOMENT ARM	$1 = B_{TOE} + e_{BRG}$	2.00	FT
SELF-WEIGH1	T DEAD LOADS		
FOOTING			
$DC_{FOOT} = (B_{FOOT})$)(H _{FOOT})(Y C)	3.00	K/FT
MOMENT ARM	1 = (0.5)B _{FOOT}	5.00	FT
<u>STEM</u>			
DC _{STEM} = (B _{STEM})(H _{STEM})(¥C)	3.90	K/FT
MOMENT ARM	$1 = B_{TOE} + (0.5)B_{STEM}$	3.00	FT

	JOB NO M1	1476-011		SHEET		OF 24
Tighe&Bond	CLIENT TO	WN OF MANCH	ESTER-BY-THE-SE/	А, МА		
ngineers Environmental Specialists	SUBJECT SV	V WINGWALL (S	SEAWALL) DESIGN			
	PREPARED BY	EAO DA	JUL. '19	CHECKED BY	-	DATE -
BACKWALL						
$DC_{BW} = (B_{BW})(H_{BW})(\gamma c)$					0.00	K/FT
$MOMENT ARM = B_{TOE} + B_{STEM}$	- (0.5)B _{BW}				4.00	FT
FAÇADE						
$DC_{FAC} = (B_{FACADE})(H_{STEM})(\gamma_{FACAD})$	_E)				0.33	K/FT
MOMENT ARM = $B_{TOE} - (0.5)E$	FACADE				1.92	FT
WIND LOAD ON STRUCT	TURE (WS) (3.8	8.1.2)				
FORCES APPLIED DIRECTLY T	O WALL (3.8.1.2.	<u>3)</u>				
WIND PRESSURE (3.8.1.2.3)					0.040	KSF
D _E MINIMUM DEPTH O	F EARTH COVER (AASHTO 3.6.2	2.2) (FROST/SCO	IR)	0.00	FT
			, (,	51()		
EXPOSED HEIGHT (H _{STEM} + H _{FC}	_{DOT} - D _E)		, (,		15	FT
EXPOSED HEIGHT (H _{STEM} + H _{FC} WS _{WALL} - WIND FORCE DIREC						FT K/FT
	TLY APPLIED TO V	VALL	, (, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		15	
WS _{WALL} - WIND FORCE DIREC MOMENT ARM = H _{FOOT} + H _{STE}	TLY APPLIED TO V _M - 0.5(H _{FOOT} + H _S	VALL	, (, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		15 0.6	K/FT
WS _{WALL} - WIND FORCE DIREC	TLY APPLIED TO V _M - 0.5(H _{FOOT} + H _S 3.11.5)	VALL			15 0.6	K/FT
WS _{WALL} - WIND FORCE DIRECT MOMENT ARM = H _{FOOT} + H _{STE} EARTH PRESSURE (EH) (TLY APPLIED TO V _M - 0.5(H _{FOOT} + H _S 3.11.5)	VALL			15 0.6 7.50	K/FT
WS _{WALL} - WIND FORCE DIRECT MOMENT ARM = H _{FOOT} + H _{STE} EARTH PRESSURE (EH) (AT-REST EARTH PRESSURE CO	TLY APPLIED TO V _M - 0.5(H _{FOOT} + H _S (3.11.5) DEFFICIENT, K ₀	VALL _{TEM} - D _E)			15 0.6 7.50 0.470	K/FT FT
WS _{WALL} - WIND FORCE DIRECT MOMENT ARM = $H_{FOOT} + H_{STE}$ EARTH PRESSURE (EH) (AT-REST EARTH PRESSURE CO SOIL UNIT WEIGHT, γ_s	TLY APPLIED TO V _M - 0.5(H _{FOOT} + H _S (3.11.5) DEFFICIENT, K ₀	VALL _{TEM} - D _E)			15 0.6 7.50 0.470 0.120	K /FT FT KCF
WS _{WALL} - WIND FORCE DIRECT MOMENT ARM = $H_{FOOT} + H_{STE}$ EARTH PRESSURE (EH) (AT-REST EARTH PRESSURE CO SOIL UNIT WEIGHT, γ_s	TLY APPLIED TO V _M - 0.5(H _{FOOT} + H _S (3.11.5) DEFFICIENT, K ₀	VALL _{TEM} - D _E)			15 0.6 7.50 0.470 0.120	K /FT FT KCF
WS _{WALL} - WIND FORCE DIRECT MOMENT ARM = $H_{FOOT} + H_{STE}$ EARTH PRESSURE (EH) (AT-REST EARTH PRESSURE CC SOIL UNIT WEIGHT, γ_s HORIZONTAL EARTH PRESSUR	TLY APPLIED TO V _M - 0.5(H _{FOOT} + H _S (3.11.5) DEFFICIENT, K ₀	VALL _{TEM} - D _E)			15 0.6 7.50 0.470 0.120 6.35	K/FT FT KCF K/FT
WS _{WALL} - WIND FORCE DIRECT MOMENT ARM = $H_{FOOT} + H_{STE}$ EARTH PRESSURE (EH) (AT-REST EARTH PRESSURE CC SOIL UNIT WEIGHT, γ_s HORIZONTAL EARTH PRESSUR	TLY APPLIED TO V $_{M}$ - 0.5(H _{FOOT} + H _S 3.11.5) DEFFICIENT, K ₀ RE RESULTANT, E	VALL _{.τεΜ} - D _E) Η = 0.5K _a γ _s Η ²			15 0.6 7.50 0.470 0.120 6.35	K/FT FT KCF K/FT
WS _{WALL} - WIND FORCE DIRECT MOMENT ARM = $H_{FOOT} + H_{STE}$ EARTH PRESSURE (EH) (AT-REST EARTH PRESSURE CC SOIL UNIT WEIGHT, γ_s HORIZONTAL EARTH PRESSUR MOMENT ARM = (1/3)H	TLY APPLIED TO V M - 0.5(H _{FOOT} + H _S 3.11.5) DEFFICIENT, K ₀ RE RESULTANT, E (LS) (3.11.6.4)	VALL _{.τεΜ} - D _E) Η = 0.5K _a γ _s Η ²			15 0.6 7.50 0.470 0.120 6.35	K/FT FT KCF K/FT
WS _{WALL} - WIND FORCE DIRECT MOMENT ARM = $H_{FOOT} + H_{STE}$ EARTH PRESSURE (EH) (AT-REST EARTH PRESSURE CC SOIL UNIT WEIGHT, γ_s HORIZONTAL EARTH PRESSUR MOMENT ARM = (1/3)H LIVE LOAD SURCHARGE	TLY APPLIED TO V M - 0.5(H _{FOOT} + H _S 3.11.5) DEFFICIENT, K ₀ RE RESULTANT, E (LS) (3.11.6.4) T	VALL _{πεM} - D _E) Η = 0.5K _a γ _s H ²			15 0.6 7.50 0.470 0.120 6.35 5.00	K/FT FT KCF K/FT FT
WS _{WALL} - WIND FORCE DIRECT MOMENT ARM = $H_{FOOT} + H_{STE}$ EARTH PRESSURE (EH) (AT-REST EARTH PRESSURE CC SOIL UNIT WEIGHT, γ_s HORIZONTAL EARTH PRESSUR MOMENT ARM = (1/3)H LIVE LOAD SURCHARGE H TOTAL WALL HEIGHT h_{eq} EQUIVALENT HEIGHT	TLY APPLIED TO V $_{M}$ - 0.5(H _{FOOT} + H _S 3.11.5) DEFFICIENT, K ₀ RE RESULTANT, E (LS) (3.11.6.4) T T OF SOIL (TABLE) h _{eq} (1	VALL $T_{TEM} - D_E$) H = 0.5K _a γ_s H ²) 3.11.6.4.1) T)			15 0.6 7.50 0.470 0.120 6.35 5.00	K/FT FT KCF K/FT FT
$WS_{WALL} - WIND FORCE DIRECTMOMENT ARM = H_{FOOT} + H_{STE}$ $EARTH PRESSURE (EH) ($ AT-REST EARTH PRESSURE CC SOIL UNIT WEIGHT, γ_s HORIZONTAL EARTH PRESSUR MOMENT ARM = (1/3)H LIVE LOAD SURCHARGEH TOTAL WALL HEIGHT h_{eq} EQUIVALENT HEIGHT	TLY APPLIED TO V $_{M}$ - 0.5(H _{FOOT} + H _S 3.11.5) DEFFICIENT, K ₀ RE RESULTANT, E (LS) (3.11.6.4) T T OF SOIL (TABLE	VALL $T_{TEM} - D_E$) H = 0.5K _a γ_s H ² 3.11.6.4.1) (t)			15 0.6 7.50 0.470 0.120 6.35 5.00	K/FT FT KCF K/FT FT
$WS_{WALL} - WIND FORCE DIRECTMOMENT ARM = H_{FOOT} + H_{STEREARTH PRESSURE (EH) (AT-REST EARTH PRESSURE CCSOIL UNIT WEIGHT, \gamma_sHORIZONTAL EARTH PRESSURMOMENT ARM = (1/3)HLIVE LOAD SURCHARGEH TOTAL WALL HEIGHTheq EQUIVALENT HEIGHTMeq EQUIVALENT HEIGHT$	TLY APPLIED TO V $_{M}$ - 0.5(H _{FOOT} + H _S 3.11.5) DEFFICIENT, K ₀ RE RESULTANT, E (LS) (3.11.6.4) T T OF SOIL (TABLE) h _{ee} (1 4.0	VALL $T_{TEM} - D_E$) H = 0.5K _a γ_s H ² 3.11.6.4.1) (t)			15 0.6 7.50 0.470 0.120 6.35 5.00	K/FT FT KCF K/FT FT
$WS_{WALL} - WIND FORCE DIRECTMOMENT ARM = H_{FOOT} + H_{STEREARTH PRESSURE (EH) (AT-REST EARTH PRESSURE CCSOIL UNIT WEIGHT, \gamma_sHORIZONTAL EARTH PRESSURMOMENT ARM = (1/3)HLIVE LOAD SURCHARGEH TOTAL WALL HEIGHTheq EQUIVALENT HEIGHTheq EQUIVALENT HEIGHT$	TLY APPLIED TO V M - 0.5(H _{FOOT} + H _S 3.11.5) DEFFICIENT, K ₀ RE RESULTANT, E (LS) (3.11.6.4) T T OF SOIL (TABLE) h _{ee} (1 4.0 3.0 2.0	VALL $T_{TEM} - D_E$) H = 0.5K _a γ_s H ² 3.11.6.4.1) T_{T}	² (3.11.5.1-1)		15 0.6 7.50 0.470 0.120 6.35 5.00	K/FT FT KCF K/FT FT
WS _{WALL} - WIND FORCE DIRECT MOMENT ARM = H _{FOOT} + H _{STE} EARTH PRESSURE (EH) (AT-REST EARTH PRESSURE CC SOIL UNIT WEIGHT, $γ_s$ HORIZONTAL EARTH PRESSUR MOMENT ARM = (1/3)H LIVE LOAD SURCHARGE H TOTAL WALL HEIGHT h _{eq} EQUIVALENT HEIGHT h _{eq} EQUIVALENT HEIGHT	TLY APPLIED TO V $_{M}$ - 0.5(H _{FOOT} + H _S 3.11.5) DEFFICIENT, K ₀ RE RESULTANT, E (LS) (3.11.6.4) T T OF SOIL (TABLE) h_{eq} (1 4.0 3.0 2.0 NTAL LS EARTH PE	VALL $T_{TEM} - D_E$) H = 0.5K _a γ_s H ² 3.11.6.4.1) T_{T}	² (3.11.5.1-1)		15 0.6 7.50 0.470 0.120 6.35 5.00 15.0 2.50	K/FT FT KCF K/FT FT FT FT

	JOB NO M1	.476-011			S	HEET		OF	24
Tighe&Bond	CLIENT TO	WN OF M	ANCHESTER-I	BY-THE-SEA,	MA				
Engineers Environmental Specialists	SUBJECT SW	/ WINGW/	ALL (SEAWAL	L) DESIGN					
	PREPARED BY	EAO	DATE	JUL. '19	CHECK	ED BY	-	DATE	-
EARTHQUAKE LOAD (EQ) (3.10)									
 11.5.4.2—Extreme Ever A seismic design shall not for walls located in Seismic walls at sites where the staceleration, A_s, is less than cor more of the following is true Liquefaction induced failure, or seismical due to the presence 	ot be considered n Zones 1 through ite adjusted peal or equal to 0.4g, u ite: d lateral spreading lly induced slop of sensitive clays	3, or for k ground nless one g or slope e failure, that lose							
 strength during the impact the stability earthquake. The wall supports required, based on the or specification for the designed for see seismic performance the seismic performance 	e seismic shaki of the wall for th another structure he applicable des the supported stru- sismic loading a of the wall coul	ng, may ne design that is ign code acture, to nd poor d impact							
The no-seismic-analysis of internal and external seismic s If the wall is part of a bigg stability of the wall and slope be evaluated. These no-seismic-analysi considered applicable to wal piers for bridges.	tability design of ger slope, overall e combination sha s provisions shal	the wall. seismic ould still l not be							
ADJUSTED PEAK GROUND ACC	CELERATION (GE	OTECH. F	RECOMMEN	DATIONS),	A _s		0.103	g	

VERTICAL PRESSURE FROM DEAD LOAD OF EARTH FILL (EV) (3.5.1)

FT
FT
K/FT
FT
K/FT
FT
,

	JOB NO	M1476-011			SHEET	OF	24	
Tighe&Bond	CLIENT	TOWN OF M	ANCHESTER	-BY-THE-SEA,	MA			
Engineers Environmental Specialists	SUBJECT	SW WINGW	ALL (SEAWA	LL) DESIGN				
	PREPARED B	Y EAO	DATE	JUL. '19	CHECKED BY	- DAT	Е-	
VEHICULAR COLLISION LOAD (CT) (3.6.5)								
2 KIPS PER LINEAR FOOT, APP	LIED AT A D	ISTANCE EQU	AL TO THE	HEIGHT OF	THE RAILING/B	ARRIER		

(MASSDOT 3.3.2.4)

APPLIES TO EXTREME EVENT II LIMIT STATE

H _{BARRIER}	HEIGHT OF BARRIER	3.50	FT
СТ	BEHICULAR COLLISION FORCE	2.00	KLF
MOMENT A	$ARM = H_{BARRIER} + H$	18.50	FT

	JOB NO	M1476-011			SHEET		OF	24
Tighe&Bond	CLIENT	TOWN OF M	ANCHESTER	-BY-THE-SEA,	МА			
Engineers Environmental Specialists	SUBJECT	SW WINGW	ALL (SEAWA	LL) DESIGN				
	PREPARED BY	EAO	DATE	JUL. '19	CHECKED BY	-	DATE	-
SUMMARY OF LOADS								

SUMMARY OF LOADS

	LOAD	FORCE (K/FT)	ARM (FT)	MOMENT EFFECT (K-FT/FT)		
DC	(APPLIED)	0.00	2.00	0.00	RESISTING (+)	
DC	(FOOT)	3.00	5.00	15.00	RESISTING (+)	
DC	(STEM)	3.90	3.00	11.70 RESISTING (+)		
DC	(BW)	0.00	1.92	0.00	RESISTING (+)	
DC	(FAÇADE)	0.33	1.92	0.62	RESISTING (+)	
EV	(HEEL)	9.36	7.00	65.52	RESISTING (+)	
EV	(TOE)	0.00	1.00	0.00	RESISTING (+)	(ZERO FOR MINIMUM)
EH	(HORIZ)	6.35	5.00	31.73	OVERTURNING (-)	
LS		2.12	7.50	15.86	OVERTURNING (-)	(ZERO FOR MINIMUM)
ws	(WALL)	0.60	7.50	4.50	OVERTURNING (-)	(ZERO FOR MINIMUM)
СТ		2.00	18.50	37.00	OVERTURNING (-)	(ZERO FOR MINIMUM)

LOAD COMBINATIONS AND LOAD FACTORS (TABLES 3.4.1-1 & 3.4.1-2)

LIMIT	D	c	E	н	E	v	LS	ws	ст
STATES	MAX	MIN	МАХ	MIN	МАХ	MIN			_
STR. I	1.25	0.90	1.50	0.90	1.35	1.00	1.75	-	-
STR. II	1.25	0.90	1.50	0.90	1.35	1.00	1.35	-	-
STR. III	1.25	0.90	1.50	0.90	1.35	1.00	-	1.40	-
STR. IV	1.50	0.90	1.50	0.90	1.35	1.00	-	-	-
STR. V	1.25	0.90	1.50	0.90	1.35	1.00	1.35	0.40	-
EXTR. I	1.00	1.00	1.00	1.00	1.00	1.00	0.50	-	-
EXTR. II	1.00	1.00	1.00	1.00	1.00	1.00	0.50	-	1.00
SER. I	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.30	-
SER. II	1.00	1.00	1.00	1.00	1.00	1.00	1.30	-	-
SER. III	1.00	1.00	1.00	1.00	1.00	1.00	0.80	-	-
SER. IV	1.00	1.00	1.00	1.00	1.00	1.00	-	0.70	-

			JOB NO	M147	76-011			SHE	ET	OF 24
ligh	ne&Bo	nd a	CLIENT	TOW	N OF MANC	HESTE	R-BY-THE-S	EA, MA		
	Environmental Spe		SUBJECT	SW V	NINGWALL -	(SEAW	ALL) DESIG	N		
		F	PREPARED E	JY	EAO D	DATE	JUL. '1	9 CHECKE	DBY -	DATE -
FACTO	DRED MOM	ENTS AN	ID FORC	ES						
	{a}	{b}	{	c}	{d}		{e}	{ f }	{g}	{h}
LIMIT STATES	MAX. DRIVING MOMENT (K-FT/FT)	MIN. DRIVI MOMEN (K-FT/FT)	ING RESIS	AX. STING NT (K- /FT)	MIN. RESISTING MOMENT (K-FT/FT)	т	MAX. VERTICAL FORCE (K/FT)	MIN. VERTICAL FORCE (K/FT)	MAX. HORIZONTAL FORCE (K/FT)	MIN. HORIZONTAL FORCE (K/FT)
STR. I	75.3	28.6	12	2.6	90.1		21.7	15.9	9.5	5.7
STR. II			N/A - I	10 OWN	ER-SPECIFIE!	D SPEC	IAL DESIGN V	EHICLES (3.4.1)		
STR. III	53.9	28.6	12	2.6	90.1	Τ	21.7	15.9	10.4	5.7
STR. IV	47.6	28.6	12	9.4	90.1		23.5	15.9	9.5	5.7
STR. V	70.8	28.6	12	2.6	90.1		21.7	15.9	12.6	5.7
EXTR. I					N/#	A (11.5.	.4.2)			
EXTR. II	76.7	31.7	97	2.8	92.8		16.6	16.6	9.4	6.3
SER. I	48.9	31.7	92	2.8	92.8		16.6	16.6	8.6	6.3
SER. II				N//	A - NOT A ST	EEL STI	RUCTURE (3.4	1.1)		
SER. III SER. IV			N/A	- NOT A	PRESTRESSE	ED CON	CRETE STRUC	TURE (3.4.1)		

STRENGTH LIMIT STATES (11.5.3)

OVERTU	RNING & ECCENTRICITY LIMITS	(11.6.3.3)			
X _i	RESULTANT VERT. FORCE LOC	ATION FROM	TOE FOUNDATON ON <u>ROCK</u>		
1	1.6.3.3—Eccentricity Limits		MIN. X _i = (B _{FOOT} / 20)	0.50	FT
of the thirds F result	for foundations on soil, the location e reaction forces shall be within of the base width. For foundations on rock, the ant of the reaction forces shall be tenths of the base width.	the middle	two-	9.50	FT
		V	{MIN. RESIST. MOM} - {MAX. DRIV. MOM.}	{d} - {a}	
CASE 1	- MIN. VERT & MAX. HORIZ.	X ₁ =	{MIN. VERT FORCE}	{ f }	
	- MAX. VERT & MAX. HORIZ.	× -	{MAX. RESIST. MOM} - {MAX. DRIV. MOM.}	{c} - {a}	
CASE 2	- MAX. VERT & MAX. HURIZ.	X ₂ =	{MAX. VERT FORCE}	{e}	
	- MAX. VERT & MIN. HORIZ.	× -	{MAX. RESIST. MOM} - {MIN. DRIV. MOM.}	{c} - {b}	
CASE 3	- MAX. VERT & MIN. HORIZ.	X ₃ =	{MAX. VERT FORCE}	{e}	
0.05 ·		Y	{MIN. RESIST. MOM} - {MIN. DRIV. MOM.}	{d} - {b}	
CASE 4	- MIN. VERT & MIN. HORIZ.	$X_4 =$	{MIN. VERT FORCE}	{f}	

	<u> </u>		JOB	NO	M1476-01			SHEET	OF
ſīgh	e&E	Bond	CLIE	NT	TOWN OF	1ANCHESTER-E	BY-THE-SEA,	MA	
ngineers E	nvironment	tal Specialis	sts SUB	JECT	SW WING	ALL (SEAWALI	L) DESIGN		
			PRE	PARED BY	EAO	DATE	JUL. '19	CHECKED BY	DATE
LATERALS	LIDING (11	.6.3.6)	NOT	E: CONSIDI	ER DOWELS	NTO ROCK OR S		OOTING FOR FINAL	DESIGN
∮ R _n	FACTORED	SLIDING R	ESISTANCE	$= \phi_t V tar$	nδ (10.6.3.4	1)			
Φt	SLIDING RI	ESISTANCE	FACTOR						1.00
V	TOTAL MI	N. VERTICA	L FORCE =	COLUMN {	F}				
tan δ	COEFFICIENT OF FRICTION (SLIDING) (GEOTECH RECOMMENDATIONS)							0.70	
FS, SLIDIN	G FACTOR (OF SAFETY :	=		-	(φ _t) (tan	δ) {MIN. VER	T. FORCE}	(φt) (tan δ) {
						{M <i>I</i>	AX. HORIZ. FC	RCE}	{g}
OR LRFD	ANALYSIS, VERIFY $FS_{SLIDING} \ge 1.0$								
	REFER TO TABLE BELOW FOR FS SUDING ANALYSIS								
					<u>г </u>				
		OVERTI	URNING		SLIDING				
LIMIT STATES	<i>X</i> 1 (FT.)	X 2 (FT.)	<i>X</i> 3 (FT.)	X₄ (FT.)	FS				
STR. I	0.93	2.18	4.34	3.88	1.17				
STR. II			N/A						
STR. III	2.28	3.17	4.34	3.88	1.07				
STR. IV	2.68	3.49	4.30	3.88	1.17				
STR. V	1.22	2.39	4.34	3.88	0.88				
EXTR. I			N/A						
EXTR. II	0.98	0.98	3.69	3.69	1.23				
SER. I	2.65	2.65	3.69	3.69	1.34				
SER. II			N/A						
SER. III			N/A						
SER. IV			·						
		0.	50		1.00				
ALLOW MIN.	9.50 -								
ALLOW		9.	50						

	JOB NO	M1476-011			SHEET	OF	24
Tighe&Bond	CLIENT	TOWN OF M	MANCHESTE	R-BY-THE-SE	А, МА		
Engineers Environmental Specialists	SUBJECT	SW WINGW	VALL (SEAW	ALL) DESIGN			
	PREPARED B	Y EAO	DATE	JUL. '19	CHECKED BY -	DATE	-
BEARING RESISTANCE (11.6.3.2)	FOUNDATON	ON <u>ROCK</u>					
IF RESULTANT IS WITHIN THE MIDDI	.E 1/3 OF THE B	ASE:					
σ _{v,max} LINEARLY DISTRIBUTED, N	AAX APPLIED VE	RTICAL STRESS	6 = (∑V / B) (1	+ 6e/B) (11.	6.3.2-2)		
σ _{v,min} LINEARLY DISTRIBUTED, N	/IN APPLIED VE	RTICAL STRESS	= (∑V / B) (1	- 6e/B) (11.6	.3.2-3)		
IF RESULTANT IS OUTSIDE THE MIDE	D <u>LE 1/3 OF THE E</u>	BASE:					
σ _{v,max} LINEARLY DISTRIBUTED, N	AAX APPLIED VE	RTICAL STRESS	5 = 2∑V / 3[(B	/2)-e] (11.6.	3.2-4)		
σ _{v,min} LINEARLY DISTRIBUTED, N	/IN APPLIED VE	RTICAL STRESS	= 0 (11.6.3	.2-5)			
V APPLIED VERTICAL FORCE	= COLUMN {e}	OR {f}					
X _i RESULTANT VERT. FORCE	LOCATION FRO	M TOE.					
e _i RESULTANT VERT. FORCE	LOCATION FRO	M CENTER OF	FOOTING =	0.5) (B _{FOOT}) - (X,)		
RESULTANT IS OUTSIDE N	1IDDLE 1/3 OF B	ASE IF e	e ≤ B/6 =			1.667	FT
RESULTANT IS WITHIN M	IDDLE 1/3 OF BA	SE IF e	e > B/6 =			1.667	FT
$\phi_b q_n$ NET ALLOWABLE BEARIN	G PRESSURE (RE	FER TO SHEET	2) =	0.45 x	200.00 KSF =	90	KSF
REI	ER TO TABLE BI	LOW FOR o.	<u>ANALYSIS</u>				

						BEA	RING					
LIMIT STATES	e ₁ (FT.)	e₂ (FT.)	е _з (FT.)	e ₄ (FT.)	σ _{vmax,1} (KSF)	σ _{vmin,1} (KSF)	σ _{vmax,2} (KSF)	σ _{vmin,2} (KSF)	σ _{vmax,3} (KSF)	σ _{vmin,3} (KSF)	σ _{vmax,4} (KSF)	σ _{vmin,4} (KSF)
STR. I	4.07	2.82	0.66	1.12	15.52	0.00	6.62	0.00	3.02	1.31	3.62	0.71
STR. II						N	/A					
STR. III	2.72	1.83	0.66	1.12	6.33	0.00	4.55	0.00	3.02	1.31	3.62	0.71
STR. IV	2.32	1.51	0.70	1.12	5.84	0.00	4.48	0.22	3.34	1.36	3.92	0.77
STR. V	3.78	2.61	0.66	1.12	11.87	0.00	6.04	0.00	3.02	1.31	3.62	0.71
EXTR. I					-	N	/A		-		-	
EXTR. II	4.02	4.02	1.31	1.31	11.33	0.00	11.33	0.00	2.97	0.35	2.97	0.35
SER. I	2.35	2.35	1.31	1.31	4.18	0.00	4.18	0.00	2.97	0.35	2.97	0.35
SER. II						N	/A					
SER. III						N	/A					
SER. IV						IN,						
ALLOW MIN.			-						-			
ALLOW MAX.			-					90	.00			
OK?			-					c	Ж			

		5-011	SHEET		24
lighe & Bond	CLIENT TOWN	OF MANCHESTER-BY-THE-SEA, MA	A		
gineers Environmental Specialists	SUBJECT SW WI	INGWALL (SEAWALL) DESIGN			
	PREPARED BY E	AO DATE JUL. '19 C	CHECKED BY -	DATE	
OSS OF BASE CONTACT DUE TO EC	CCENTRIC LOADING				
11.6.3.4—Subsurface Ero	osion	10.6.1.2—Bearing Dep	pth		
For walls constructed al scour of foundation materials design, as specified in Article problem conditions are anticip measures shall be incorporated	shall be evaluated during 2.6.4.4.2. Where potential bated, adequate protective	Where the potential undermining exists, spread bear below the maximum erosion, or undermining as	l footings shall be loca anticipated depth of	ted to scour,	
		REFER TO SCOUR MEMORANDUM	и in appendix c.		
		DEPTH OF SCOUR POTENTIAL:	0	F	т
		MIN. DEPTH OF EARTH COVER (D _E	_E) 0	F	
					-T
SAFETY AGAINST STRUCTURAL FAI DESIGN REINFORCING STEEL OF INE FOR FOOTING DESIGN, DETERMINE NTERPOLATE BETWEEN σ _{vmax} AT TO	VIVIDUAL WALL ELEMENTS	CHECK: D _E > SCOUR DEPTH? 5 TO PREVENT STRUCTURAL FAILURE F RESSURE.			
DESIGN REINFORCING STEEL OF INE FOR FOOTING DESIGN, DETERMINE NTERPOLATE BETWEEN σ_{vmax} AT TO $\sigma_{v,FF}$ VERTICAL STRESS A	VIVIDUAL WALL ELEMENTS	5 TO PREVENT STRUCTURAL FAILURE F		N EFFECTS	
DESIGN REINFORCING STEEL OF INE FOR FOOTING DESIGN, DETERMINE NTERPOLATE BETWEEN σ _{vmax} AT TC σ _{v,FF} VERTICAL STRESS A	DIVIDUAL WALL ELEMENTS WORST-CASE CONTACT P DE AND σ _{vmin} AT HEEL: T BACK FACE OF STEM T FRONT FACE OF STEM	5 TO PREVENT STRUCTURAL FAILURE F RESSURE. σ _{vmax} - [Β _{TOE} (σ _{vmax} - σ _{vmin}) / Β _{FOOT}]		N EFFECTS	
DESIGN REINFORCING STEEL OF INE FOR FOOTING DESIGN, DETERMINE NTERPOLATE BETWEEN σ _{vmax} AT TO σ _{v,FF} VERTICAL STRESS A σ _{v,BF} VERTICAL STRESS A	DIVIDUAL WALL ELEMENTS WORST-CASE CONTACT P DE AND σ _{vmin} AT HEEL: T BACK FACE OF STEM T FRONT FACE OF STEM D TRAPEZOID:	TO PREVENT STRUCTURAL FAILURE F RESSURE. $\sigma_{vmax} - [B_{TOE} (\sigma_{vmax} - \sigma_{vmin}) / B_{FOOT}]$ $\sigma_{vmin} + [B_{HEEL} (\sigma_{vmax} - \sigma_{vmin}) / B_{FOOT}]$ $= \frac{b + 2a}{3(a + b)}h.$		N EFFECTS	
DESIGN REINFORCING STEEL OF INE FOR FOOTING DESIGN, DETERMINE NTERPOLATE BETWEEN σ_{vmax} AT TO $\sigma_{v,FF}$ VERTICAL STRESS A $\sigma_{v,BF}$ VERTICAL STRESS A CENTROID FOR RIGHT-ANGLEI	DIVIDUAL WALL ELEMENTS WORST-CASE CONTACT P DE AND σ _{vmin} AT HEEL: T BACK FACE OF STEM T FRONT FACE OF STEM D TRAPEZOID:	TO PREVENT STRUCTURAL FAILURE F RESSURE. $\sigma_{vmax} - [B_{TOE} (\sigma_{vmax} - \sigma_{vmin}) / B_{FOOT}]$ $\sigma_{vmin} + [B_{HEEL} (\sigma_{vmax} - \sigma_{vmin}) / B_{FOOT}]$ $= \frac{b + 2a}{3(a + b)}h.$ AND HEEL:		N EFFECTS	
DESIGN REINFORCING STEEL OF INE FOR FOOTING DESIGN, DETERMINE NTERPOLATE BETWEEN σ_{vmax} AT TO $\sigma_{v,FF}$ VERTICAL STRESS A $\sigma_{v,BF}$ VERTICAL STRESS A CENTROID FOR RIGHT-ANGLEI CALCULATE MAX RESULTANT SHEA $V_{U, TOE}$ FACTORED DESIGN	DIVIDUAL WALL ELEMENTS WORST-CASE CONTACT P DE AND σ _{vmin} AT HEEL: T BACK FACE OF STEM T FRONT FACE OF STEM D TRAPEZOID: \vec{y} R AND MOMENT ON TOE A SHEAR APPLIED TO TOE =	TO PREVENT STRUCTURAL FAILURE F RESSURE. $\sigma_{vmax} - [B_{TOE} (\sigma_{vmax} - \sigma_{vmin}) / B_{FOOT}]$ $\sigma_{vmin} + [B_{HEEL} (\sigma_{vmax} - \sigma_{vmin}) / B_{FOOT}]$ $= \frac{b + 2a}{3(a + b)}h.$ AND HEEL:	FOR MAXIMUM DESIG	N EFFECTS	
DESIGN REINFORCING STEEL OF INE FOR FOOTING DESIGN, DETERMINE NTERPOLATE BETWEEN σ_{vmax} AT TO $\sigma_{v,FF}$ VERTICAL STRESS A $\sigma_{v,BF}$ VERTICAL STRESS A CENTROID FOR RIGHT-ANGLEI CALCULATE MAX RESULTANT SHEA $V_{U, TOE}$ FACTORED DESIGN $M_{U, TOE}$ FACTORED DESIGN	DIVIDUAL WALL ELEMENTS WORST-CASE CONTACT P DE AND σ _{vmin} AT HEEL: T BACK FACE OF STEM T FRONT FACE OF STEM D TRAPEZOID: \vec{y} R AND MOMENT ON TOE A SHEAR APPLIED TO TOE =	TO PREVENT STRUCTURAL FAILURE F RESSURE. $\sigma_{vmax} - [B_{TOE} (\sigma_{vmax} - \sigma_{vmin}) / B_{FOOT}]$ $\sigma_{vmin} + [B_{HEEL} (\sigma_{vmax} - \sigma_{vmin}) / B_{FOOT}]$ $= \frac{b + 2a}{3(a + b)}h.$ AND HEEL: $0.5(\sigma_{vmax} + \sigma_{v,FF}) (B_{TOE})$ $E = (V_{u,TOE}) (\sigma_{v,FF} + 2 \sigma_{vmax}) (B_{TOE}) / (3 (a + b))$	FOR MAXIMUM DESIG	N EFFECTS	

	- 0		JOB	NO	M1476-0	11			SHEET		OF	24
lign	ext	Sond	CLI	ENT	TOWN O	F MANCHES	TER-BY-	THE-SEA, N	1A			
ngineers E	nvironment	al Specialist	s SUE	JECT	SW WING	GWALL (SEA	AWALL) D	ESIGN				
	-		PRE	PARED BY	EAC) DATE		IUL. '19	CHECKED BY	-	DATE	-
LIMIT STATES	σ _{vmax,1} (KSF)	σ _{vFF,1} (KSF)	σ _{vBF,1} (KSF)	σ _{vmin,1} (KSF)	V _{U,TOE,1} (K/FT)	M _{U,TOE,1} (K-FT/FT)	V _{U,HEEL,1} (K/FT)	M _{U,HEEL,1} (K-FT/FT)				
STR. I	15.52	12.42	9.31	0.00	27.94	28.97	27.94	55.87				
STR. II				N	/A							
STR. III	6.33	5.06	3.80	0.00	11.39	11.81	11.39	22.77				
STR. IV	5.84	4.67	3.50	0.00	10.51	10.90	10.51	21.02				
STR. V	11.87	9.49	7.12	0.00	21.36	22.15	21.36	42.72				
EXTR. I				N	/A							
EXTR. II	11.33	9.06	6.80	0.00	20.39	21.15	20.39	40.78				
SER. I	4.18	3.34	2.51	0.00	7.52	7.80	7.52	15.04				
SER. II												
SER. III				N	/A							
SER. IV												
LIMIT STATES	σ _{vmax,2} (KSF)	σ _{vFF,2} (KSF)	σ _{vBF,2} (KSF)	σ _{vmin,2} (KSF)	V _{U,TOE,2} (K/FT)	M _{U,TOE,2} (K-FT/FT)	V _{U,HEEL,2} (K/FT)	M _{U,HEEL,2} (K-FT/FT)				
STR. I	6.62	5.30	3.97	0.00	11.92	12.36	11.92	23.84				
STR. II				N	/A							
STR. III	4.55	3.64	2.73	0.00	8.20	8.50	8.20	16.40				
	4.48	3.63	2.77	0.22	8.10	8.39	8.97	19.24				
STR. IV	1.10					11.28	10.87	21.75				
STR. IV STR. V	6.04	4.83	3.62	0.00	10.87	11.20	10.07	21.75				
		4.83	3.62		10.87 /A	11.20	10.07	21.75				
STR. V		4.83 9.06	3.62 6.80			21.15	20.39	40.78				
STR. V EXTR. I	6.04			N	/A							
STR. V EXTR. I EXTR. II	6.04	9.06	6.80	N 0.00	/A 20.39	21.15	20.39	40.78				
STR. V EXTR. I EXTR. II SER. I	6.04	9.06	6.80	0.00 0.00	/A 20.39	21.15	20.39	40.78				

_	~ -		JOB	NO	M1476-0	11			SHEET		OF	24
Tigh	e&E	Sonc	CLIE	NT	TOWN OF	MANCHES	TER-BY-1	THE-SEA, N	1A			
ngineers En	vironment	al Specialis	ts SUB.	JECT	SW WING	GWALL (SE	AWALL) D	ESIGN				
			PREF	PARED BY	EAC	DATE	J	UL. '19	CHECKED BY	-	DATE	-
LIMIT STATES	σ _{vmax,3} (KSF)	σ _{vFF,3} (KSF)	σ _{vBF,3} (KSF)	σ _{vmin,3} (KSF)	V _{U,TOE,3} (K/FT)	M _{U,TOE,3} (K-FT/FT)	V _{U,HEEL,3} (K/FT)	M _{U,HEEL,3} (K-FT/FT)				
STR. I	3.02	2.68	2.34	1.31	5.70	5.82	10.94	29.75				
STR. II				N,	/A							
STR. III	3.02	2.68	2.34	1.31	5.70	5.82	10.94	29.75				
STR. IV	3.34	2.94	2.55	1.36	6.28	6.41	11.71	31.57				
STR. V	3.02	2.68	2.34	1.31	5.70	5.82	10.94	29.75				
EXTR. I				N	/A							
EXTR. II	2.97	2.44	1.92	0.35	5.41	5.58	6.81	15.72				
SER. I	2.97	2.44	1.92	0.35	5.41	5.58	6.81	15.72				
SER. II												
SER. III				N,	/A							
SER. IV												
									1			
LIMIT STATES	σ _{vmax,4} (KSF)	σ _{vFF,4} (KSF)	σ _{vBF,4} (KSF)	σ _{vmin,4} (KSF)	V _{U,TOE,4} (K/FT)	M _{U,TOE,4} (K-FT/FT)	V _{U,HEEL,4} (K/FT)	M _{U,HEEL,4} (K-FT/FT)				
			. ,		.,,							
STR. I	3.62	3.04	2.46	0.71	6.66	6.86	9.51	23.29				
STR. I STR. II				0.71				23.29				
				0.71	6.66			23.29				
STR. II	3.62	3.04	2.46	0.71 N	6.66 /A	6.86	9.51					
STR. II STR. III	3.62	3.04	2.46 2.46	0.71 N, 0.71	6.66 /A 6.66	6.86	9.51 9.51	23.29				
STR. II STR. III STR. IV	3.62 3.62 3.92	3.04 3.04 3.29	2.46 2.46 2.66	0.71 N 0.71 0.77 0.71	6.66 /A 6.66 7.22	6.86 6.86 7.43	9.51 9.51 10.30	23.29 25.23				
STR. II STR. III STR. IV STR. V	3.62 3.62 3.92	3.04 3.04 3.29	2.46 2.46 2.66	0.71 N 0.71 0.77 0.71	6.66 /A 6.66 7.22 6.66	6.86 6.86 7.43	9.51 9.51 10.30	23.29 25.23				
STR. II STR. III STR. IV STR. V EXTR. I	3.62 3.62 3.92 3.62	3.04 3.04 3.29 3.04	2.46 2.46 2.66 2.46	0.71 N, 0.71 0.77 0.71 N,	6.66 /A 6.66 7.22 6.66 /A	6.86 6.86 7.43 6.86	9.51 9.51 10.30 9.51	23.29 25.23 23.29				
STR. II STR. III STR. IV STR. V EXTR. I EXTR. II	3.62 3.62 3.92 3.62 2.97	3.04 3.04 3.29 3.04 2.44	2.46 2.46 2.66 2.46 1.92	0.71 N, 0.71 0.77 0.71 N, 0.35 0.35	6.66 /A 6.66 7.22 6.66 /A 5.41 5.41	6.86 6.86 7.43 6.86 5.58	9.51 9.51 10.30 9.51 6.81	23.29 25.23 23.29 15.72				
STR. II STR. IV STR. V EXTR. I EXTR. II SER. I	3.62 3.62 3.92 3.62 2.97	3.04 3.04 3.29 3.04 2.44	2.46 2.46 2.66 2.46 1.92	0.71 N, 0.71 0.77 0.71 N, 0.35 0.35	6.66 /A 6.66 7.22 6.66 /A 5.41	6.86 6.86 7.43 6.86 5.58	9.51 9.51 10.30 9.51 6.81	23.29 25.23 23.29 15.72				
STR. II STR. IV STR. V EXTR. I EXTR. II SER. I SER. II	3.62 3.62 3.92 3.62 2.97	3.04 3.04 3.29 3.04 2.44	2.46 2.46 2.66 2.46 1.92	0.71 N, 0.71 0.77 0.71 N, 0.35 0.35	6.66 /A 6.66 7.22 6.66 /A 5.41 5.41	6.86 6.86 7.43 6.86 5.58	9.51 9.51 10.30 9.51 6.81	23.29 25.23 23.29 15.72				
STR. II STR. IV STR. V EXTR. I EXTR. II SER. I SER. II SER. III	3.62 3.62 3.92 3.62 2.97	3.04 3.04 3.29 3.04 2.44	2.46 2.46 2.66 2.46 1.92	0.71 N, 0.71 0.77 0.71 N, 0.35 0.35	6.66 /A 6.66 7.22 6.66 /A 5.41 5.41	6.86 6.86 7.43 6.86 5.58	9.51 9.51 10.30 9.51 6.81	23.29 25.23 23.29 15.72				
STR. II STR. IV STR. V EXTR. I EXTR. II SER. I SER. II SER. III	3.62 3.62 3.92 3.62 2.97 2.97 2.97	3.04 3.04 3.29 3.04 2.44 2.44 2.44	2.46 2.46 2.46 1.92 1.92	0.71 N, 0.71 0.77 0.71 N, 0.35 0.35	6.66 /A 6.66 7.22 6.66 /A 5.41 5.41 /A	6.86 7.43 6.86 5.58 5.58	9.51 9.51 10.30 9.51 6.81	23.29 25.23 23.29 15.72				
STR. II STR. IV STR. V EXTR. I EXTR. I SER. I SER. II SER. IV <u>MAXIMUN</u> M _{U, TOE, STR.}	3.62 3.62 3.92 3.62 2.97 2.97 2.97	3.04 3.04 3.29 3.04 2.44 2.44 2.44	2.46 2.46 2.46 1.92 1.92	0.71 N 0.71 0.77 0.71 N 0.35 0.35	6.66 /A 6.66 7.22 6.66 /A 5.41 5.41 /A	6.86 7.43 6.86 5.58 5.58 5.58	9.51 9.51 10.30 9.51 6.81	23.29 25.23 23.29 15.72		28.97		-FT / FT
STR. II STR. IV STR. IV EXTR. I EXTR. II SER. II SER. II SER. IV MU, TOE, SER. MU, TOE, SER.	3.62 3.62 3.92 3.62 2.97 2.97 2.97 DESIGN E FACT FACT	3.04 3.04 3.29 3.04 2.44 2.44 2.44 SEFFECTS ORED STRE ORED SERV	2.46 2.46 2.66 2.46 1.92 1.92	0.71 N, 0.71 0.77 0.71 N, 0.35 0.35 N,	6.66 /A 6.66 7.22 6.66 /A 5.41 5.41 /A	6.86 7.43 6.86 5.58 5.58 5.58	9.51 9.51 10.30 9.51 6.81	23.29 25.23 23.29 15.72		7.80	K	-FT / FT
STR. II STR. IV STR. IV EXTR. I EXTR. II SER. II SER. II SER. IV MU, TOE, SER. VU, TOE	3.62 3.62 3.92 3.62 2.97 2.97 2.97 DESIGN E FACT FACT	3.04 3.04 3.29 3.04 2.44 2.44 2.44 3.04 2.44 2.44 2.44 2.44 3.04 3.04 3.04 3.04 3.29 3.04 3.04 3.29 3.04 3.04 3.04 3.04 3.04 3.29 3.04	2.46 2.46 2.46 1.92 1.92 1.92	0.71 N, 0.77 0.71 N, 0.35 0.35 N, IGN MOMENT APPLIED TO	6.66 /A 6.66 7.22 6.66 /A 5.41 5.41 /A /A /A	6.86 7.43 6.86 5.58 5.58 5.58	9.51 9.51 10.30 9.51 6.81 6.81	23.29 25.23 23.29 15.72		7.80 27.94	K K	-FT / FT / FT
STR. II STR. IV STR. IV EXTR. I EXTR. II SER. II SER. II SER. IV MU, TOE, STR. MU, TOE, SER.	3.62 3.62 3.92 3.62 2.97 2.97 2.97 DESIGN E FACT FACT	3.04 3.04 3.29 3.04 2.44 2.44 2.44 3.04 2.44 2.44 2.44 2.44 3.04 3.04 3.04 3.04 3.29 3.04 3.04 3.29 3.04 3.04 3.04 3.04 3.04 3.29 3.04	2.46 2.46 2.46 1.92 1.92 1.92	0.71 N, 0.77 0.71 N, 0.35 0.35 N, IGN MOMENT APPLIED TO	6.66 /A 6.66 7.22 6.66 /A 5.41 5.41 /A /A /A	6.86 7.43 6.86 5.58 5.58 5.58	9.51 9.51 10.30 9.51 6.81 6.81	23.29 25.23 23.29 15.72		7.80 27.94 55.87	K K K	-FT / FT / FT -FT / FT
STR. II STR. IV STR. IV EXTR. I EXTR. II SER. II SER. II SER. IV MU, TOE, SER. VU, TOE	3.62 3.62 3.92 3.62 2.97 2.97 2.97 DESIGN E FACT FACT FACT	3.04 3.04 3.29 3.04 2.44 2.44 2.44 3.04 2.44 2.44 2.44 2.44 3.04 3.04 3.04 3.04 3.29 3.04 3.04 3.29 3.04 3.04 3.04 3.04 3.04 3.29 3.04	2.46 2.46 2.46 1.92 1.92 1.92 :NGTH DES /ICE DESIGI GN SHEAR :NGTH DES	0.71 N, 0.71 0.77 0.71 N, 0.35 0.35 N, IGN MOME N MOMENT APPLIED TO	6.66 /A 6.66 7.22 6.66 /A 5.41 5.41 5.41 /A /A	6.86 7.43 6.86 5.58 5.58 5.58 5.58 TO TOE =	9.51 9.51 10.30 9.51 6.81 6.81	23.29 25.23 23.29 15.72		7.80 27.94	K K K	-FT / FT / FT

	JOB N	O M1	476-011			SHEET		OF	24
		т то	WN OF MA	NCHESTER-B	Y-THE-SEA,	MA			
Engineers Environmental S	ecialists SUBJE	CT SW	' WINGWA	LL (SEAWALL) DESIGN				
	PREPA	RED BY	EAO	DATE	JUL. '19	CHECKED BY	-	DATE	-
M _{U, STEM,STR.} FACTORE	D STRENGTH DESIG	N MOMENT	APPLIED TO	STEM = MA	X({a})		75.3	K	-FT / FT
M _{U, STEM, SER.} FACTORE	D SERVICE DESIGN	MOMENT AP	PLIED TO S	TEM = MAX({a})		48.9	K	-FT / FT
CONSERV	ATIVE, COULD SUB	TRACT FOOTI	NG DEPTH	FROM MOME	NT ARM				
V _{U, STEM} FACTORE	D DESIGN SHEAR A	PPLIED TO ST	EM = MA	X({g})			12.61	К	/FT

 STEP DOWN REINFORCING REQUIRED IN STEM AT SPECIFIED HEIGHT
 CONSIDER FOR FINAL DESIGN

 M_{U, STEM, STEP}
 FACTORED STRENGTH DESIGN MOMENT APPLIED TO STEM @ A STEPPED STEM HEIGHT

 H_{STEP}
 HEIGHT FROM TOP OF FOOTING TO STEP DOWN THE REINFORCING IN THE STEM

 TAKE MOMENTS ABOUT H_{STEP}

4.0 FT

	LOAD	FORCE (K/FT)	ARM (FT)	UNFACTORED MOMENT (K-FT/FT)
EH	(HORIZ)	2.28	3.00	6.85
BR		#REF!	#REF!	#REF!
LS		1.27	4.50	5.71
WS	(SUPER)	#REF!	#REF!	#REF!
ws	(WALL)	0.60	1.50	0.90
WL		#REF!	#REF!	#REF!

LIMIT STATES	MAX. DRIVING MOMENT (K-FT/FT)
STR. I	#REF!
STR. II	-
STR. III	#REF!
STR. IV	#REF!
STR. V	#REF!
EXTR. I	-
EXTR. II	-
SER. I	#REF!
SER. II	-
SER. III	-
SER. IV	-

M _{U, STEM} , STEP, STR	#REF!	K-FT / FT
M _{U, STEM} , STEP, SER	#REF!	K-FT / FT

	JOB NO	M1476-011			SHEET	OF	24
Tighe&Bond	CLIENT	TOWN OF M	ANCHESTER	-BY-THE-SEA,	МА		
Engineers Environmental Specialists	SUBJECT	SW WINGWA	ALL (SEAWAI	LL) DESIGN			
	PREPARED BY	EAO	DATE	JUL. '19	CHECKED BY -	DATE	-
SERVICE LIMIT STATES (11.5.2)						
SETTLEMENT ANALYSES (10.6.2.4)							
SEE GEOTECHNICAL REPORT							
OVERALL STABILITY (11.6.2.3)	SEE GEOTECHNIC	CAL RECOMM	IENDATIONS				
11.6.2.3—Overall Stability		C11.6	.2.3				
The overall stability of the retain slope and foundation soil or rock shall					AND AND I		
all walls using limiting equilibrium me The overall stability of temporary cut s							
construction shall also be evaluated. Sp				A A A A A A A A A A A A A A A A A A A			
testing and analyses may be requ abutments or retaining walls const		/		WAYAYAYAYAY	surface		
deposits.		/	<hr/>				
The evaluation of overall stabilit with or without a foundation unit shou		-	-				
at the Service I Load Combination and		Figure C11 Failure	.6.2.3-1—Reta	ining Wall Over	all Stability		
resistance factor. In lieu of better			C11 (2 2 1				
resistance factor, ϕ , may be taken as:					ning wall overall a slope stability		
• Where the geotechnical param	neters are well		therefore, is	considered a s	ervice limit state		
defined, and the slope does not su structural element	pport or contain a	check. The N	Iodified Bish	on simplified l	anbu or Spencer		

 Where the geotechnical parameters are based on limited information, or the slope contains or supports a structural element0.65 methods of analysis may be used. Soft soil deposits may be subject to consolidation and/or lateral flow which could result in unacceptable long-term settlements or horizontal movements.

With regard to selection of a resistance factor for evaluation of overall stability of walls, examples of

		JOB NO	M1476-01	1			SHE	ET _		OF	24
lighe	& Bond	CLIENT	TOWN OF	MANCHE	STER-BY-THE-	SEA,	MA				
ngineers Enviro	onmental Specialists	SUBJECT	SW WING	WALL (SE	EAWALL) DESIG	GN					
		PREPARED BY	ÉAO	DAT	E JUL.	'19	CHECKEI	DBY -		DATE	-
	REINFORCING				IG						
	PRIMARY REINFORCIN	G DUE TO BEAR	ING PRESSU	RE							
STRENGTH DE											
CRITERIA		C = 0.85	= * f' ~ * ~ * h		Ev.	_	60	KSI	Acl	JNKOWN	
	EQ. 1 a = [Fy / (0.85 *)		=	5.0	KSI			
	EQ. 1 a – [Fy / (0.65	TC DJ]AS				_	12	IN	d U	NKOWN	
CRITERIA		MENT < FACTOF		AL RESISTA	-	-	12	IIN			
CATENIA		= φ * As * Fy (=	0.90	(AASH)	0554	.2.1)	
	EQ. 2 As = Mu / (ϕ * 1		uj		Ψ CLR. CVR		4.00	IN	5 5.5.4		
		, , , , , , , , , , , , , , , , , , , ,				. =	24.00	IN			
				ASSL	IMED BAR DIAN		0.75	IN			
SOLVE SY	STEM OF EQUATIONS	TO SOLVE FOR #	As required		b	=	19.63	IN			
	0.40 0.331			_							-
	0.39 0.331	As_req =	0.331				PROVIDE	#6	@	12 IN	
	0.39 0.331	As_prov =	= 0.440	IN ² /FT			LONGITU	DINAL, B	OTTOM	, INT	
	0.39 0.331	CHECK:	ОК				BAR DIAN	/1 =	0.75	IN	
							d =		19.63	IN	
Mr = φ	• * Mn = φ * As * Fy (d	-0.5a) = 4	60.1 =	38.3	K-FT/FT		a =		0.52	IN	
		(5,7,2,2,2)									
DAIMINATINA DE.	INFORCEMENT CHECK	(3.7.3.3.2)									
	REATER THAN THE LES	SER OF (Mcr) A	ND (1 33 Mu)							
Mr SHALL BE G	GREATER THAN THE LES) MPOSITE N/A)	= y, v	r₁ fr Sc				
Mr SHALL BE G M _{cr}	CRACKING MOMENT	(5.7.3.3.2-1 NO	TE PRESTRE	SSED & CC						0.67	
Mr SHALL BE G		(5.7.3.3.2-1 NO STRENGTH TO	DTE PRESTRE	SSED & CC	RENGTH (A615,	GRA	DE 60)			0.67	
Mr SHALL BE G M _{cr} ¥3	CRACKING MOMENT RATIO OF MIN. YIELE	(5.7.3.3.2-1 NO STRENGTH TO S VARIABILITY FA	DTE PRESTRE ULTIMATE T ACTOR: 1.2 F	SSED & CC	RENGTH (A615,	GRA	DE 60)				KSI
Mr SHALL BE G M _{cr} Y ₃ Y ₁	CRACKING MOMENT RATIO OF MIN. YIELE FLEXURAL CRACKING	(5.7.3.3.2-1 NO 9 STRENGTH TO 6 VARIABILITY FA JRE (5.4.2.6) = 0	DTE PRESTRE ULTIMATE T ACTOR: 1.2 F	SSED & CC	RENGTH (A615,	GRA	DE 60)			1.2	KSI IN ³
Mr SHALL BE G M _{cr} Y3 Y1 f _r	CRACKING MOMENT RATIO OF MIN. YIELE FLEXURAL CRACKING MODULUS OF RUPTU	(5.7.3.3.2-1 NO) (5.7.3.3.2-1 NO) (5.7	DTE PRESTRE ULTIMATE T ACTOR: 1.2 F .20 Vf' _c	SSED & CC ENSILE ST OR PRECA	RENGTH (A615,	GRAI	DE 60) RS (C.I.P.)	=		1.2 0.447	IN ³
Mr SHALL BE G M _{cr} Y3 Y1 f _r	CRACKING MOMENT RATIO OF MIN. YIELE FLEXURAL CRACKING MODULUS OF RUPTU	(5.7.3.3.2-1 NO) (5.7.3.3.2-1 NO) (5.7	DTE PRESTRE ULTIMATE T ACTOR: 1.2 F .20 Vf' _c	SSED & CC ENSILE ST OR PRECA	RENGTH (A615, ST OR 1.6 FOR C	GRAI	DE 60) RS (C.I.P.)		_	1.2 0.447 1152	IN ³ K-FT/
Mr SHALL BE G M _{cr} Y3 Y1 f _r	CRACKING MOMENT RATIO OF MIN. YIELE FLEXURAL CRACKING MODULUS OF RUPTU	(5.7.3.3.2-1 NO) (5.7.3.3.2-1 NO) (5.7	DTE PRESTRE ULTIMATE T ACTOR: 1.2 F .20 Vf' _c	SSED & CC ENSILE ST	RENGTH (A615, ST OR 1.6 FOR C	GRAI	DE 60) RS (C.I.P.) M _{cr}			1.2 0.447 1152 34.5	

	Dond	JOB NO	M1476-0				SHE	-EI		OF	
Tighe &I		CLIENT			ESTER-BY-THE-		MA				
ngineers Environmer	ntal Specialists	SUBJECT	SW WIN	GWALL (S	EAWALL) DESI	GN					
		PREPARED BY	EAC	D DA	TE JUL.	'19	CHECKE	DBY .	-	DATE	-
PRIMARY REI					-						
STRENGTH DESIGN				TINESSONE							
CRITERIA 1:	TENSION = CON	MPRESSION									
		C = 0.8	5 * f'c * a *	b	Fv	=	60	KSI	As L	JNKOWN	
EQ. :	1 a = [Fy / (0.85 *			-		=	5.0	KSI		NKOWN	
					b	=	12	IN			
CRITERIA 2:	FACTORED MO	MENT < FACTO	RED FLEXUF	RAL RESIST	ANCE						
	Mu >	ι = φ * As * Fy	d - 0.5 a)		ф	=	0.90	(AASH	ITO 5.5.4	.2.1)	
EQ. 2	2 As = Mu / (φ *	Fy * (d - 0.5 a))			CLR. CVR	R. =	4.00	IN			
					h	=	24.00	IN			
				ASSI	UMED BAR DIAN	1. =	0.75	IN			
SOLVE SYSTEM	1 OF EQUATIONS	TO SOLVE FOR A	As_required	ł	d	=	19.63	IN			
1	M _{U, HEEL} = <u>a As_req</u> 1.00 0.649	55.87 K-F	T/FT =	670.5	K-IN/FT						
	a As_req	55.87 K-F			K-IN/FT						_
C	a As_req 1.00 0.649	55.87 K-F - As_req =	0.645	IN ² /FT	K-IN/FT		PROVIDE	: #6	5 @	6 IN]
C	a As_req 1.00 0.649 0.76 0.645	-	0.645		K-IN/FT		PROVIDE		-]
	a As_req 1.00 0.649 0.76 0.645 0.76 0.645	- As_req =	0.645	IN ² /FT	K-IN/FT			DINAL,	-		
	a As_req 1.00 0.649 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645	- As_req = As_prov CHECK:	0.645 = 0.880 ОК	IN ² /FT IN ² /FT			LONGITU	DINAL,	BOTTOM 0.75 19.63	, INT IN IN	
	a As_req 1.00 0.649 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645	- As_req = As_prov CHECK:	0.645 = 0.880	IN ² /FT	K-IN/FT K-FT/FT		LONGITU BAR DIAN	DINAL,	BOTTOM 0.75	, INT IN	
α α Ω Μr = φ*Μn	aAs_req1.00 0.649 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645	– As_req = As_prov CHECK: I - 0.5 a) = 9	0.645 = 0.880 ОК	IN ² /FT IN ² /FT			LONGITU BAR DIAN d =	DINAL,	BOTTOM 0.75 19.63	, INT IN IN	
ο ο Ο Μr = φ*Μn <u>MINIMUM REINFOF</u>	a As_req 1.00 0.649 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645		0.645 = 0.880 OK 08.0 =	IN ² /FT IN ² /FT 75.7			LONGITU BAR DIAN d =	DINAL,	BOTTOM 0.75 19.63	, INT IN IN	
$Mr = \Phi * Mn$ $Mr SHALL BE GREAT$	a As_req 1.00 0.649 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645	- As_req = As_prov CHECK: I - 0.5 a) = 9 (5.7.3.3.2) SSER OF (Mcr) A	0.645 = 0.880 OK 08.0 = ND (1.33 M	IN ² /FT IN ² /FT 75.7 Iu)	K-FT/FT	= ¥2	LONGITU BAR DIAN d = a =	DINAL,	BOTTOM 0.75 19.63	, INT IN IN	
$Mr = \phi * Mn$ $Mr SHALL BE GREAT$ $M_{cr} CRA$	a As_req 1.00 0.649 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645	As_req = As_prov CHECK: I - 0.5 a) = 9 (5.7.3.3.2) SSER OF (Mcr) A	0.645 = 0.880 OK 08.0 = ND (1.33 M DTE PRESTR	IN ² /FT IN ² /FT 75.7 Iu) ESSED & CO	K-FT/FT OMPOSITE N/A)		LONGITU BAR DIAN d = a =	DINAL,	BOTTOM 0.75 19.63	, INT IN IN	
$Mr = \phi * Mn$ $Mr SHALL BE GREAT$ $M_{cr} CRA$ $Y_3 RAT$	a As_req 1.00 0.649 0.76 0.645 <td>As_req = As_prov CHECK: I - 0.5 a) = 9 (5.7.3.3.2) SSER OF (Mcr) A (5.7.3.3.2-1 NC D STRENGTH TO</td> <td>0.645 = 0.880 OK 08.0 = ND (1.33 M DTE PRESTR ULTIMATE</td> <td>IN²/FT IN²/FT 75.7 Iu) ESSED & CO TENSILE ST</td> <td>K-FT/FT OMPOSITE N/A) FRENGTH (A615,</td> <td>GRAD</td> <td>LONGITU BAR DIAN d = a = 1 f_r S_c DE 60)</td> <td>DINAL,</td> <td>BOTTOM 0.75 19.63</td> <td>, INT IN IN</td> <td></td>	As_req = As_prov CHECK: I - 0.5 a) = 9 (5.7.3.3.2) SSER OF (Mcr) A (5.7.3.3.2-1 NC D STRENGTH TO	0.645 = 0.880 OK 08.0 = ND (1.33 M DTE PRESTR ULTIMATE	IN ² /FT IN ² /FT 75.7 Iu) ESSED & CO TENSILE ST	K-FT/FT OMPOSITE N/A) FRENGTH (A615,	GRAD	LONGITU BAR DIAN d = a = 1 f _r S _c DE 60)	DINAL,	BOTTOM 0.75 19.63	, INT IN IN	
$Mr = \phi * Mn$ $Mr SHALL BE GREAT$ $M_{cr} CRA$ $Y_3 RAT$ $Y_1 FLEZ$	a As_req 1.00 0.649 0.76 0.645 0.76 0.76 0.76 0.76	As_req = As_prov CHECK: I - 0.5 a) = 9 (5.7.3.3.2) SSER OF (Mcr) A (5.7.3.3.2-1 NC O STRENGTH TO 5 VARIABILITY F/	0.645 = 0.880 OK 08.0 = ND (1.33 M DTE PRESTR ULTIMATE ACTOR: 1.2	IN ² /FT IN ² /FT 75.7 Iu) ESSED & CO TENSILE ST	K-FT/FT OMPOSITE N/A) FRENGTH (A615,	GRAD	LONGITU BAR DIAN d = a = 1 f _r S _c DE 60)	DINAL,	BOTTOM 0.75 19.63	, INT IN IN IN	KSI
$Mr = \phi * Mn$ $Mr SHALL BE GREAT$ $M_{cr} CRA$ $Y_3 RAT$ $Y_1 FLE2$ $f_r MO$	a As_req 1.00 0.649 0.76 0.645 0.645 0.645 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645 0.76 0.645 </td <td>As_req = As_prov CHECK: I - 0.5 a) = 9 (5.7.3.3.2) SSER OF (Mcr) A (5.7.3.3.2-1 NC D STRENGTH TO S VARIABILITY F, JRE (5.4.2.6) = 0</td> <td>0.645 = 0.880 OK 08.0 = ND (1.33 M DTE PRESTR ULTIMATE ACTOR: 1.2 0.20 vf'c</td> <td>IN²/FT IN²/FT 75.7 Iu) ESSED & CO TENSILE ST</td> <td>K-FT/FT OMPOSITE N/A) FRENGTH (A615,</td> <td>GRAD</td> <td>LONGITU BAR DIAN d = a = 1 f_r S_c DE 60)</td> <td>DINAL,</td> <td>BOTTOM 0.75 19.63</td> <td>, INT IN IN IN 0.67 1.2</td> <td>KSI IN³</td>	As_req = As_prov CHECK: I - 0.5 a) = 9 (5.7.3.3.2) SSER OF (Mcr) A (5.7.3.3.2-1 NC D STRENGTH TO S VARIABILITY F, JRE (5.4.2.6) = 0	0.645 = 0.880 OK 08.0 = ND (1.33 M DTE PRESTR ULTIMATE ACTOR: 1.2 0.20 vf'c	IN ² /FT IN ² /FT 75.7 Iu) ESSED & CO TENSILE ST	K-FT/FT OMPOSITE N/A) FRENGTH (A615,	GRAD	LONGITU BAR DIAN d = a = 1 f _r S _c DE 60)	DINAL,	BOTTOM 0.75 19.63	, INT IN IN IN 0.67 1.2	KSI IN ³
$Mr = \phi * Mn$ $MiNIMUM REINFOF$ $Mr SHALL BE GREAT$ $M_{cr} CRA$ $Y_3 RAT$ $Y_1 FLE2$ $f_r MO$	a As_req 1.00 0.649 0.76 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 <td>As_req = As_prov CHECK: 1 - 0.5 a = 9 (5.7.3.3.2) SSER OF (Mcr) A (5.7.3.3.2-1 NC D STRENGTH TO G VARIABILITY F/ JRE (5.4.2.6) = 0 = b H_{FOOT}²/6 =</td> <td>0.645 = 0.880 OK 08.0 = ND (1.33 M DTE PRESTR ULTIMATE ACTOR: 1.2 0.20 vf'c</td> <td>IN²/FT IN²/FT 75.7 Iu) ESSED & CO TENSILE ST FOR PRECA</td> <td>K-FT/FT OMPOSITE N/A) FRENGTH (A615,</td> <td>GRAE</td> <td>LONGITU BAR DIAN d = a = 1 f_r S_c DE 60) RS (C.I.P.)</td> <td>DINAL,</td> <td>BOTTOM 0.75 19.63</td> <td>, INT IN IN IN 0.67 1.2 0.447</td> <td>IN³</td>	As_req = As_prov CHECK: 1 - 0.5 a = 9 (5.7.3.3.2) SSER OF (Mcr) A (5.7.3.3.2-1 NC D STRENGTH TO G VARIABILITY F/ JRE (5.4.2.6) = 0 = b H _{FOOT} ² /6 =	0.645 = 0.880 OK 08.0 = ND (1.33 M DTE PRESTR ULTIMATE ACTOR: 1.2 0.20 vf'c	IN ² /FT IN ² /FT 75.7 Iu) ESSED & CO TENSILE ST FOR PRECA	K-FT/FT OMPOSITE N/A) FRENGTH (A615,	GRAE	LONGITU BAR DIAN d = a = 1 f _r S _c DE 60) RS (C.I.P.)	DINAL,	BOTTOM 0.75 19.63	, INT IN IN IN 0.67 1.2 0.447	IN ³
$Mr = \phi * Mn$ $MiNIMUM REINFOF$ $Mr SHALL BE GREAT$ $M_{cr} CRA$ $Y_3 RAT$ $Y_1 FLE2$ $f_r MO$	a As_req 1.00 0.649 0.76 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 <td>As_req = As_prov CHECK: 1 - 0.5 a = 9 (5.7.3.3.2) SSER OF (Mcr) A (5.7.3.3.2-1 NC D STRENGTH TO G VARIABILITY F/ JRE (5.4.2.6) = 0 = b H_{FOOT}²/6 =</td> <td>0.645 = 0.880 OK 08.0 = ND (1.33 M DTE PRESTR ULTIMATE ACTOR: 1.2 0.20 vf'c</td> <td>IN²/FT IN²/FT 75.7 Iu) ESSED & CO TENSILE ST FOR PRECA</td> <td>K-FT/FT OMPOSITE N/A) FRENGTH (A615, AST OR 1.6 FOR 0</td> <td>GRAE</td> <td>LONGITU BAR DIAN d = a = 1 f_r S_c DE 60) RS (C.I.P.)</td> <td>DINAL, /Ι = -</td> <td>BOTTOM 0.75 19.63</td> <td>, INT IN IN IN 0.67 1.2 0.447 1152</td> <td>IN³ K-FT/</td>	As_req = As_prov CHECK: 1 - 0.5 a = 9 (5.7.3.3.2) SSER OF (Mcr) A (5.7.3.3.2-1 NC D STRENGTH TO G VARIABILITY F/ JRE (5.4.2.6) = 0 = b H _{FOOT} ² /6 =	0.645 = 0.880 OK 08.0 = ND (1.33 M DTE PRESTR ULTIMATE ACTOR: 1.2 0.20 vf'c	IN ² /FT IN ² /FT 75.7 Iu) ESSED & CO TENSILE ST FOR PRECA	K-FT/FT OMPOSITE N/A) FRENGTH (A615, AST OR 1.6 FOR 0	GRAE	LONGITU BAR DIAN d = a = 1 f _r S _c DE 60) RS (C.I.P.)	DINAL, /Ι = -	BOTTOM 0.75 19.63	, INT IN IN IN 0.67 1.2 0.447 1152	IN ³ K-FT/
$Mr = \phi * Mn$ $MiNIMUM REINFOF$ $Mr SHALL BE GREAT$ $M_{cr} CRA$ $Y_3 RAT$ $Y_1 FLE2$ $f_r MO$	a As_req 1.00 0.649 0.76 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 0.645 <td>As_req = As_prov CHECK: 1 - 0.5 a = 9 (5.7.3.3.2) SSER OF (Mcr) A (5.7.3.3.2-1 NC D STRENGTH TO G VARIABILITY F/ JRE (5.4.2.6) = 0 = b H_{FOOT}²/6 =</td> <td>0.645 = 0.880 OK 08.0 = ND (1.33 M DTE PRESTR ULTIMATE ACTOR: 1.2 0.20 vf'c</td> <td>IN²/FT IN²/FT 75.7 Iu) ESSED & CO TENSILE ST FOR PRECA</td> <td>K-FT/FT OMPOSITE N/A) FRENGTH (A615, AST OR 1.6 FOR 0</td> <td>GRAE</td> <td>LONGITU BAR DIAN d = a = 1 f_r S_c DE 60) RS (C.I.P.)</td> <td>DINAL, <i>Ι</i> = = = =</td> <td>BOTTOM 0.75 19.63 1.04</td> <td>, INT IN IN IN 0.67 1.2 0.447 1152 34.5</td> <td></td>	As_req = As_prov CHECK: 1 - 0.5 a = 9 (5.7.3.3.2) SSER OF (Mcr) A (5.7.3.3.2-1 NC D STRENGTH TO G VARIABILITY F/ JRE (5.4.2.6) = 0 = b H _{FOOT} ² /6 =	0.645 = 0.880 OK 08.0 = ND (1.33 M DTE PRESTR ULTIMATE ACTOR: 1.2 0.20 vf'c	IN ² /FT IN ² /FT 75.7 Iu) ESSED & CO TENSILE ST FOR PRECA	K-FT/FT OMPOSITE N/A) FRENGTH (A615, AST OR 1.6 FOR 0	GRAE	LONGITU BAR DIAN d = a = 1 f _r S _c DE 60) RS (C.I.P.)	DINAL, <i>Ι</i> = = = =	BOTTOM 0.75 19.63 1.04	, INT IN IN IN 0.67 1.2 0.447 1152 34.5	

		JOB NO	M1476-011			SH	EET _		OF	24
Igne	Bond	CLIENT	TOWN OF M	ANCHESTER-BY-TH	IE-SEA	, MA				
igineers Enviro	nmental Specialists	SUBJECT	SW WINGW	ALL (SEAWALL) DE	SIGN					
		PREPARED BY	EAO	DATE JU	L. '19	CHECKE	DBY -		DATE	-
	REINFORCING				-					
STRENGTH DES										
CRITERIA		MPRESSION								
	T = As * Fy	C = 0.85	*f'c*a*b		Fy =	60	KSI	As l	JNKOWN	
	EQ. 1 a = [Fy / (0.85 *	ʻ f'c * b)] As		1	f'c =	5.0	KSI	a U	NKOWN	
	•			I	b =	12	IN			
CRITERIA	2: FACTORED MO	MENT < FACTOR	ED FLEXURAL	RESISTANCE						
	Mu > ф*Мл	= φ * As * Fy (d - 0.5 a)		ф =	0.90	(AASH	TO 5.5.4	.2.1)	
	EQ. 2 As = Mu / (φ *	Fy * (d - 0.5 a))		CLR. C	: . =	4.00	IN			
				I	h =	24.00	IN			
				ASSUMED BAR DI	AM. =	0.75	IN			
SOLVE SYS	STEM OF EQUATIONS	TO SOLVE FOR A	s_required		d =	19.63	IN			
	1.000.8751.030.876									
	1.03 0.876	As_req =	0.876 IN	l²/FT		PROVIDE	: #7	@	6 IN	
	1.03 0.876	As_prov =	= 1.200 IN	l²/FT		LONGITU	DINAL, E	воттом	I, INT	
	1.03 0.876	CHECK:	ОК			BAR DIAN	- N	0.875	IN	
						d =		19.56	IN	
$Mr = \phi$	* Mn = ф * As * Fy (d	l - 0.5 a) = 12	21.9 =	101.8 K-FT/FT		a =		1.41	IN	
	NFORCEMENT CHECK									
	CRACKING MOMENT				A)	, fc				
M _{cr}	CRACKING MOMENT								0.67	
	RATIO OF MIN. YIELD								0.67 1.2	
¥3			C 1011. 1.2 I UF						0.447	KSI
Yı	FLEXURAL CRACKING								0.447	1.51
¥ı f _r	MODULUS OF RUPTU	JRE FOR CRACKI	NG MOMENT	(5.4.2.0) – 0.20 VI _c					1152	IN ³
Yı		JRE FOR CRACKI = $b B_{STEM}^2/6 =$		· · · ·	W >>>	• M _{cr}	=		1152 34.5	IN ³ K-FT
¥ı f _r	MODULUS OF RUPTU	JRE FOR CRACKI = $b B_{STEM}^2/6 =$		MPARE TO Mr BELO	W >>>					K-FT
¥ı f _r	MODULUS OF RUPTU	JRE FOR CRACKI = $b B_{STEM}^2/6 =$		· · · ·	W >>>	M _{cr} <u>1.33 M_{u,S}</u> Mr		:	34.5	

	0.0	JOB NO	M1476-01	.1			SHE	ET		OF	24
Igne	&Bond	CLIENT	TOWN OF	MANCHE	STER-BY-THE-	SEA,	MA				
ngineers Enviro	onmental Specialists	SUBJECT	SW WING	WALL (SE	EAWALL) DESI	GN					
		PREPARED BY	EAO	DAT	E JUL.	'19	CHECKE	OBY -		DATE	-
	REINFORCING				-	ΡΟΙ	NT)		4.0	FT	
STRENGTH DE			HUNIZUNI	AL LUADS	AT STEP POINT		ISTE	р —	4.0	ΓI	
CRITERIA		MPRESSION									
Chirlen		C = 0.85	*f'c*a*b	1	Fv	=	60	KSI	Asl	JNKOWN	
	EQ. 1 a = [Fy / (0.85 *					=	5.0	KSI		NKOWN	
						=	12	IN			
CRITERIA	2: FACTORED MO	MENT < FACTOR	ED FLEXURA	L RESISTA	NCE						
	Mu > φ*Mn	= φ * As * Fy (c	l - 0.5 a)		ф	=	0.90	(AASHT	0 5.5.4	.2.1)	
	EQ. 2 As = Mu / (φ *				CLR. CVR	. =	4.00	IN		-	
					h	=	24.00	IN			
				ASSU	IMED BAR DIAN	1. =	0.75	IN			
SOLVE SY	STEM OF EQUATIONS	TO SOLVE FOR A	s_required		d	=	19.63	IN			
	1.00 #REF! #REF! #REF!										
	#REF! #REF!	As_req =	#REF!	IN ² /FT			PROVIDE	#5	@	12 IN	
	#REF! #REF!	As_prov =	0.310	IN ² /FT			LONGITU	DINAL, B	оттом	, INT	
	#REF! #REF!	CHECK:	#REF!				BAR DIAN	/1 =	0.625	IN	
							DAN DIAN				
							d =		19.69	IN	
Mr = φ	• * Mn = φ * As * Fy (c	l - 0.5 a) = 32	6.5 =	27.2	K-FT/FT				19.69 0.36	IN IN	
Mr = φ	* Mn = φ * As * Fy (c	l - 0.5 a) = 32	6.5 =	27.2	K-FT/FT		d =				
	* Mn = φ * As * Fy (c INFORCEMENT CHECK		:6.5 =	27.2	K-FT/FT		d =				
<u>MINIMUM RE</u> Mr SHALL BE G	INFORCEMENT CHECK	<u>(5.7.3.3.2)</u> SSER OF (Mcr) AN	ID (1.33 Mu)			d = a =				
<u>MINIMUM RE</u> Mr SHALL BE G M _{cr}	INFORCEMENT CHECK SREATER THAN THE LES CRACKING MOMENT	<mark>(5.7.3.3.2)</mark> SSER OF (Mcr) AN (5.7.3.3.2-1 NO	ID (1.33 Mu FE PRESTRE) SSED & CC	DMPOSITE N/A)		d = a = .f _r S _c			IN	
<u>MINIMUM RE</u> Mr SHALL BE G M _{cr} ¥3	INFORCEMENT CHECK GREATER THAN THE LES CRACKING MOMENT RATIO OF MIN. YIELL	<mark>(5.7.3.3.2)</mark> SSER OF (Mcr) AN (5.7.3.3.2-1 NO ⁻ O STRENGTH TO U	ID (1.33 Mu TE PRESTRE JLTIMATE T) SSED & CC ENSILE STI	DMPOSITE N/A) RENGTH (A615,	GRAD	d = a = . f _r S _c E 60)			IN 0.67	
<u>MINIMUM RE</u> Mr SHALL BE G M _{cr} Y ₃ Y ₁	INFORCEMENT CHECK GREATER THAN THE LES CRACKING MOMENT RATIO OF MIN. YIELE FLEXURAL CRACKING	(5.7.3.3.2) SSER OF (Mcr) AN (5.7.3.3.2-1 NO O STRENGTH TO U G VARIABILITY FA	ID (1.33 Mu TE PRESTRE JLTIMATE T CTOR: 1.2 F) SSED & CC ENSILE STI OR PRECA	DMPOSITE N/A) RENGTH (A615, ST OR 1.6 FOR (GRAD	d = a = . f _r S _c E 60)			IN 0.67 1.2	
<u>MINIMUM RE</u> Mr SHALL BE G M _{cr} Y3 Y1 f _r	INFORCEMENT CHECK GREATER THAN THE LES CRACKING MOMENT RATIO OF MIN. YIELD FLEXURAL CRACKING MODULUS OF RUPTI	(5.7.3.3.2) SSER OF (Mcr) AN (5.7.3.3.2-1 NO O STRENGTH TO U O VARIABILITY FA JRE FOR CRACKII	ID (1.33 Mu TE PRESTRE JLTIMATE T CTOR: 1.2 F) SSED & CC ENSILE STI OR PRECA	DMPOSITE N/A) RENGTH (A615, ST OR 1.6 FOR (GRAD	d = a = . f _r S _c E 60)			IN 0.67 1.2 0.447	KSI
<u>MINIMUM RE</u> Mr SHALL BE G M _{cr} Y ₃ Y ₁	INFORCEMENT CHECK GREATER THAN THE LES CRACKING MOMENT RATIO OF MIN. YIELE FLEXURAL CRACKING	(5.7.3.3.2) SSER OF (Mcr) AN (5.7.3.3.2-1 NO O STRENGTH TO U O VARIABILITY FA JRE FOR CRACKII	ID (1.33 Mu TE PRESTRE JLTIMATE T CTOR: 1.2 F) SSED & CC ENSILE STI OR PRECA	DMPOSITE N/A) RENGTH (A615, ST OR 1.6 FOR (GRAD	d = a = . f _r S _c E 60) S (C.I.P.)			IN 0.67 1.2 0.447 1152	IN ³
<u>MINIMUM RE</u> Mr SHALL BE G M _{cr} Y3 Y1 f _r	INFORCEMENT CHECK GREATER THAN THE LES CRACKING MOMENT RATIO OF MIN. YIELD FLEXURAL CRACKING MODULUS OF RUPTI	(5.7.3.3.2) SSER OF (Mcr) AN (5.7.3.3.2-1 NO O STRENGTH TO U O VARIABILITY FA JRE FOR CRACKII	ID (1.33 Mu TE PRESTRE JLTIMATE T CTOR: 1.2 F) SSED & CC ENSILE STI OR PRECA	DMPOSITE N/A) RENGTH (A615, ST OR 1.6 FOR (GRAD DTHER	d = a = f _r S _c E 60) S (C.I.P.)	=		IN 0.67 1.2 0.447 1152 34.5	IN ³ K-FT,
<u>MINIMUM RE</u> Mr SHALL BE G M _{cr} Y3 Y1 f _r	INFORCEMENT CHECK GREATER THAN THE LES CRACKING MOMENT RATIO OF MIN. YIELD FLEXURAL CRACKING MODULUS OF RUPTI	(5.7.3.3.2) SSER OF (Mcr) AN (5.7.3.3.2-1 NO O STRENGTH TO U O VARIABILITY FA JRE FOR CRACKII	ID (1.33 Mu TE PRESTRE JLTIMATE T CTOR: 1.2 F) SSED & CC ENSILE STI OR PRECA	DMPOSITE N/A) RENGTH (A615, ST OR 1.6 FOR (GRAD DTHER	d = a = . f _r S _c E 60) S (C.I.P.)			IN 0.67 1.2 0.447 1152	IN ³

	JOB NO	M1476-011			SHEET		OF	24	
Tighe&Bond	CLIENT	TOWN OF MA	ANCHESTER	-BY-THE-SEA,	MA				
Engineers Environmental Specialists	SUBJECT	SW WINGWA	ALL (SEAWAI	L) DESIGN					
	PREPARED BY	EAO	DATE	JUL. '19	CHECKED BY	-	DATE	-	

CONTROL OF CRACKING BY DISTRIBUTION OF REINFORCEMENT

AASHTO 5.7.3.4 - CONTROL OF CRACKING BY DISTRIBUTION OF REINFORCEMENT TO BE CHECKED SINCE ELEMENTS DESIGNED IN ACCORDANCE WITH THE APPROXIMATE METHOD, NOT THE EMPERICAL DESIGN METHOD (9.7.2)

The spacing s of mild steel reinforcement in the layer closest to the tension face shall satisfy the following:

$$s \leq \frac{700\gamma_e}{\beta_z f_z} - 2d_c \qquad (5.7.3.4-1)$$

in which:

b (IN.)

Es (KSI)

Ec (KSI)

 $A_{s, PROV}(IN^2)$

M_{u, SER} (K-FT/FT)

- d_c = thickness of concrete cover measured from extreme tension fiber to center of the flexural reinforcement located closest thereto (in.)
- f_{ss} = tensile stress in steel reinforcement at the service limit state (ksi)
- h = overall thickness or depth of the component (in.)
- d_{ℓ} = distance from the extreme compression fiber to the centroid of extreme tension steel element (in.)

Ec = 1820 √f'c (AASHTO C5.4.2.4-1)

REFER TO REFERENCE 4 FOR CALCULATING TENSILE STRESS IN STEEL REINFORCEMENT AT THE SERVICE LEVEL

 $\rho = As_prov / bd \qquad k = \sqrt{[(n\rho)^2 + 2n\rho]} - n\rho \qquad fs = Mserv / (As_prov * j * d)$ $n = Es / Ec \qquad j = 1 - k/3$

TOE OF FOOTING

ρ=	0.001868	n =	7.13	k =	0.150		j =	0.950	fs =	11.41	KSI	β ₁ =	1.318
	s ≤	37.80	IN	s_prov	v =	12	IN					СНЕСК	= ОК
<u>HEEL OF F</u>	OOTING												
ρ=	0.003737	n =	7.13	k =	0.206		j =	0.931	fs =	11.73	KSI	β ₁ =	1.318
	s ≤	36.52	IN	s_prov	v =	6	IN					СНЕСК	= ОК
<u>STEM (BA</u>	<u>SE)</u>												
ρ=	0.005112	n =	7.13	k =	0.236		j =	0.921	fs =	27.15	KSI	β ₁ =	1.324
	s ≤	10.60	IN	s_prov	v =	6	IN					СНЕСК	= ОК
<u>STEM (ST</u>	EPPED)												
ρ=	0.001312	n =	7.13	k =	0.128		j =	0.957	fs =	#REF!	KSI	β ₁ =	1.315
	s ≤	#REF!	IN	s_prov	v =	12	IN					СНЕСК	= ###

Class 1 exposure condition applies when cracks can be tolerated due to reduced concerns of appearance and/or corrosion. Class 2 exposure condition applies to transverse design of segmental concrete box girders for any loads applied prior to attaining full nominal concrete strength and when there is increased concern of appearance and/or corrosion.

0.44

7.80

12.00

29000

4069.644 4069.644 4069.644 4069.644

1.2

48.94

0.31

#REF!

0.88

15.72

	JOB NO	M1476-011			SHEET	OF	24
Tighe&Bond	CLIENT	TOWN OF M	ANCHESTER	-BY-THE-SEA,	MA		
Engineers Environmental Specialists	SUBJECT	SW WINGW	ALL (SEAWA	LL) DESIGN			
	PREPARED BY	EAO	DATE	JUL. '19	CHECKED BY -	DATE	-

SHRINKAGE AND TEMPERATURE REINFORCEMENT

5.10.8—Shrinkage and Temperature Reinforcement

Reinforcement for shrinkage and temperature stresses shall be provided near surfaces of concrete exposed to daily temperature changes and in structural mass concrete. Temperature and shrinkage reinforcement to ensure that the total reinforcement on exposed surfaces is not less than that specified herein.

Reinforcement for shrinkage and temperature may be in the form of bars, welded wire fabric, or prestressing tendons.

For bars or welded wire fabric, the area of reinforcement per foot, on each face and in each direction, shall satisfy:

4 > 1.30bh	(5.10.8-1)
$A_s \ge \frac{11500h}{2(b+h)f_y}$	

$$0.11 \le A_s \le 0.60$$
 (5.10.8-2)

where:

- A_5 = area of reinforcement in each direction and each face (in.2/ft)
- b = least width of component section (in.)
- h = least thickness of component section (in.)
- $f_y =$ specified yield strength of reinforcing bars ≤75 ksi

Where the least dimension varies along the length of wall, footing, or other component, multiple sections should be examined to represent the average condition at each section. Spacing shall not exceed:

3.0 times the component thickness, or 18.0 in.

Fy = 60 KSI

FOOTING - LONGITUDINAL

$b = B_{FOOT} =$	120 IN	$h = H_{FOOT} = 24.00$	IN
As, _{REQ.} ≥	0.217 IN ² /FT	MAX SPACING REQ. =	18.0 IN
As, _{PROV.} =	0.310 IN ² /FT	SPACING PROVIDED =	12.0 IN

STEM - LONGITUDINAL

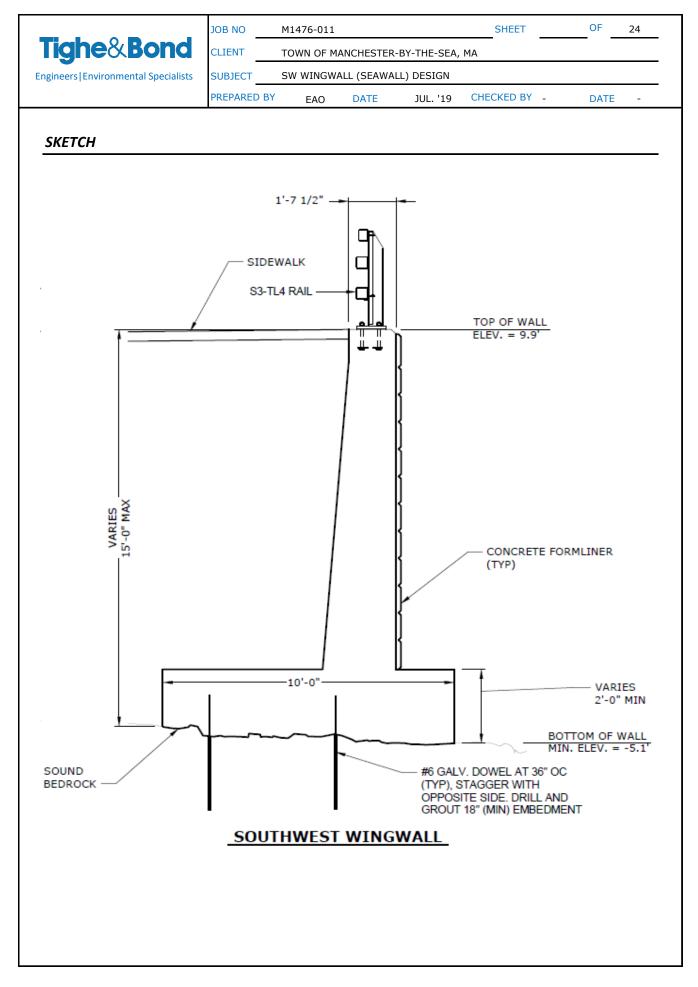
b = b =		12 IN	h = B _{STEM} =	24.00	IN	
As, _{REQ.} ≥	0.110	IN ² /FT	MAX SPACING RE	Q. =	18.0	IN
As, _{PROV.} =	0.310	IN ² /FT	SPACING PROVID	ED =	12.0	IN

STEM - VERTICAL (FRONT FACE)

b = b =	12 IN	h = B _{STEM} = 24.00	IN
As, _{REQ.} ≥	0.110 IN ² /FT	MAX SPACING REQ. =	18.0 IN
As, _{PROV.} =	0.310 IN ² /FT	SPACING PROVIDED =	12.0 IN

PROVIDE: #5 @ 12 IN			CHE	ск = ок
	PROVIDE:	#5	@	12 IN

PROVIDE: #5 @ 12 IN			CHE	ск= ок
	PROVIDE:	#5	@	12 IN


		JOB NO	M1476-011			SHEET	OF	24
Tighe	Bond	CLIENT	TOWN OF M	ANCHESTER	-BY-THE-SEA,	MA		
	mental Specialists	SUBJECT	SW WINGW	ALL (SEAWA	LL) DESIGN			
		PREPARED B	Y EAO	DATE	JUL. '19	CHECKED BY _	DATE	-
SHEAR CH	ЕСК							
SHEAR REINFOR	CEMENT REQUIRED	IF Vu ≥ φV _{n,CON}	CRETE					
φ _v	RESISTANCE FACTOR	R FOR SHEAR, 0	.9 FOR NORMAL	WEIGHT COM	ICRETE (5.5.4.2	1)	0.9	
V _{n,CONCRETE}	NOMINAL CONCRET	E SHEAR RESIST	ANCE(5.8.3.3-3) = MIN[0.03	16 β ν(f' _c) b _v d _v	, 0.25 $f'_{c} b_{v} d_{v}$]		
β	SHEAR CAPACITY FA	CTOR, CONSER	VATIVELY TAKE	N AS 2.0 (5.8.3	8.4.1)		2.0	
b _v	EFFECTIVE (MINIMU	IM) WEB WIDTH	H (5.8.2.9), USE	12" DESIGN W	/IDTH		12	IN
d _v	EFFECTIVE SHEAR D	EPTH, EQUAL T	O INTERNAL MC	MENT ARM B	ETWEEN TENSI	ON & COMPRESSION	RESULTANT	
	= MAX (I.M.A. , 0.9	9d , 0.72h) (5.8.2.9)					
TOE OF FOOTIN	<u>G</u>							
d_v	I.M.A.	19.37	IN <<< CO	NTROLS			19.37	IN
	0.9d	17.66	IN					
	0.72h	17.28	IN					
V _{n,CONCRETE}	0.0316 $\beta v(f_c) b_v d_v$	32.8	K/FT <<< CO	NTROLS			32.8	K/FT
	$0.25 {\rm f'_c} {\rm b_v} {\rm d_v}$	290.5	K/FT					
φV _{n,CONCRE}	TE						29.6	K/F1
V _{u,TOE}							27.9	K/F1
CHECK:		1	NO SHEAR REIN	FORCEMENT	REQUIRED FOR	TOE		
HEEL OF FOOTII	NG							
d _v	I.M.A.	19.11	IN				19.11	IN
	0.9d	17.66	IN					
	0.72h	17.28	IN					
V _{n,CONCRETE}	0.0316 $\beta v(f_c) b_v d_v$	32.4	K/FT				32.4	K/F1
	$0.25 {f'}_c b_v d_v$	286.6	K/FT					
φV _{n,CONCRE}	TE						29.2	K/F1
$V_{u,HEEL}$							27.9	K/F1
CHECK:		Ν	IO SHEAR REINI	ORCEMENT	REQUIRED FOR	HEEL		
<u>STEM</u>								
d _v	I.M.A.	18.86	IN				18.86	IN
	0.9d	17.61	IN					
	0.72h	17.28	IN					
	0.0316 $\beta v(f_c) b_v d_v$	32.0	K/FT				32.0	K/F1
	$0.25 f_c^{\prime} b_v^{\prime} d_v^{\prime}$	282.8	K/FT					
φV _{n,CONCRE}	TE						28.8	K/F1
$V_{u,STEM}$							12.6	K/FT
CHECK:		N	O SHEAR REINF		EQUIRED FOR	STEM		

24 12 288 0.24 1.0 0.25	IN IN/FT IN ² /FT
12 288 0.24 1.0 0.25	IN/FT
12 288 0.24 1.0 0.25	IN/FT
288 0.24 1.0 0.25	
0.24 1.0 0.25	IN ² /FT
1.0 0.25	
0.25	
1 5	
1.5	
1.2	IN ² /FT
60	KSI
5	KSI
3.9	K/FT
145.0	K/FT
360.0	K/FT
432.0	K/FT
0.9	
130.5	K/FT
12.61	K/FT
	3.9 145.0 360.0 432.0 0.9 130.5

I YI	ne&Bond	CLIENT		FOWN OF MA	ANCHESTER	-BY-THE-SEA,	MA		
ngineers	Environmental Specialists	SUBJEC	г	SW WINGWA	LL (SEAWA	LL) DESIGN			
		PREPAR	ED BY	EAO	DATE	JUL. '19	CHECKED BY -	DATE	-
DEVE	LOPMENT OF REIN	IFORCE	MEN	IT (5.11.2)					
l _d	TENSION DEVELOPMENT								
l _{db}	BASIC TENSION DEVELOP					X(1.25 A _b f _y / √f'	_c , 0.40 d _b f _y)		
MOD ₁	TOP BARS OR NEARLY HC							1.4	
MOD ₂	FULL YIELD STRENGTH NO	DT MET (5.1	11.2.1.	3) = A _{s, REQ.} / A _s ,	PROV.				
LONGITU	JDINAL FOOTING								
I _{db}	1.25 $A_b f_y / V f'_c$	10.40	IN					15.00	IN
	$0.40 \ d_b \ f_y$	15.00	IN	<<< CONTROL	S				
MOD ₂								0.70	
l _d	$\rm I_{db}\ MOD_1\ MOD_2$	14.68	IN	<<< CONTROL	S			14.68	IN
	12"	12.00	IN						
							USE:	15.00	IN
							PROVID	E 15 IN. MIN LA	₽
	J DINAL STEM 1.25 A _b f _v / √f' _c	10.40						15.00	
l _{db}		10.40 15.00	IN		c			15.00	IN
	$0.40 \text{ d}_{\text{b}} \text{ f}_{\text{y}}$	15.00	IN	<<< CONTROL	.5			0.25	
MOD ₂		7 45						0.35	
l _d	I _{db} MOD ₁ MOD ₂	7.45	IN					12.00	IN
	12"	12.00	IN						
							USE:	12.00	IN
							PROVID	E 12 IN. MIN LA	AР
VERTICA	L STEM								
I _{db}	$1.25 A_{b} f_{y} / V f'_{c}$	20.12	IN					21.00	IN
	$0.40 d_b f_y$	21.00	IN						
MOD ₂								0.73	
I _d	I _{db} MOD ₂	15.33	IN					15.33	IN
	12"	12.00	IN						
							USE:	16.00	IN
							PROVID	E 16 IN. MIN LA	AP

	JOB NO	M1476-011			SHEET	OF 24	
Tighe&Bond	CLIENT	TOWN OF M	ANCHESTER-	BY-THE-SEA,	MA		
ngineers Environmental Specialists	SUBJECT	SW WINGW	ALL (SEAWAL	L) DESIGN			
	PREPARED BY	EAO	DATE	JUL. '19	CHECKED BY	- DATE -	
SUMMARY OF CHECKS							
						01	
						OK	
						OK	
SLIDING NOTE: CONSIDER DO	DWELS INTO RO	CK FOR FINAL I	DESIGN			NO GOOD	
BEARING						ОК	
SCOUR						ОК	
SETTLEMENT						PER GEOTECH	
OVERALL STABILITY						PER GEOTECH	
REINFORCING: TOE OF FOOTING STR	ENGTH					ОК	
REINFORCING: TOE OF FOOTING MIN	IIMUM					ОК	
REINFORCING: TOE OF FOOTING CRA	CKING					ОК	
REINFORCING: HEEL OF FOOTING ST	RENGTH					ОК	
REINFORCING: HEEL OF FOOTING MI	NIMUM					ОК	
REINFORCING: HEEL OF FOOTING CR	ACKING					ОК	
REINFORCING: BASE OF STEM STREN	GTH					ОК	
REINFORCING: BASE OF STEM MININ	1UM					ОК	
REINFORCING: BASE OF STEM CRACK	ING					ОК	
REINFORCING: TOP OF STEM STRENG	БТН					#REF!	
REINFORCING: TOP OF STEM MINIM	UM					#REF!	
REINFORCING: TOP OF STEM CRACKI	NG					#REF!	
REINFORCING: SHRINKAGE AND TEM	IERATURE FOOTI	NG LONGITUD	INAL			ОК	
REINFORCING: SHRINKAGE AND TEM	IERATURE STEM	LONGITUDINA	L			ОК	
REINFORCING: SHRINKAGE AND TEM	IERATURE STEM	VERTICAL				ОК	
SHEAR: TOE						ОК	
SHEAR: HEEL						ОК	
						011	
SHEAR: STEM						OK	

NOTE: DESIGN REINFORCING FOR FINAL DESIGN

 $V_{ss} = \phi_{ss} 0.07\lambda \sqrt{f_{ss}} b_{ss} d$ = (0.6)0.07(1.0)\sqrt{10}(190)(1500) = 38.0 kN

Since $0.5V_{sl}=0.5(38.0)=19.0$ kN < 150.0 kN = V_{fs} shear reinforcement is required at a spacing $s \le dl = 750$ mm, or 600 mm.

Try 10M single-legged stirrups, $f_p = 400 \text{ MPa}$

The shear reinforcement must provide a resistance of at least $V_x = V_y - V_y = 150.0 - 38.0 = 112.0$ kN

Recalling that

 $V_s = \phi_s A_s f_y d/s = 0.85(100)(400)(1500)/s = 51(10)^6/s N$ That is, $V_s = 112(10)^3 = 51.0(10)^6/s$ $s = 51(10)^6/112(10)^3 = 455 mm < 600 mm = s_{min}$

Therefore, use 10M single-legged stirrups @ 400 mm

Further from the support the spacing can be increased to the maximum of 600 mm at $V_s = 51(10)^6/600 = 85.0 \text{ kN}$ That is, $V_s = V_s + V_s = 85.0 + 38.0 = 123.0 \text{ kN}$

<u>OK</u>

Ans.

The minimum area of steel for this arrangement must be checked $A_x = 0.35 b_w s/f_y = 0.35(190)(600)/400 = 99.75 < 100 \text{ mm}^2$ OK.

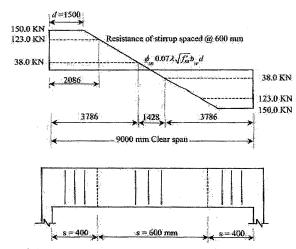


Figure 3-18 Shear Design of the Beam of Example 3-10

© 2005 Hatzinikolas & Korany

MASONRY DESIGN

Shear reinforcement is theoretically no longer required at the point where $V_f = V_w = 38.0 \text{ kN}$. However, it should be provided for a distance of at least *d* beyond that point.

Figure 3-18 shows a plot of the design shear force diagram that indicates the maximum shear force of 150.0 kN extending from the point of calculation to the support. Also shown are the values of V_c =123.0 kN corresponding to stirrups at 600 mm, and V_c = 38.0 kN corresponding to masonry shear resistance below which stirrups are not theoretically required. These values intersect the shear force diagram at distances that are easily calculated, or may be scaled if the diagram is accurately drawn to scale.

The arrangement of 10M single-legged stirrups shown in Figure 3-18 satisfies the shear requirements for the beam, and all that remains for the designer is to check that the stirrups are effectively anchored, as will be discussed in a later section.

3.5 SERVICEABILITY DESIGN

As noted in Section 1.5, the intent of the limit states design is to ensure that various limiting states are not exceeded during the reasonable life of the structure. These limiting states are *safety* (strength and stability) under specific overload, and *serviceability* (durability, stress level, cracking, deflections and vibration) under service loading. Now that safety has been covered through flexure and shear design, this section deals with serviceability requirements.

Durability is assured through selecting the appropriate materials to withstand the aggressiveness of the environment, sufficient cover on materials that can corrode, the appropriate selection and anchorage of connectors, proper construction and subsequent maintenance, all of which do not lend themselves to the type of analysis familiar to structural designers. Stress level, cracking, deflection and vibration are more quantifiable and, since they are being evaluated at service loads (linear elastic range), the analysis follows the principles of the theory of elasticity. The serviceability limit states of prime concern are deflection and crack control. Stresses at service load, where required, are readily calculated from the *transformed section analysis* discussed in the following sub-section, and vibration, as required, can be evaluated from the flexural stiffness derived from that analysis.

3.5.1 Deflection

Deflections under service load are normally calculated assuming that the materials are being stressed within the linear elastic range, and that the theory of elasticity may be applied. The deflection so calculated is of the general form

$$\delta = k \frac{wL^3}{EI}$$
 Eq. 3-26

where, w is the total uniform load on the span, L is the beam span, EI is the effective stiffness of the cross-section, and k is a factor that depends on the distribution of the load and on the support conditions. S304.1 Clause 11.4.1

© 2005 Hatzintkolas & Korany

68

69

requires the beam deflection to be checked if the span length exceeds 10 d in which case the immediate deflection due to service live load plus long-term deflection due to sustained load should not exceed L/480.

A characteristic of reinforced masonry, as of reinforced concrete, is that members in flexure generally crack in tension (an essential factor in assuring that the reinforcing steel works effectively), so there is the stiffness at the cracked sections to consider as well as the stiffness at the uncracked sections between cracks. The value of the modulus of elasticity of masonry is taken as $E_{\rm m}=850\,f_{\rm m}^{\prime}\leq 20\,000$ MPa or is obtained by testing; and the effective moment of inertia, $I_{\rm eff}$, is obtained from that of the cracked and uncracked sections,

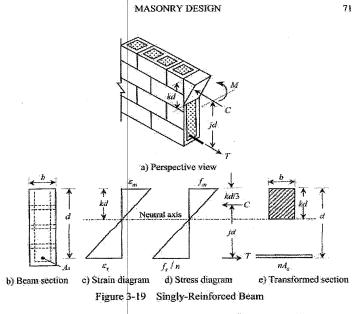
I_ and I_ respectively.

70

Where the loading is of short duration, elastic analysis gives a reasonable estimate of deflection, but an estimate of deflection under sustained load should take the effects of creep and shrinkage into account. Compressive reinforcement is known to reduce both types of deformation and thus long-term deflection. The procedure adopted by S304.1 (Clause 11.4.4) to account for the additional deflection due to creep and shrinkage and the effect of the presence of compressive steel is to multiply the immediate deflection caused by the sustained load by the factor

$$\frac{S_i}{1+50\rho'}$$
Eq. 3-27

where, $\rho' = A'_a/bd$, as before, calculated at midspan for simple and continuous spans and at the support for cantilevers.


 S_1 = time dependent factor that varies from 0.5 for loads of up to three months duration to 1.0 for loads applied for five years or more.

As was noted earlier, for tension reinforcement to be effective, tensile cracking must take place in the masonry and, once a crack starts, it is reasonable to assume that it extends to the neutral axis of the cross-section. Furthermore, if linear clastic behaviour is assumed at service loads, the situation shown in Figure 3-19 results.

Figure 3-19 shows a perspective view of a singly-reinforced multicourse masonry beam, its cross-section, the strain diagram, the stress diagram and the transformed section. Since plane sections remain plane during bending, the strain diagram is linear. It is reasonable to assume that the stress-strain relationships are linear at service loads, which leads to a linear stress diagram in which f_{w} is the maximum compressive stress in the masonry, f_{s} is the tensile stress in the steel and no tensile stress exists in the masonry.

The ratio $n = E_x/E_m$ is defined as the modular ratio, indicating that steel is *n* times as stiff as masonry. It is now convenient to consider the transformed section where the effective cracked section is converted to equivalent areas of masonry. In this case, the steel area is converted to an equivalent masonry area of nA_x , which is stressed at f_x/n . Here, it can be verified that *area* • *stress* = *force* gives the force f_xA_x at the level of steel.

© 2005 Hatzinikolas & Korany

To determine the depth to the neutral axis, *kd*, moments of the areas can be taken about the neutral axis:

$$bkd(kd)/2 = nA_s(d-kd)$$

T

Then, dividing by bd^2 and substituting ρ for A, I bd

$$0.5k^2 = n\rho(1-k)$$

The solution to this quadratic is

$$k = \sqrt{(n\rho)^2 + 2n\rho} - n\rho \qquad \qquad \text{Eq. 3-28}$$

hen
$$I_{cr} = b(kd)^3 / 3 + nA_s (d - kd)^2$$
 Eq. 3-29

If the designer wishes to calculate the stresses at service loads, this can be done as follows. Since the stress block is triangular, the resultant compressive force C is located at kd/3 and the moment arm jd is

jd = d - kd/3

The resultant compressive force is $C = 0.5 f_{w} b k d$

72

FLEXURAL MEMBERS

and the tensile force $T = A_{t}f_{x} = \rho f_{x}bd$

The moment M becomes

 $M = C jd = 0.5 f_m bkjd^2 = T jd = \rho f_r bjd^2$

and the stresses in the masonry and the steel at service load are

$$f_{w} = \frac{2M}{bkjd^{2}}$$
Eq. 3-30
$$f_{z} = \frac{M}{\rho bjd^{2}}$$
Eq. 3-31

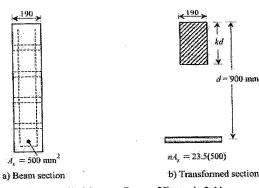
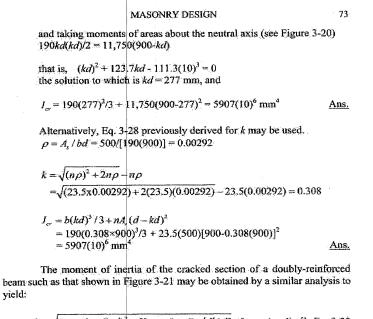


Figure 3-20 Masonry Beam of Example 3-11

EXAMPLE 3-11 A 5-course 200 mm masonry beam is reinforced with one 25M bar at an effective depth of 900 mm. If $f'_{m} = 10$ MPa, what is the moment of inertia of the cracked section?

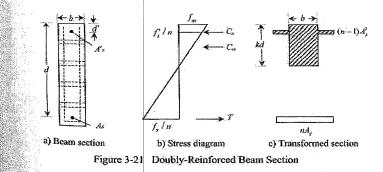

Since E_m may be taken as $850 f_m^3$ $E_m = 850(10) = 8500 \text{ MPa} < 20,000 \text{ MPa}$ and $E_s = 200(10)^3 \text{ MPa}$

Thus, the modular ratio

$$n = \frac{E_s}{E_s} = \frac{200(10)^3}{8.5(10)^3} = 23.5$$

Since A_s of one 25M bar is 500 mm², the transformed area of steel is $nA_s = 23.5(500) = 11,750 \text{ mm}^2$

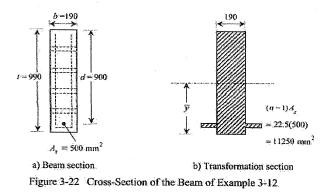
© 2005 Hatzinikolas & Korany



$$k = \sqrt{(n\rho + (n-1)\rho')} + 2[n\rho + (n-1)\rho'd'/d] - [n\rho + (n-1)\rho']$$
 Eq. 3-32

$$I_{ss} = b(kd)^3 / 3 + (n-1)A_s'(kd - d')^2 + nA_s(d - kd)^2$$
 Eq. 3-33

and,


OK.

The calculation of the uncracked moment of inertia, I_{o} , of reinforced sections can follow an analysis similar to that for cracked sections. However, for hand calculation, such an analysis can be unnecessarily tedious and reasonably simplifying assumptions may be made. One assumption is to use the

74

moment of inertia of the gross-section, $I_g = bt^3/12$, in lieu of I_o , the uncracked moment of inertia of the transformed section including reinforcement. Since for I_g the presence of steel is not taken into account, $I_g < I_o$ and deflections will be slightly overestimated. A more reasonable assumption to make is that the centroid of the section lies at the mid-depth of the cross-section, and to calculate I_o from that point. These assumptions are illustrated in the following example.

EXAMPLE 3-12 A 5-course 200 mm masonry beam is reinforced with one 25M bar at an effective depth of 900 mm. If $f'_{m} = 10$ MPa, find the moment of inertia of the gross-section, I_{r} , and the uncracked moment of inertia I_{a} .

Gross moment of inertia, I_g , $I_g = bt^3 / 12 = 190(990)^3 / 12 = 15.4(10)^9 \text{ mm}^4$ Ans.

Uncracked moment of inertia, I,

Referring to Figure 3-22 and taking moments of areas about the base, the centroid of the section is located at

Ans.

$$\overline{y} = \frac{bt^2/2 + (n-1)A_s(t-d)}{bt + (n-1)A_i}$$
$$= \frac{190(990)^2/2 + (23.5-1)(500)(990-900)}{190(990) + (23.5-1)(500)} = 472 \text{ mm}$$

$$\begin{split} &l_{\varphi} = bt^{2} / 12 + bt(t/2 - \overline{y})^{2} + (n-1)A_{s}[\overline{y} - (t-d)]^{2} \\ &= 190(990)^{3} / 12 + 190(990)(990)/2 - 472)^{2} + \\ &(23.5 - 1)(500)[472 - (990 - 900)]^{2} \end{split}$$

 $I_{o} = 17.1(10)^{9} \,\mathrm{mm}^{4}$

© 2005 Hatzinikolas & Korany

MASONRY DESIGN

As noted earlier, if the assumption is made that the centroid lies at the mid-depth of the section, that is, $\overline{y} = 990/2 = 495$ mm, the calculation simplifies to

$$\begin{aligned} &\Gamma_o \approx bt^3 / 12 + (n-1)A_c (d-t/2)^2 \\ &\approx 190(990)^3 / 12 + (23.5-1)(500)(900-990/2)^2 \end{aligned}$$

$$I_{\rm a} = 17.2(10)^{7} \, {\rm mm}^{4}$$
 Ans.

In this example I_g underestimates I_a by about 10%, and the approximate value is less than 1% different from the "true" value. Since deflection calculations are approximate at best, the approximation is justified.

Based on research, primarily stemming from work in reinforced concrete, the effective moment of inertia to be used in the calculation of deflection of reinforced masonry beams is obtained by combining the moments of inertia of cracked and uncracked sections as follows (Clause 11.4.3.2):

$$I_{\rm eff} = (M_{\rm er} / M_{\rm a})^3 I_{\rm a} + [1 - (M_{\rm er} / M_{\rm a})^3] I_{\rm er} < I_{\rm a}$$
 Eq. 3-34

where, $M_{cr} = \text{cracking moment} = (\phi_{cr} f_i + f_{cr})I_c / y_c$

 $f_r =$ flexural tensile strength (Table 5 of S304.1)

 $f_{\rm er} =$ unfactored axial load $P t A_{\rm e}$

 y_t = distance from centroid to extreme fibre in tension

 M_{σ} = maximum moment due to unfactored loads

and, if axial compression is also present in the beam, the bending moment resulting from the position of the axial load P relative to the centroid of the cracked section is included in the determination of I_{cr} . For the most part, of course, beams are not subjected to calculable or intentional axial load.

EXAMPLE 3-13 A 5-course 200 mm hollow block beam is reinforced with one 25M bar at an effective depth of 900 mm and is fully grouted. The beam is simply-supported at its ends over a span of 6.0 m, and carries a service dead load (including self weight) of 10 kN/m and a live load of 10 kN/m. If f_y =400

MPa, $f'_{m} = 10$ MPa, and type S mortar is used, estimate the maximum deflection.

The maximum deflection of a uniformly-loaded beam simply supported over a span L is $\delta = 5wL^4 / (384EI)$

and, for this beam

 $w = w_0 + w_L = 10.0 + 10.0 = 20.0 \text{ kN/m}$ L = 6.0 m

$$E_{\rm m} = 850 f_{\rm m}' = 8500 \text{ MPa} < 20\ 000 \text{ MPa}$$

 $I_{gg} = (M_{o} / M_{a})^{3} I_{o} + [1 - (M_{o} / M_{a})^{3}] I_{o}$

In this expression, I_{a} and I_{cc} are obtained from the previous examples $I_{a} = 17.1(10)^{9} \text{ mm}^{4}$ $I_{cc} = 5.91(10)^{9} \text{ mm}^{4}$

and $M_{vv} = (\phi_{vv}f_i + f_{vv})I_v / y_i$ $f_i = 0.65$ MPa (Table 5, S304.1), $\phi_w = 0.6$, $y_i = 472$ mm

and since there is no axial load
$$f_{\rm e} = 0.0^{\circ}$$

 $M_{cr} = [0.6(0.65) + 0.0](17.1)(10)^{9}/472 = 14.13$ kN-m and $M_{a} = (w_{D} + w_{L})L^{2}/8 = 20.0(6.0)^{2}/8 = 90.0$ kN-m

Then $I_{off} = (M_{co} / M_{a})^3 I_a + [1 - (M_{co} / M_{a})^3] I_{co}$ = $(14.13/90.0)^3 (17.1)(10)^9 + [1 - (14.13/90.0)^3](5.91)(10)^9$ = $5.95(10)^9 \text{ mm}^4$

Recalling from Eq. 3-27 that allowance must be made for creep and, since there is no compression steel, and using $S_t=1.0$ for a period longer than 5 years, the maximum expected deflection due to live load and sustained load, taken here as the dead load plus 50% of the live load, now becomes

$$\begin{split} & \mathcal{S}_{\max} = 5[1+(0.5)1.0] w_{L} L^{4} / (384 EI) + 5(1+1) w_{D} L^{4} / (384 EI) \\ & = 5(1.5)(10.0)(6000)^{4} / [384(8500)(5.95)(10)^{9}] + \\ & 5(2.0)(10.0)(6000)^{4} / [384(8500)(5.95)(10)^{9}] = 11.7 \text{ mm} \end{split}$$

Therefore, maximum deflection = 11.7 mm

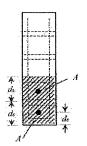
Ans.

It is important that the designer keeps close track of units. In the final calculation above, units involving N and mm were used exclusively (note that 20.0 kN/m is also 20.0 N/mm) so that the final deflection is obtained in mm. It should be noted that deflection calculations are generally not as critical for beams as they are for slender walls, which are considered in detail in Chapter 5. The 11.7 mm deflection in the previous example amounts to only span/513.

3.5.2 Crack Control

Like reinforced concrete structures, masonry structures crack. Cracking may be the result of volume changes (shrinkage, creep and thermal effects), support movement, and flexural stresses. This can lead to corrosion of reinforcing steel and connectors and to the disintegration of the mortar due to freeze-thaw activity. Once mortar deterioration starts, moisture can enter more freely and the problem accelerates. Since excessive cracking can compromise strength due to corrosion and/or affect the aesthetics of masonry, a measure of control on crack width must be exercised. Cracking due to volume changes (mainly shrinkage) and support movement is an entirely different problem from cracking due to flexural stresses, one that can be controlled through the

MASONRY DESIGN


judicious use of *movement joints*, which is the subject of other discussions. This section deals with the control of cracking resulting from flexural tension.

Based on substantial research in reinforced concrete, cracking is controlled by ensuring that the quantity z does not exceed 30 kN/mm for interior exposure and 25 kN/mm for exterior exposure (Clause 11.2.6.2 of S304.1).

$$z = f_r \sqrt[3]{d_r A(10)^{-3}} < 30 \text{ kN/mm for interior exposure} < 25 \text{ kN/mm for exterior exposure}$$
Eq. 3-35

In Eq. 3-35, f_i is the stress in the reinforcing steel, which can be computed directly from the analysis presented in Section 3.5.1 (see Eq. 3-31), or may be assumed as 60% $f_{\rm s}$; $d_{\rm c}$ is the cover on the tension steel measured from the

centroid of the outermost bar; and A is the area of masonry surrounding the tensile reinforcement, having the same centroid as the tensile reinforcement and divided by the number of bars. This is illustrated in Figure 3-23.

Figure 3-23 Parameters of the Crack Control Expression

These requirements have been taken directly from CSA Standard A23.3: *Design of Concrete Structures*, where the corresponding crack widths are in the order of 0.40 mm and 0.33 mm for interior and exterior exposures, respectively. S304.1 notes that in especially aggressive environments, such as in coastal regions subjected to high winds and rain, this requirement may not be sufficiently restrictive. Notwithstanding the requirements of S304.1, the reader is advised that reinforced masonry is not reinforced concrete. The maximum interior crack width limit of 0.40 mm (largely a cosmetic factor) could easily be 0.50 mm, whereas in particularly aggressive environments (wind, rain, freeze-thaw cycles) the 0.33 mm constraint should perhaps be reduced to 0.25 mm.

EXAMPLE 3-14 Considering control of cracking, is the masonry beam of the previous example adequate for an interior use?

Referring to Figure 3-24(a),

 $d_c = 90 \text{ mm}$

$$A = 190(180) = 34.2(10)^{\circ} \text{ mm}$$

$$J_s = 0.0 J_y = 0.6(400) = 240 \text{ MPz}$$

76

78

FLEXURAL MEMBERS

$$z = f_s \sqrt[3]{d_c} A(10)^{-3} = 240\sqrt[3]{90(34.2)(10)^3} (10)^{-3}$$

z = 34.9 kN/mm > 30.0 kN/mm

Therefore, the beam is not suitable for interior use.

To resolve this situation, the designer may choose to select two 20M bars $(A_r = 2(300) = 600 \text{ mm}^2)$, as shown in Figure 3-24(b), instead of one 25M $(A_r = 500 \text{ mm}^2)$, in which case the steel stress may be reduced to 5/6 of its former value, and A is divided by the number of bars.

NG

Ans.

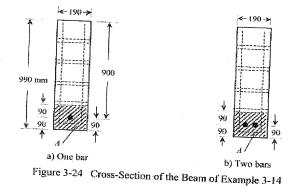
Ans.

That is, $f_r = 5(240)/6 = 200$ MPa. In that case

 $z = 200\sqrt[3]{90(34.2/2)(10)^3}(10)^{-3} = 23.1 \text{ kN/mm} \le 30 \text{ kN/mm}$

The beam now becomes suitable for interior use.

The more rigorous approach to determine the tensile stress in the steel could have been used by applying Eq. 3-31. From Example 3-11,

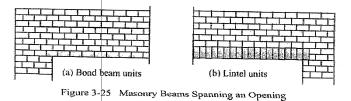

$$n = \frac{200,000}{8,500} = 23.5$$

$$\rho = \frac{A_k}{bd} = 0.00292 \text{ and } k = 0.308$$

$$j = (1 - k/3) = 0.9$$

and from Example 3-13, $M = M_a = 90$ kN-m

$$J_s = \frac{M}{\rho b j d^2} = \frac{M}{A_s / d} = \frac{90(10)^6}{500(0.9)(900)} = 222 \text{ MPa}$$


© 2005 Hatzinikolas & Korany

MASONRY DESIGN

It is clear from the previous calculations that the 60% $f_p = 240$ MPa is a very reasonable and slightly conservative estimate of f_z . For hand calculation, the use of 60% f_y would be sufficiently accurate and the complexity of calculating f_z from Eq. 3-31 can generally be avoided.

One of the difficulties with applying the S304.1 requirements is that the basic principles supporting it are rather obscure. The following explanation of crack width development is intended to make the mechanism of crack formation in reinforced masonry more understandable.

The width of flexural cracks depends on the tensile stress in the reinforcement, on the location of the bars and on the crack spacing. In reinforced concrete, the concrete is continuous and cracks form at the weak spots, generally at 100 mm to 200 mm spacing. In masonry, on the other hand, crack spacing is normally controlled by the location of the mortar joints, these being the weakest tensile component. Figure 3-25, for example, shows two alternative arrangements for the bottom course of a masonry beam spanning an opening in a wall. On side (a) 200 mm high by 400 mm long bond beam units are used and cracking may be expected to start at 400 mm high by 200 mm long lintel blocks which will lead to a 200 mm crack spacing. Flexural cracks in side (a) are likely to be about twice as wide as cracks in side (b). Generally, for outdoor exposures the use of 200 mm long lintel blocks is preferred.

The masonry, being bonded to the steel bars, will undergo an average tensile strain equal to that in the reinforcement. As the masonry can sustain very fittle tensile strain, the crack width at the level of the reinforcement will be only slightly less than the steel strain multiplied by the crack spacing. Plane sections temaining plane, the maximum crack width is related to the location of the steel relative to the neutral axis, and to the amount of cover, as shown in Figure 3-26.

Crack width at the effective depth is $\varepsilon_s s' = f_s s' / E_s$ where, s' = crack spacing. The maximum crack width, w_s , at the bottom of the beam becomes $w_c = \frac{f_s s'(t - kd)}{E_s (d - kd)}$

80

and this equation leads to a reasonable, although somewhat overestimated, value of the crack width. The equation also indicates the influence of crack spacing (that is, the head joint spacing) on crack width.

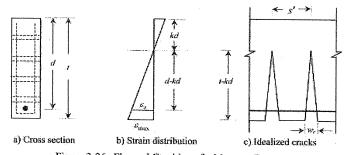


Figure 3-26 Flexural Cracking of a Masonry Beam

Given the maximum allowable stresses in the reinforcement and the head joint spacing, the maximum expected crack width at the level of the reinforcement can be readily calculated.

For example, if $f_s = 0.6 f_y = 0.6(400) = 240$ MPa and head joints are paced at 200 mm the maximum expected error width of the start best in

spaced at 200 mm, the maximum expected crack width at the steel location is

$$f_s s' / E_s = \frac{240(200)}{200000} = 0.24 \text{ mm}$$

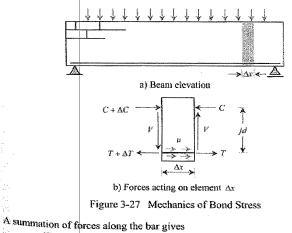
The crack control provided by satisfying the limits of the parameter z may not be sufficient to control cracking in masonry beams having a depth exceeding 600 mm. Therefore, Clause 11.2.6.3 requires that for such relatively deep beams, an intermediate reinforcement at 400 mm vertical spacing be used. A single bar 15M is required for beams less than 240 mm in width whereas two 15M bars are required for wider beams.

3.6 REINFORCEMENT REQUIREMENTS

Reinforced masonry is effective only if the reinforcement is bonded to the grout, and the grout to the masonry units. If grouting is properly carried out, the absorption by the masonry units and the large area of contact ensures an adequate grout-to-unit bond. On the other hand, the bond between reinforcement and grout is more critical, because the area of contact is comparatively small.

A shear-type *bond stress* acting along the surface of a reinforcing bat is the mechanism whereby force is transferred from grout to the bar. If the resistance to bond stress is exceeded, slip between bar and grout takes place and the reinforcing steel loses its effectiveness. Although standard deformations on the surface of normal reinforcement provide substantial resistance through the mechanical interlocking of bars with grout, the bond must be checked.

© 2005 Hatzinikolas & Korany


MASONRY DESIGN

The question of bond in beam design is largely one of performing an analytical design check. In general, the reinforcement will have been selected during the design for bending or shear, then the bar sizes and anchorage lengths are checked to ensure that the required development lengths are available. Should they not be present, then a larger number of smaller diameter bars are selected, or greater anchorage lengths, or hooks, are provided. Section 12 of S304.1, *Reinforcement: Details, Development and Splices* covers bond and development requirements, which are, for the most part, self-explanatory practical rules. A detailed treatment of this section is beyond the scope of this book.

There are two basic ways to consider bond. One is to recognize that localized bond stress is directly related to the rate of increase of the tensile force in the reinforcement of a flexural member. This is referred to as *flexural bond* stress. The other is to assume that the bond stress is uniform along the bar and to ensure that the bar has sufficient embedment length to develop the required strength. This length is referred to as the *development length*, I_d . The anchorage of the bar can be further improved through the provision of hooks at the ends of the bars.

3.6.1 Flexural Bond Stress

Figure 3-27(a) shows a beam subjected to transverse loads, and therefore to bending moments and shear forces. The forces acting on a small element of length Δx are shown in Figure 3-27(b). The change in the reinforcing bar force from a value of T to $(T + \Delta T)$ must be transmitted by the bond stress, u, acting on the contact area between the bar and grout.

 $(T + \Delta T) - T = \Delta T = \mu \sum o \Delta x$

where $\sum o$ is the summation of bar perimeters. From a consideration of equilibrium of moments,