DRAINAGE REPORT

Site Development ASSOCIATES, INC. The Sanctuary at Manchester by the Sea Manchester-by-the-Sea, MA

Prepared: 07/16/2021

Site Locus – Not to Scale

CLIENT:

SLV School Street, LLC 257 Hillside Avenue Needham, MA 02494

PREPARED BY:

Allen & Major Associates, Inc. 100 Commerce Way, Suite 5 Woburn, Massachusetts 01801 EOR: Carlton M. Quinn, PE

allenmajor.com

DRAINAGE REPORT

The Sanctuary at Manchester-by-the-Sea 0 School Street Manchester-by-the-Sea, MA

PROPONENT:

SLV School Street, LLC 257 Hillside Avenue Needham, MA 02494

PREPARED BY:

Allen & Major Associates, Inc. 100 Commerce Way, Suite 5 Woburn, Massachusetts 01801 EOR: Carlton M. Quinn, PE

ISSUED:

July 16, 2021

REVISED:

A&M PROJECT NO.: 2725-01

TABLE OF CONTENTS

SECTION 1.0 - NARRATIVE	7
INTRODUCTION	9
SITE CATEGORIZATION FOR STORMWATER REGULATIONS	9
SITE LOCATION AND ACCESS	9
EXISTING SITE CONDITIONS	9
WATERSHED	10
EXISTING SOIL CONDITIONS	10
FEMA FLOODPLAIN/ENVIRONMENTAL DUE DILIGENCE	10
ENVIRONMENTALLY SENSITIVE ZONES	10
EXISTING WATERSHED DESCRIPTION	11
DRAINAGE ANALYSIS METHODOLOGY	11
PROPOSED CONDITIONS – PEAK RATE OF RUNOFF	11
MASSDEP STORMWATER PERFORMANCE STANDARDS	14
MASSDEP STORMWATER CHECKLIST	18
SECTION 2.0 – OPERATION & MAINTENANCE	26
OPERATIONS AND MAINTENANCE PLAN	28
INTRODUCTION	28
DEMOLITION & CONSTRUCTION MAINTENANCE PLAN	29
POST CONSTRUCTION MAINTENANCE PLAN	30
Inspection and Maintenance Frequency and Corrective Measures	
Monthly Post Construction Inspection (first three months only)	
Quarterly Inspections (specifically after foliage and snow season)	
Semi-Annual Inspection (specifically after foliage and snow season)	
LANDSCAPE MANAGEMENT PLAN	32
OPERATION & MAINTENANCE SUMMARY TABLE	34
SNOW STORAGE PLAN	36
SNOW DISPOSAL GUIDANCE	38
MOSQUITO CONTROL	43
SECTION 3.0 - EXHIBITS	48
USGS SITE LOCUS MAP	50

AERIAL PHOTO	52
FEMA FIRM MAP	54
MASSDEP WETLANDS & VERBAL POOLS MAP	56
NHESP PRIORITY HABITATS MAP	58
SECTION 4.0 – HYDRO CAD	60
EXISTING HYDROCAD	62
PROPOSED HYDROCAD	76
SECTION 5.0 – PLANS	104
EXISTING WATERSHED	106
PROPOSED WATERSHED	108
PROPOSED GRADING & DRAINAGE PLAN	110
SECTION 6.0 - APPENDIX	112
SOIL HSG INFORMATION	114
RAINFALL DATA – NRCC EXTREME PRECIPITATION TABLES	119
MANNING'S ROUGHNESS COEFFICIENT TABLE	120
MASSDEP STANDARD CALCULATIONS	121
STORMWATER PIPE SIZING TABLE	123
RIP-RAP SIZING SPREADSHEET	124
ILLICIT DISCHARGE COMPLIANCE STATEMENT	125

INTRODUCTION

The purpose of this drainage report is to provide an overview of the proposed stormwater management system (SMS) for the site facility development proposed at School Street in Manchester-by-the-Sea. The report will show by means of narrative calculations and exhibits that the proposed stormwater management system will meet or exceed the 10 Massachusetts Department of Environmental Protection (MassDEP) stormwater standards.

The proposed site improvements include construction of a 92,560± square foot (s.f.), multi-family residential building with associated surface and garage parking, building utilities, stormwater management system, landscaping, and grading. The project will be serviced by a privately-owned wastewater treatment facility located on site, public water, and private electric and gas.

The SMS incorporates structural and non-structural Best Management Practices (BMPs) to provide stormwater peak flow mitigation, quality treatment, and conveyance. The SMS includes catch basins with snouts and hoods, drain manholes, hydrodynamic water quality units, a surface detention/infiltration basin equipped with an outlet control structure and a sluice gate to allow for maintenance of the basin when required, rain gardens, and subsurface infiltration systems.

SITE CATEGORIZATION FOR STORMWATER REGULATIONS

The proposed site improvements are considered a new development under the DEP Stormwater Management Standards due to the net increase in impervious area.

SITE LOCATION AND ACCESS

The project site consists of one parcel of land located on School Street, identified on the Town of Manchester Assessors Tax Maps as Map 43 Lot 18. The parcel is comprised of a 23.7± acre parcel (Map 43 Lot 18). The site is currently undeveloped with forested uplands and bordering vegetated wetlands.

Manchester is located in Essex County and is approximately 30 miles north-east of Boston. The site is located approximately 25 miles east/south-east of Interstate 495.

EXISTING SITE CONDITIONS

The Project Site is a $23.7\pm$ acre parcel (Map 43 Lot 18) that is currently undeveloped and consists of upland wooded areas, a gravel path, and lowland wetland areas. There are several wetland areas surrounding the Site; these areas were delineated by a wetland specialist and are represented by a several series of wetland flags.

The topography of can be described as a hill or mountain, with the peak/top near the center of the property at El. $151.0\pm$. The perimeter of the site to the west, north, and east

is roughly El. 48.0 \pm . There an on-site depression southwest of the hill/mountain peak, which is at El. 92.0 \pm that keeps a significant amount of water on site.

WATERSHED

The subject property is located within the North Coastal Watershed. The North Coastal Watershed has a total drainage area of 168 square miles, and encompasses all or part of five river sub-basins. The North Coastal also encompasses all or part of 26 Massachusetts municipalities and supports a population of approximately 500,000 people. Dominant resources within the region include a major lobster fisheries and shell fishing, which remains a major commercial and recreational activity. The North Coastal Watershed is not protected under the Watershed Protection Act and has no associated land use restrictions.

EXISTING SOIL CONDITIONS

The on-site soils were identified using the USDA Natural Resources Conservation Services (NRCS) Soil Survey for Essex County. The site soil types and corresponding Hydrologic Soil Groups (HSG) include:

- 102E Chatfield-Hollis-Rock outcrop complex, 15 to 35 percent slopes, HSG D.
- 651 Udorthents, smoothed, 0 to 3 percent slopes no associated HSG, assumed HSG D.

Udorthents consists of areas where the soil has been altered or obscured by buildings, or paved areas; neither urban land nor Udorthents are assigned a hydrologic soil group (HSG). Soils on-site have an associated HSG rating of "D" which is reserved for soils with little to no infiltration rate. The existing site shows signs of rock outcrops and exposed ledge, while the surficial geology shows potential drumlins and lodgment till in the area. A copy of the soil mapping from the NRCS website is included in the Appendix of this report.

FEMA FLOODPLAIN/ENVIRONMENTAL DUE DILIGENCE

The latest Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) within 25009C432G & 25009C0434G, effective July 16, 2014, was reviewed and it was determined that the 100-year floodplain "Zone A" area is located within the Parcel "L" project site. All proposed work on the site is located within a Zone X (unshaded). Zone "X" (unshaded) areas are areas determined to be out of the 500-year flood zones. See the Existing Conditions Plan prepared by Allen & Major Associates, Inc. and Section 3.0 – Exhibits of this report for a more detailed representation of the FEMA flood zone locations in relation to the site. A Notice of Intent will be filed with the State and the Town.

ENVIRONMENTALLY SENSITIVE ZONES

A review of the latest Massachusetts Natural Heritage Atlas; 14th Edition, reveals that there are no Estimated Habitats nor Priority Habitats located on the subject site.

There are no Areas of Critical Environmental Concern (ACEC) within the Site, per a review of the MassGIS on-line program OLIVER. A review of the Massachusetts Cultural Resource Information System (MACRIS) reveals no entries for the Project Site. The subject property is located within 100' of a bordering vegetated wetland and is located within the 100' riparian zone as illustrated on the site development plans. It should be noted that there is no proposed work within any of these areas.

EXISTING WATERSHED DESCRIPTION

Under existing conditions, the site is divided into five (5) watersheds. Watershed E-1 flows north to Wetland "D" (Study Point #1). Watershed E-2 represents water area that flows to Wetland "F" (Study Point #2). Watershed E-3 flows off-site to the southwest (Study Point #3). Watershed E-4 flows south/southwest to Wetland's "A" (Study Point #4). Watershed E-5 represents an existing depression. The Hydro CAD model shows that no water leaves the site from this watershed and therefore a Study Point is not needed. Existing watersheds consist of gravel paths and wooded terrain as the site is undeveloped. Tc's were calculated using Hydro CAD, using 0.1 hours or 6 minutes as the minimum Tc. See the attached Existing Watershed Plan and Existing Hydro CAD reports.

DRAINAGE ANALYSIS METHODOLOGY

A peak rate of runoff will be determined using techniques and data found in the following:

- 1. <u>Urban Hydrology for Small Watersheds</u> Technical Release 55 by the United States Department of Agriculture Soils Conservation Service, June 1986. Runoff curve numbers and 24-hour precipitation values were obtained from this reference.
- Hydro CAD© Stormwater Modeling System by Hydro CAD Software Solutions LLC, version 10.00, 2013. The Hydro CAD program was used to generate the runoff hydrographs for the watershed areas, to determine discharge/ stage/storage characteristics for the stormwater BMPs, to perform drainage routing and to combine the results of the runoff hydrographs. Hydro CAD uses the TR-20 methodology of the SCS Unit Hydrograph procedure (SCS-UH).
- 3. <u>Soil Survey of Essex County, Massachusetts</u> by United States Department of Agriculture, NRCS. Soil types and boundaries were obtained from this reference.
- 4. <u>Cornell University Extreme Precipitation Tables</u> Northeast Regional Climate Center

PROPOSED CONDITIONS – PEAK RATE OF RUNOFF

The storm water runoff analysis of the existing and proposed conditions includes an estimate of the peak rate of runoff from various rainfall events. Peak runoff rates were developed using TR55 Urban Hydrology for Small Watersheds, developed by the U.S. Department of Commerce, Engineering Division and the Hydro CAD computer program.

Further, the analysis has been prepared in accordance the Town requirements and standard engineering practices. The peak rate of runoff has been estimated for each watershed during the 2, 10, 25, and 100-year storm events.

The subject property's peak flow rates are analyzed at four (4) Study Points. Study Point #1 represents flows discharging to the Wetland "A". Study Point #2 represents flows to Wetland "F"; Study Point #3 represents flows leaving the site to the southwest; and Study Point #4 represents water flowing to Wetland "A". The site is broken into 18 watersheds in order to model the proposed conditions. See the proposed watershed plan and drainage plans for more information.

Watershed P-1 is located on the north of the proposed entry drive and represents water sheet flowing to the Wetland "D". Watershed consists of grass and woods.

Watershed P-2 is located on the west side of the Site and represents water sheet flowing to Wetland "F". Watershed P-2 consists of grass and woods.

Watershed P-3 is located southwest of the WWTF and represents flows leaving the site to the southwest. This watershed consists of grass and a retaining wall.

Watershed P-4 is located southeast, east, and northeast of the proposed development and represents water discharging to Wetland "A". Watershed P-4 consists of mostly woods with grass and a retaining wall.

Watershed P-5 represents the entrance driveway to the Project Site and consists of bituminous pavement and grass.

Watershed P-6 represents the landscaped slope and tiered retaining walls south of the entry drive. This watershed is mostly grass with a small amount of impervious from the retaining walls.

Watershed P-7 represents the 2:1 landscaped slope northwest and west of the proposed building. The watershed is comprised of entirely grass.

Watershed P-8 is the cul-de-sac turnaround area located near the garage entrance and consists of mostly pavement with landscaped grass.

Watershed P-9 is the north courtyard of the proposed building and will be a green roof design.

Watershed P-10, P-11, & P-12 are the proposed building roof areas. P-9 is also considered roof area however it will be a green roof; P-10, P-11, & P-12 will be standard impervious rooftops with flows being conveyed via roof drains and downspouts.

Watershed P-13 is the main surface parking area for the development and consists of impervious asphalt pavement and landscape islands of grass & trees.

DRAINAGE REPORT The Sanctuary - Multi-family Development

Watershed P-14 represents the wastewater treatment facility (WWTF) and the driveway in this area. This watershed will consist of pavement and grass.

Watershed P-15 is the lawn area and fire access drive southeast of the proposed building and will consist of grass and GrassPave2. GrassPave2 is a proprietary pervious surface that allows for H-20 loading to be applied while also remaining permeable. The GrassPave2 system will be used as a fire access road.

Watershed 16 represents the 24-foot-wide entry drive from the WWTF to Detention Pond-1 and consists of pavement and grass.

Watershed 17 represents Detention Pond-1.

Watershed 18 represents the middle section of the access driveway and is comprised entirely of impervious pavement.

Peak Flow Rates

Study Point #1 (Flow to Wetland "D")

	2-Year	10-Year	25-Year	100-Year		
Existing Runoff (CFS)	3.37	6.94	9.92	16.14		
Proposed Runoff (CFS)	1.28	4.12	5.72	9.21		
REDUCTION	2.09	2.82	4.20	6.93		
Study Point #2 (Flow to Wetland "F")						
	2-Year	10-Year	25-Year	100-Year		
Existing Runoff (CFS)	0.55	1.15	1.65	2.71		
Proposed Runoff (CFS)	0.33	0.67	0.95	2.16		
REDUCTION	0.22	0.48	0.70	0.55		
Study Point #3 (Flow southwest off site)						
	2-Year	10-Year	25-Year	100-Year		
Existing Runoff (CFS)	0.94	1.91	2.72	4.42		
Proposed Runoff (CFS)	0.90	1.77	2.49	3.97		
REDUCTION	0.04	0.14	0.23	0.45		
Study Point #4 (Flow to Wetland "A")						
	2-Year	10-Year	25-Year	100-Year		
Existing Runoff (CFS)	4.02	8.40	12.10	19.94		
Proposed Runoff (CFS)	3.68	8.29	11.63	18.08		
REDUCTION	0.34	0.11	3.81	1.86		

MASSDEP STORMWATER PERFORMANCE STANDARDS

The MA DEP Stormwater Management Policy was developed to improve water quality by implementing performance standards for storm water management. The intent is to implement the stormwater management standards through the review of Notice of Intent filings by the issuing authority (Conservation Commission or DEP). The following section outlines how the proposed Stormwater Management System meets the standards set forth by the Policy.

BMP's implemented in the design include –

- Deep-sump, hooded catch basins
- Hydro-dynamic (Proprietary) separators
- Surface Detention/Infiltration systems
- Corrugated Metal Pipe (CMP) Subsurface Infiltration System
- Rain Gardens
- Green Roofs
- Specific maintenance schedule

Stormwater Best Management Practices have been incorporated into the design of the project to mitigate the anticipated pollutant loading. An Operations and Maintenance Plan has been developed for the project, which addresses the long-term maintenance requirements of the proposed system.

Temporary erosion and sedimentation controls will be incorporated into the construction phase of the project. These temporary controls may include straw bale and/or silt fence barriers, inlet sediment traps, slope stabilization, and stabilized construction entrances.

The Massachusetts Department of Environmental Protection has established ten (10) Stormwater Management Standards. A project that meets or exceeds the standards is presumed to satisfy the regulatory requirements regarding stormwater management. The Standards are enumerated below as well as descriptions and supporting calculations as to how the Project will comply with the Standards:

1. No new stormwater conveyances (e.g. outfalls) may discharge untreated stormwater directly to or cause erosion in wetlands or waters of the Commonwealth.

The proposed development will not introduce any new stormwater conveyances (e.g. outfalls) that discharge untreated stormwater directly to or cause erosion in wetlands or waters of the Commonwealth.

2. Stormwater management systems shall be designed so that post-development peak discharge rates do not exceed pre-development peak discharge rates. This Standard may be waived for discharges to land subject to coastal storm flowage as defined in 310 CMR 10.04.

The proposed development will be designed so that the post-development peak discharge rates and do not exceed the pre-development peak discharge rates. See Peak Flow Rates Table above and the attached Hydro CAD reports.

3. Loss of annual recharge to groundwater shall be eliminated or minimized through the use of infiltration measures including environmentally sensitive site design, low impact development techniques, stormwater best management practices, and good operation and maintenance. At a minimum, the annual recharge from the postdevelopment site shall approximate the annual recharge from pre-development conditions based on soil type. This Standard is met when the stormwater management system is designed to infiltrate the required recharge volume as determined in accordance with the Massachusetts Stormwater Handbook.

The existing annual recharge for the site will be exceeded in the developed condition. Existing soils are not conducive for infiltration as they are comprised of HSG-D soils and there is a certainty of exposed ledge and shallow bedrock on site.

Not all proposed impervious areas discharge to an infiltrating BMP however calculations show that the required recharge for the site is exceeded by Underground Infiltration System-1. The subsurface infiltration system will be designed to meet this requirement using the Static Method per the MassDEP Stormwater Management Standards, Volume 3, Chapter 1. See "DEP Calculations" in the Appendix of this report for water quality/recharge calculations.

- 4. Stormwater management systems shall be designed to remove 80% of the average annual post-construction load of Total Suspended Solids (TSS). This standard is met when:
 - Suitable practices for source control and pollution prevention are identified in a long-term pollution prevention plan, and thereafter are implemented and maintained;
 - Structural stormwater best management practices are sized to capture the required water quality volume determined in accordance with the Massachusetts Stormwater Handbook; and
 - Pretreatment is provided in accordance with the Massachusetts Stormwater Handbook.

The proposed site is considered a land use with higher potential pollutant loads. With this categorization the 44% TSS removal before it can be discharged to an infiltration system is required for the project. The overall 80% TSS removal standard will be met using some combination of the following: hooded deep-sump catch basins, proprietary hydro-dynamic separators, and a surface detention/infiltration pond with an outlet control structure, and rain gardens.

The water quality volume for the site development will be captured and treated using hooded deep sump catch basins and proprietary hydro-dynamic separators before discharging to either an infiltrating BMP or the abutting wetlands. All systems will be sized to meet the water quality flow rate for the 1" storm event. See "DEP Calculations" in the appendix of this report.

5. For land uses with higher potential pollutant loads, source control and pollution prevention shall be implemented in accordance with the Massachusetts Stormwater Handbook to eliminate or reduce the discharge of stormwater runoff from such land uses to the maximum extent practicable. If through source control and/or pollution prevention all land uses with higher potential pollutant loads cannot be completely protected from exposure to rain, snow, snow melt, and stormwater runoff, the proponent shall use the specific structural stormwater BMPs determined by the Department to be suitable for such uses as provided in the Massachusetts Stormwater Handbook. Stormwater discharges from land uses with higher potential pollutant loads shall also comply with the requirements of the Massachusetts Clean Waters Act, M.G.L. c. 21, §§ 26-53 and the regulations promulgated thereunder at 314 CMR 3.00, 314 CMR 4.00 and 314 CMR 5.00.

The proposed development is considered a source of higher potential pollutant loads. The SMS will be designed to treat 1" water quality volume with hydrodynamic separators, deep-sump, hooded catch basins, and a surface & sub-surface detention/infiltration ponds.

6. Stormwater discharges within the Zone II or Interim Wellhead Protection Area of a public water supply, and stormwater discharges near or to any other critical area, require the use of the specific source control and pollution prevention measures and the specific structural stormwater best management practices determined by the Department to be suitable for managing discharges to such areas, as provided in the Massachusetts Stormwater Handbook. A discharge is near a critical area if there is a strong likelihood of a significant impact occurring to said area, taking into account site-specific factors. Stormwater discharges to Outstanding Resource Waters and Special Resource Waters shall be removed and set back from the receiving water or wetland and receive the highest and best practical method of treatment. A "storm water discharge" as defined in 314 CMR 3.04(2)(a)1 or (b) to an Outstanding Resource Water or Special Resource Water shall comply with 314 CMR 3.00 and 314 CMR 4.00. Stormwater discharges to a Zone I or Zone A are prohibited unless essential to the operation of a public water supply.

The proposed project is not located within a critical area.

7. A redevelopment project is required to meet the following Stormwater Management Standards only to the maximum extent practicable: Standard 2, Standard 3, and the

pretreatment and structural best management practice requirements of Standards 4, 5, and 6. Existing stormwater discharges shall comply with Standard 1 only to the maximum extent practicable. A redevelopment project shall also comply with all other requirements of the Stormwater Management Standards and improve existing conditions.

The proposed project is not considered a re-development project under the Stormwater Management Handbook guidelines as there is an increase in the amount of impervious area.

8. A plan to control construction-related impacts including erosion, sedimentation and other pollutant sources during construction and land disturbance activities (construction period erosion, sedimentation, and pollution prevention plan) shall be developed and implemented.

A plan to control construction-related impacts, including erosion, sedimentation and other pollutant sources during construction and land disturbance activities will be developed. The proponent will prepare and submit a Stormwater Pollution Prevention Plan (SWPPP) prior to commencement of construction activities that will result in the disturbance of one acre of land or more.

9. A long-term operation and maintenance plan shall be developed and implemented to ensure that stormwater management systems function as designed.

A Long-Term Operation & Maintenance (O&M) Plan has been developed for the proposed stormwater management system and is included within this document. See Section 2.0 of this report.

10. All illicit discharges to the stormwater management system are prohibited.

There are no expected illicit discharges to the stormwater management system. The Applicant has submitted the Illicit Discharge Compliance Statement with this report.

See the next page for the MassDEP Stormwater Checklist.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.¹ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.

Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Longterm Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

7.16.21

Signature and Date

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?

New development

Redevelopment

Mix of New Development and Redevelopment

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

- No disturbance to any Wetland Resource Areas
- Site Design Practices (e.g. clustered development, reduced frontage setbacks)
- Reduced Impervious Area (Redevelopment Only)
- Minimizing disturbance to existing trees and shrubs
- LID Site Design Credit Requested:
 - Credit 1
 - Credit 2
 - Credit 3
- Use of "country drainage" versus curb and gutter conveyance and pipe
- Bioretention Cells (includes Rain Gardens)
- Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
- Treebox Filter
- U Water Quality Swale
- Grass Channel
- Green Roof
- Other (describe): Surface Detention Pond; Water quality units, CMP detention/infiltration systems.

Standard 1: No New Untreated Discharges

- No new untreated discharges
- Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
- Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Standard 2: Peak Rate Attenuation

- Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
- Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.

Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge

Soil Analysis provided.

- Required Recharge Volume calculation provided.
- Required Recharge volume reduced through use of the LID site Design Credits.
- Sizing the infiltration, BMPs is based on the following method: Check the method used.

🔀 Static

Dynamic Field¹

Runoff from all impervious areas at the site discharging to the infiltration BMP.

Simple Dynamic

- Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.
- Recharge BMPs have been sized to infiltrate the Required Recharge Volume.
- Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason:
 - Site is comprised solely of C and D soils and/or bedrock at the land surface
 - M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
 - Solid Waste Landfill pursuant to 310 CMR 19.000
 - Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
- Calculations showing that the infiltration BMPs will drain in 72 hours are provided.

	Property include	s a M.G.L. c. 21E sit	e or a solid waste	landfill and a moun	ding analysis is included.
--	------------------	-----------------------	--------------------	---------------------	----------------------------

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Standard 3: Recharge (continued)

The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.

Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
- Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
 - is within the Zone II or Interim Wellhead Protection Area
 - is near or to other critical areas
 - is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
 - involves runoff from land uses with higher potential pollutant loads.
- The Required Water Quality Volume is reduced through use of the LID site Design Credits.
- Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

Checklist ((continued)
-------------	-------------

Standard 4: Water Quality (continued)

- The BMP is sized (and calculations provided) based on:
 - The 1/2" or 1" Water Quality Volume or
 - The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
- The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
- A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.

Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)

- The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report.
- The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted **prior to** the discharge of stormwater to the post-construction stormwater BMPs.
- The NPDES Multi-Sector General Permit does *not* cover the land use.
- LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
- All exposure has been eliminated.
- All exposure has *not* been eliminated and all BMPs selected are on MassDEP LUHPPL list.
- The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.

Standard 6: Critical Areas

- The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
- Critical areas and BMPs are identified in the Stormwater Report.

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:

Limited Project
 Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area. Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
Bike Path and/or Foot Path
Redevelopment Project
Redevelopment portion of mix of new and redevelopment.
Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.
The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b)

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;

improves existing conditions.

- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

- ☐ The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has *not* been included in the Stormwater Report but will be submitted *before* land disturbance begins.
- The project is *not* covered by a NPDES Construction General Permit.
- The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
- The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

Standard 9: Operation and Maintenance Plan

- The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
 - Name of the stormwater management system owners;
 - Party responsible for operation and maintenance;
 - Schedule for implementation of routine and non-routine maintenance tasks;
 - Plan showing the location of all stormwater BMPs maintenance access areas;
 - Description and delineation of public safety features;
 - Estimated operation and maintenance budget; and
 - Operation and Maintenance Log Form.
- The responsible party is *not* the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
 - A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
 - A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.

Standard 10: Prohibition of Illicit Discharges

- The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
- An Illicit Discharge Compliance Statement is attached;
- NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of any stormwater to post-construction BMPs.

SECTION 2.0 – OPERATION & MAINTENANCE

OPERATIONS AND MAINTENANCE PLAN

In accordance with the standards set forth by the Stormwater Management Policy issued by the Department of Environmental Protection (DEP), Allen & Major Associates, Inc. (A&M) has prepared the following Operation and Maintenance plan for the drainage improvements located at 0 School Street in Manchester-by-the-Sea, MA (The Sanctuary at Manchester-by-the-Sea).

This plan is broken into two major sections. The first section describes constructionrelated erosion and sedimentation controls. The second section is devoted to a postdevelopment operation and maintenance plan. An operation and maintenance schedule is included with this report.

Stormwater Management System Owner:	SLV School Street, LLC.
	257 HillsideAvenue
	Newton, MA 02494

Emergency Contact Information:

SLV School Street, LLC. c/o Geoff Engler	Phone: (617) 276-7261
Allen & Major Associates, Inc. (Civil)	Phone: (781) 935-6889
Manchester-by-the-Sea DPW	Phone: (978) 526-1242
Manchester-by-the-Sea Fire Department	Phone: (978) 526-4040
Manchester-by-the-Sea Con. Commission	Phone: (978) 526-4397

INTRODUCTION

The stormwater management system (SMS) for this project is owned by SLV School Street, LLC. (or current owner), and shall be legally responsible for long-term operation and maintenance for this SMS as outlined in this Operation and Maintenance (O&M) Plan. Should ownership of the SMS change, the succeeding owner will be presented with this O&M Plan and supporting attachments at or before legal conveyance of ownership and will assume the obligations of the O&M Plan.

In the event that the SMS will be operated and maintained by an entity other than that listed in this document, the applicant shall provide a plan and easement deed that provides a right of access for the legal entity to be able to perform said operation and maintenance functions. In the event the SMS will serve multiple lots/owners, the applicant shall also provide a copy of the legal instrument (deed, homeowner's association, utility

trust, or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the entire SMS.

DEMOLITION & CONSTRUCTION MAINTENANCE PLAN

- 1. Call Digsafe: 1-888-344-7233
- 2. Contact the Town at least three (3) days prior to start of demolition and/or construction activities.
- 3. Install Erosion Control measures as shown on the Plans prepared by A&M. The Town shall review the installation of straw bales and silt fencing prior to the start of any site demolition work. Install Construction fencing if determined to be necessary at the commencement of construction.
- 4. Install construction entrances, straw bales, and silt fence at the locations shown on the Erosion Control Plan prepared by A&M.
- 5. Site access shall be achieved only from the designated construction entrances.
- 6. Cut and clear trees in construction areas only (within the limit of work; see plans).
- Stockpiles of materials subject to erosion shall be stabilized with erosion control matting or temporary seeding whenever practicable, but in no case more than 14 days after the construction activity in that portion of the site has temporarily or permanently ceased.
- 8. Install silt sacks and straw bales around each drain inlet prior to any demolition and or construction activities.
- 9. All erosion control measures shall be inspected weekly and after every rainfall event. Records of these inspections shall be kept on-site for review.
- 10. All erosion control measures shall be maintained, repaired, or replaced as required or at the direction of the owner's engineer or the Town.
- 11. Sediment accumulation up-gradient of the straw bales, silt fence, and stone check dams greater than 6" in depth shall be removed and disposed of in accordance with all applicable regulations.
- 12. If it appears that sediment is exiting the site, silt sacks shall be installed in all catch basins adjacent to the site. Sediment accumulation on all adjacent catch basin inlets shall be removed and the silt sack replaced if torn or damaged.
- 13. Install stone check dams on-site during construction as needed. Refer to the erosion control details. Temporary sediment basins combined with stone check damns shall be installed on-site during construction to control and collect runoff from upland areas of this site during demolition and construction activities.

- 14. The contractor shall comply with the Sedimentation and Erosion Control Notes as shown on the Site Development Plans and Specifications.
- 15. The stabilized construction entrances shall be inspected weekly and records of inspections kept. The entrances shall be maintained by adding additional clean, angular, durable stone to remove the soil from the construction vehicle's tires when exiting the site. If soil is still leaving the site via the construction vehicle tires, adjacent roadways shall be kept clean by street sweeping.
- 16. Dust pollution shall be controlled using on-site water trucks and/or an approved soil stabilization product.
- 17. During demolition and construction activities, Status Reports on compliance with this O&M Document shall be submitted weekly. The report shall document any deficiencies and corrective actions taken by the applicant.

POST CONSTRUCTION MAINTENANCE PLAN

The SMS shall be inspected immediately after construction. A maintenance log will be kept (i.e. report) summarizing inspections, maintenance, and any corrective actions taken. The log will include the date on which each inspection or maintenance task was performed, a description of the inspection findings or maintenance completed, and the name of the inspector or maintenance personnel performing the task. If a maintenance task requires the clean-out of any sediments or debris, the location where the sediment and debris was disposed after removal will be indicated. The log will be made accessible to department staff and a copy provided to the department upon request.

Inspection and Maintenance Frequency and Corrective Measures

The following areas, facilities, and measures will be inspected and the identified deficiencies will be corrected. Clean-out must include the removal and legal disposal of any accumulated sediments, trash, and debris. In any and all cases, operations, inspections, and maintenance activities shall utilize best practical measures to avoid and minimize impacts to wetland resource areas outside the foot print of the SMS.

SMS components that will require continuing inspection as outlined in the document:

- Deep-Sump Catch Basins
- Proprietary Separators
- Surface Detention/Infiltration Pond
- Outlet Control Structures
- Sub-Surface Detention/Infiltration Systems
- Rain Gardens
- Snow Storage

Monthly Post Construction Inspection (first three months only)

• **Surface Infiltration Systems**: Inspect the infiltration system after all rainfalls greater than 1" to ensure that the system is draining within 72 hours. Repair as required.

Quarterly Inspections (specifically after foliage and snow season)

- **Deep Sump Catch Basins**: Inspect catch basins to ensure that the catch basins are working in their intended fashion and that they are free of debris. Structures will be skimmed of floatable debris at each inspection and sediment will be removed at a minimum once per year (typically after snow season) or when sediment has accumulated to within 2 feet of the outlet invert. If the basin outlet is designed with a hood to trap floatable materials (i.e. Snout), check to ensure watertight seal is working.
- **Proprietary Separators**: Separators shall be operated in strict accordance with manufacturer's recommended practices. Available manufacturer specific O&M plans attached as Appendix. Separators shall be inspected to ensure that they are working in their intended fashion and that they are free of debris. Structures shall be cleaned with a vacuum truck at least once annually (typically after snow season) or when sediment has accumulated to a depth of six inches (6"), whichever is more frequent.
- **Surface Infiltration Systems**: The surface ponds will be inspected 24 hours or several days after large rain events (greater than 1.5"), to look for ponded water. Pond should be inspected and the trashed removed on a monthly basis. The basin should be mowed a minimum of two (2) times per year and a maximum of once monthly.

Semi-Annual Inspection (specifically after foliage and snow season)

- **Culverts**: Inspect culverts to ensure that the culverts are working in their intended fashion and that they are free of debris. Remove any obstructions to flow; remove accumulated sediments and debris at the inlet, at the outlet, and within the conduit and to repair any erosion damage at the culvert's inlet and outlet.
- **Vegetated Areas:** Inspect slopes and embankments early in the growing season to identify active or potential erosion problems. Replant bare areas or areas with sparse growth. Where rill erosion is evident, armor the area with an appropriate lining or divert the erosive flows to on-site areas able to withstand the concentrated flows.
- **Roadway and Parking Surfaces:** Sweep paved areas as soon as possible after snow melt and no less than four times annually. Clear accumulations of winter sand in parking lots and along roadways at least once a year, preferably in the spring.

Accumulations on pavement may be removed by pavement sweeping. Accumulations of sand along road shoulders may be removed by grading excess sand to the pavement edge and removing it manually or by a front-end loader.

• Level Spreaders, Check Dams, Rip-Rap: These accessories will be inspected for erosion, debris accumulation, and unwanted vegetation. Erosion will be stabilized and sediment, debris, and woody vegetation will be removed.

LANDSCAPE MANAGEMENT PLAN

It should be recognized that this is a general guideline towards achieving high quality and well-groomed landscaped areas. The grounds staff / landscape contractor must recognize the shortcomings of a general maintenance plan such as this, and modify and/or augment it based on weekly, monthly, and yearly observations to tailor the specifics of the site. In order to ensure the highest quality conditions, the staff must also recognize and appreciate the need to be aware of the constantly changing conditions of the landscaping and be able to respond to them on a proactive basis.

Lawn Fertilizer: Maintenance practices should be aimed at reducing environmental, mechanical and pest stresses to promote healthy and vigorous growth. When necessary, pest outbreaks should be treated with the most sensitive control measure available. Synthetic chemical controls should be used only as a last resort to organic and biological control methods. Fertilizer, synthetic chemical controls and pest management applications (when necessary) shall be performed only by licensed applicators in accordance with the manufacturer's label instructions when environmental conditions are conducive to controlled product application.

If possible, try to use slow-release organic fertilizers should be used in the planting and mulch areas to limit the amount of nutrients that could enter downstream resource areas. Fertilization of the planting and mulch areas will be performed within manufacturers labeling instructions and shall not exceed an NPK ration of 1:1:1 (i.e. Triple 10 fertilizer mix), considered a low nitrogen mixture

MANAGEMENT OF DEICING CHEMICALS AND SNOW

Snow shall not be plowed towards any area protected by the Massachusetts Wetlands Protection Act. Additionally, it is prohibited to dump snow into the infiltration basin or near the abutting vegetated wetlands. Snow shall only be stockpiled on site within the snow storage areas depicted on the Snow Storage Plan. If the stockpiles of snow do not fit within the designated areas, then snow will be disposed off-site. It will be the responsibility of the snow removal contractor to properly dispose of transported snow according to the most recent Superseded Massachusetts Department of Environmental

Protection, Bureau of Resource Protection – Snow Disposal Guideline #BRPG01-01 effective December 23, 2019, governing the proper disposal of snow. It will be the responsibility of the snow removal contractor to follow these guidelines and all applicable laws and regulations. A copy of the MassDEP Snow Disposal Guideline #BRPG01-01 has been included at the end of Section 2 for reference.

The site's maintenance staffs (or its designee) will be responsible for the clearing of the sidewalk and building entrances. The site may be required to use a de-icing agent such as potassium chloride (or approved equal) to maintain a safe walking surface; however, these are to be used at the minimum amount practicable. The de-icing agent for the walkways and building entrances will be kept within the storage rooms located within the buildings. De-icing agents will not be stored outside.

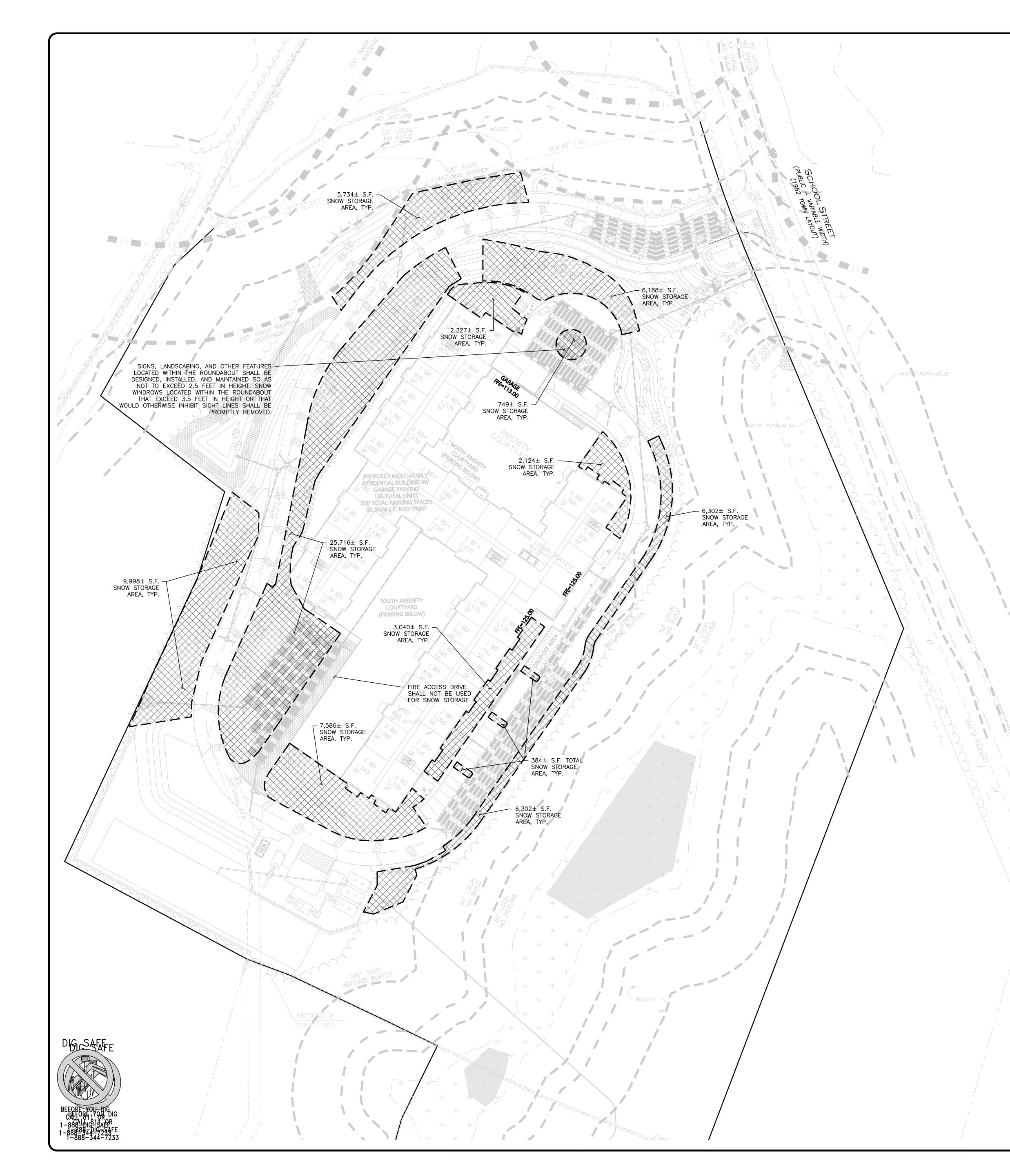
SPILL PREVENTION AND RESPONSE

Sources of potential spill hazards include vehicle fluids, liquid fuels, pesticides, paints, solvents, and liquid cleaning products. The majority of the spill hazards would likely occur within the building and would not enter the stormwater drainage system. However, there are spill hazards from vehicle fluids or liquid fuels located outside of the buildings. These exterior spill hazards have the potential to enter the stormwater drainage system and are to be addressed as follows:

- Spill Hazards of pesticides, paints, and solvents shall be remediated using the Manufacturers' recommended spill cleanup protocol.
- Vehicle fluids and liquid fuel spill shall be remediated according to the local and state regulations governing fuel spills.
- The owner shall have the following equipment and materials on hand to address a spill clean-up: brooms, dust pans, mops, rags, gloves, absorptive material, sand, sawdust, plastic and metal trash containers.
- All spills shall be cleaned up immediately after discovery.
- Spills of toxic or hazardous material shall be reported, regardless of size, to the Massachusetts Department of Environmental Protection at 888-304-1133.
- Should a spill occur, the pollution prevention plan will be adjusted to include measures to prevent another spill of a similar nature. A description of the spill, along with the causes and cleanup measures will be included in the updated pollution prevention plan.

OPERATION & MAINTENANCE PLAN SCHEDULE

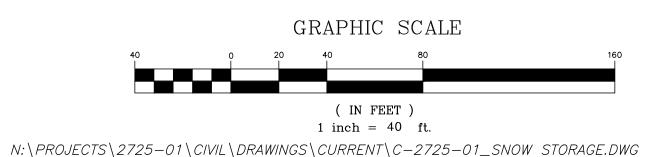
Project: The Sanctuary Address: 0 School Street Manchester-by-the-Sea


ty Responsible for O & M Plan: SLV School Street, LLC. Address: 257 Hillside Avenue Needham, MA 02494 Date: 7/16/2021

Revised:

Phone:

Structure or Task	Maintenance Activity	Schedule/Notes	Annual Maintenance Cost	st Inspection Performed	
Structure of Task	Maintenance Activity	Schedule/Noles	Annual Maintenance Cost	Date:	By:
Street Sweeping	Sween, nower broom or veguum naved areas	Sweep paved areas as needed, but not less than four times annually.	\$2,000		
Street Sweeping	Sweep, power broom or vacuum paved areas.	Submit information that confirms that all street sweepings have been disposed in accordance with state and local requirements	φ2,000		
Deep Sump Catch	Clam shell or vacuum sumps	Inspect at least twice annually. Clean when sediment is within 2.5 feet of the outlet invert.	-		
Basins(s)		Submit information that confirms that all catch basin sediments have been disposed in accordance with state and local requirements	\$500		
Storm Water	·				
Management System	See the ConTECH Maintenance package for the inspection and cleaning procedure.	Inspect at least four times annually as well as following storms exceeding 1" of rainfall. Devices			r
Proprietary Separators		shall be cleaned at leaast once annually or when sediment reaches 6 inches of depth whichever is more frequent. See also note #1 below.			
roprietary Separators		Submit information that confirms that all water quality inlets sediments have been disposed in accordance with state and local requirements	\$250		
	Inspect & remove trash	Monthly during all seasons			
	Mulch	Annually every spring			
Rain Gardens	Remove/Replace dead vegetation	Annually. Remove in fall & spring, replace in spring only Anually as-needed, spring or fall	\$250		
		Late spring/early summer, as-needed			
	Replace media & all vegetation Inspect monthly and after large storm events to ensure it is draining properly.	Late spring/early summer, as-needed			
Surface Detention/Infiltration Ponds	The surface pond will be inspected 24 hours or several days after large rain events (greater than 1.5"), to look for ponded water. Pond should be inspected and the trashed removed on a monthly basis. The basin should be mowed a minimum of two (2) times per year and a maximum of once monthly.	On a semi-annual basis.	\$500		
Outlet Control Structure(s)	Clam shell or vacuum sumps	Periodic cleaning of Outlet Control Structures as needed.	\$50		
Pool Water Discharge	CB management targeted larviciding treatment to CB's and all storm drains to control mosquitoes in their aquatic stages.	Pool water shall not be or drainage structures under any circumstances.	N/A		
Mosquito Control	CB management targeted larviciding treatment to CB's and all storm drains to control mosquitoes in their aquatic stages.	Surveillance is a non chemical inspection method that involves classification of mosquito breeding sites, larval presents, and survey.	\$100		
Snow Storage	Debris shall be cleared from the site and properly disposed of at the end of the snow season, but shall be cleared no later than May 15.	Avoid dumping snow removal over catch basins, in detention ponds, sediment forebays, rivers, wetlands, and flood plain. It is also prohibited to dump snow in the bioretention basins or gravel	\$500		


Note #1 - During the first year of operation, all of the BMP's shall be inspected during and after large storm events to ensure they are functioning properly. The surface infiltration pond should be fully drained within 72 hours after a rain event. If it is not drained within this time period, the systems shall be evaluated and corrective actions should be implemented.

LEGEND					
SNOW STORAGE AREA					

-(....)-

- NOTES: 1. THE LOCATIONS OF EXISTING UNDERGROUND UTILITIES ARE SHOWN IN AN APPROXIMATE WAY ONLY AND HAVE NOT BEEN INDEPENDENTLY VERFIEID APPROXIMATE WAY ONLY AND HAVE NOT BEEN INDEPENDENTLY VERFIEID BY THE OWNER OR IT'S REPRESENTATIVE. THE CONTRACTOR SHALL DETERMINE THE EXACT LOCATION OF ALL EXISTING UTILITIES BEFORE COMMENCING WORK, AND AGREES TO BE FULLY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH MIGHT BE OCCASIONED BY THE CONTRACTOR'S FAILURE TO EXACTLY LOCATE AND PRESERVE ANY AND ALL UNDERGROUND UTILITIES.
- 2. THE INFORMATION SHOWN ON THIS PLAN IS THE SOLE PROPERTY OF ALLEN & MAJOR ASSOCIATES, INC. IT'S INTENDED USE IS TO PROVIDE INFORMATION. ANY ALTERATION, MISUSE, OR RECALCULATION OF INFORMATION OR DATA WITHOUT THE EXPRESSED, WRITTEN CONSENT OF ALLEN & MAJOR ASSOCIATES, INC. IS STRICTLY PROHIBITED.
- 3. SNOW WILL BE STOCKPILED ON SITE UNTIL THERE IS NOT ENOUGH SPACE. AS NECESSARY, THE SNOW WILL BE REMOVED AND DISPOSED OF OFF-SITE. IT WILL BE THE RESPONSIBILITY OF THE SNOW REMOVAL CONTRACTOR TO PROPERLY DISPOSE OF TRANSPORTED SNOW ACCORDING TO MASSACHUSETTS DEP, BUREAU OF RESOURCE PROTECTION - MASSACHUSETTS DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF WATER RESOURCES SNOW DISPOSAL GUIDANCE EFFECTIVE DATE: DECEMBER 23, 2019, GOVERNING THE PROPER DISPOSAL OF SNOW. IT WILL BE THE RESPONSIBILITY OF THE SNOW REMOVAL CONTRACTOR TO FOLLOW THESE GUIDELINES AND ALL APPLICABLE LAWS AND REGULATIONS.

Department of Environmental Protection

One Winter Street Boston, MA 02108 • 617-292-5500

Charles D. Baker Governor

Karyn E. Polito

Lieutenant Governor

Kathleen A. Theoharides Secretary

> Martin Suuberg Commissioner

Massachusetts Department of Environmental Protection Bureau of Water Resources Snow Disposal Guidance

Effective Date: December 23, 2019

Applicability: Applies to all federal, state, regional and local agencies, as well as to private businesses.

Supersedes: Bureau of Resource Protection (BRP) Snow Disposal Guideline No. BRPG97-1 issued December 12, 1997 and BRPG01-01 issued March 8, 2001; Bureau of Water Resources (BWR) snow disposal guidance issued December 21, 2015 and December 12, 2018.

Approved by: Kathleen Baskin, Assistant Commissioner, Bureau of Water Resources

PURPOSE: To provide guidelines to all government agencies and private businesses regarding snow disposal site selection, site preparation and maintenance, and emergency snow disposal options that are protective of wetlands, drinking water, and water bodies, and are acceptable to the Massachusetts Department of Environmental Protection (MassDEP), Bureau of Water Resources.

APPLICABILITY: These Guidelines are issued by MassDEP's Bureau of Water Resources on behalf of all Bureau Programs (including Drinking Water Supply, Wetlands and Waterways, Wastewater Management, and Watershed Planning and Permitting). They apply to all federal agencies, state agencies, state authorities, municipal agencies and private businesses disposing of snow in the Commonwealth of Massachusetts.

INTRODUCTION

Finding a place to dispose of collected snow poses a challenge to municipalities and businesses as they clear roads, parking lots, bridges, and sidewalks. While MassDEP is aware of the threats to public safety caused by snow, collected snow that is contaminated with road salt, sand, litter, and automotive pollutants such as oil also threatens public health and the environment.

As snow melts, road salt, sand, litter, and other pollutants are transported into surface water or through the soil where they may eventually reach the groundwater. Road salt and other pollutants can contaminate water supplies and are toxic to aquatic life at certain levels. Sand washed into

This information is available in alternate format. Contact Michelle Waters-Ekanem, Director of Diversity/Civil Rights at 617-292-5751. TTY# MassRelay Service 1-800-439-2370 MassDEP Website: www.mass.gov/dep

Printed on Recycled Paper

waterbodies can create sand bars or fill in wetlands and ponds, impacting aquatic life, causing flooding, and affecting our use of these resources.

There are several steps that communities can take to minimize the impacts of snow disposal on public health and the environment. These steps will help communities avoid the costs of a contaminated water supply, degraded waterbodies, and flooding. Everything that occurs on the land has the potential to impact the Commonwealth's water resources. Given the authority of local government over the use of the land, municipal officials and staff have a critically important role to play in protecting our water resources.

The purpose of these guidelines is to help federal agencies, state agencies, state authorities, municipalities and businesses select, prepare, and maintain appropriate snow disposal sites before the snow begins to accumulate through the winter. Following these guidelines and obtaining the necessary approvals may also help municipalities in cases when seeking reimbursement for snow disposal costs from the Federal Emergency Management Agency is possible.

RECOMMENDED GUIDELINES

These snow disposal guidelines address: (1) site selection; (2) site preparation and maintenance; and (3) emergency snow disposal.

1. SITE SELECTION

The key to selecting effective snow disposal sites is to locate them adjacent to or on pervious surfaces in upland areas or upland locations on impervious surfaces away from water resources and drinking water wells. At these locations, the snow meltwater can filter into the soil, leaving behind sand and debris which can be removed in the spring. The following conditions should be followed:

- Within water supply Zone A and Zone II, avoid storage or disposal of snow and ice containing deicing chemicals that has been collected from streets located outside these zones. Municipalities may have a water supply protection land use control that prohibits the disposal of snow and ice containing deicing chemicals from outside the Zone A and Zone II, subject to the Massachusetts Drinking Water Regulations at 310 CMR 22.20C and 310 CMR 22.21(2).
- Avoid storage or disposal of snow or ice in Interim Wellhead Protection Areas (IWPA) of public water supply wells, and within 75 feet of a private well, where road salt may contaminate water supplies.
- Avoid dumping snow into any waterbody, including rivers, the ocean, reservoirs, ponds, or wetlands. In addition to water quality impacts and flooding, snow disposed of in open water can cause navigational hazards when it freezes into ice blocks.
- Avoid dumping snow on MassDEP-designated high and medium-yield aquifers where it may contaminate groundwater.
- Avoid dumping snow in sanitary landfills and gravel pits. Snow meltwater will create more contaminated leachate in landfills posing a greater risk to groundwater, and in gravel pits, there is little opportunity for pollutants to be filtered out of the meltwater because groundwater is close to the land surface.

• Avoid disposing of snow on top of storm drain catch basins or in stormwater drainage systems including detention basins, swales or ditches. Snow combined with sand and debris may block a stormwater drainage system, causing localized flooding. A high volume of sand, sediment, and litter released from melting snow also may be quickly transported through the system into surface water.

Recommended Site Selection Procedures

It is important that the municipal Department of Public Works or Highway Department, Conservation Commission, and Board of Health work together to select appropriate snow disposal sites. The following steps should be taken:

- Estimate how much snow disposal capacity may be needed for the season so that an adequate number of disposal sites can be selected and prepared.
- Identify sites that could potentially be used for snow disposal, such as municipal open space (e.g., parking lots or parks).
- Select sites located in upland locations that are not likely to impact sensitive environmental resources first.
- If more storage space is still needed, prioritize the sites with the least environmental impact (using the site selection criteria, and local or MassGIS maps as a guide).

Snow Disposal Mapping Assistance

MassDEP has an online mapping tool to assist in identifying possible locations to potentially dispose of snow. MassDEP encourages municipalities to use this tool to identify possible snow disposal options. The tool identifies wetland resource areas, public drinking water supplies and other sensitive locations where snow should not be disposed. The tool may be accessed through the Internet at the following web address:

https://maps.env.state.ma.us/dep/arcgis/js/templates/PSF/.

2. SITE PREPARATION AND MAINTENANCE

In addition to carefully selecting disposal sites before the winter begins, it is important to prepare and maintain these sites to maximize their effectiveness. The following maintenance measures should be undertaken for all snow disposal sites:

- A silt fence or equivalent barrier should be placed securely on the downgradient side of the snow disposal site.
- Wherever possible maintain a 50-foot vegetated buffer between the disposal site and adjacent waterbodies to filter pollutants from the meltwater.
- Clear debris from the site prior to using the site for snow disposal.
- Clear debris from the site and properly dispose of it at the end of the snow season, and no later than May 15.

3. SNOW DISPOSAL APPROVALS

Proper snow disposal may be undertaken through one of the following approval procedures:

- Routine snow disposal Minimal, if any, administrative review is required in these cases when upland and pervious snow disposal locations or upland locations on impervious surfaces that have functioning and maintained stormwater management systems have been identified, mapped, and used for snow disposal following ordinary snowfalls. Use of upland and pervious snow disposal sites avoids wetland resource areas and allows snow meltwater to recharge groundwater and will help filter pollutants, sand, and other debris. This process will address the majority of snow removal efforts until an entity exhausts all available upland snow disposal sites. The location and mapping of snow disposal sites will help facilitate each entity's routine snow management efforts.
- Emergency Certifications If an entity demonstrates that there is no remaining capacity at upland snow disposal locations, local conservation commissions may issue an Emergency Certification under the Massachusetts Wetlands Protection regulations to authorize snow disposal in buffer zones to wetlands, certain open water areas, and certain wetland resource areas (i.e. within flood plains). Emergency Certifications can only be issued at the request of a public agency or by order of a public agency for the protection of the health or safety of citizens, and are limited to those activities necessary to abate the emergency. See 310 CMR 10.06(1)-(4). Use the following guidelines in these emergency situations:
 - Dispose of snow in open water with adequate flow and mixing to prevent ice dams from forming.
 - Do not dispose of snow in salt marshes, vegetated wetlands, certified vernal pools, shellfish beds, mudflats, drinking water reservoirs and their tributaries, Zone IIs or IWPAs of public water supply wells, Outstanding Resource Waters, or Areas of Critical Environmental Concern.
 - Do not dispose of snow where trucks may cause shoreline damage or erosion.
 - Consult with the municipal Conservation Commission to ensure that snow disposal in open water complies with local ordinances and bylaws.
- Severe Weather Emergency Declarations In the event of a large-scale severe weather event, MassDEP may issue a broader Emergency Declaration under the Wetlands Protection Act which allows federal agencies, state agencies, state authorities, municipalities, and businesses greater flexibility in snow disposal practices. Emergency Declarations typically authorize greater snow disposal options while protecting especially sensitive resources such as public drinking water supplies, vernal pools, land containing shellfish, FEMA designated floodways, coastal dunes, and salt marsh. In the event of severe winter storm emergencies, the snow disposal site maps created by municipalities will enable MassDEP and the Massachusetts Emergency Management Agency (MEMA) in helping communities identify appropriate snow disposal locations.

If upland disposal sites have been exhausted, the Emergency Declaration issued by MassDEP allows for snow disposal near water bodies. In these situations, a buffer of at

least 50 feet, preferably vegetated, should still be maintained between the site and the waterbody. Furthermore, it is essential that the other guidelines for preparing and maintaining snow disposal sites be followed to minimize the threat to adjacent waterbodies.

Under extraordinary conditions, when all land-based snow disposal options are exhausted, the Emergency Declaration issued by MassDEP may allow disposal of snow in certain waterbodies under certain conditions. *A federal agency, state agency, state authority, municipality or business seeking to dispose of snow in a waterbody should take the following steps*:

- Call the emergency contact phone number [(888) 304-1133)] and notify the MEMA of the municipality's intent.
- MEMA will ask for some information about where the requested disposal will take place.
- MEMA will confirm that the disposal is consistent with MassDEP's Severe Weather Emergency Declaration and these guidelines and is therefore approved.

During declared statewide snow emergency events, MassDEP's website will also highlight the emergency contact phone number [(888) 304-1133)] for authorizations and inquiries. For further non-emergency information about this Guidance you may contact your MassDEP Regional Office Service Center:

Northeast Regional Office, Wilmington, 978-694-3246 Southeast Regional Office, Lakeville, 508-946-2714 Central Regional Office, Worcester, 508-792-7650 Western Regional Office, Springfield, 413-755-2114

Chapter 5 Miscellaneous Stormwater Topics

Mosquito Control in Stormwater Management Practices

Both aboveground and underground stormwater BMPs have the potential to serve as mosquito breeding areas. Good design, proper operation and maintenance and treatment with larvicides can minimize this potential.

EPA recommends that stormwater treatment practices dewater within 3 days (72 hours) to reduce the number of mosquitoes that mature to adults, since the aquatic stage of many mosquito species is 7 to 10 days. Massachusetts has had a 72-hour dewatering rule in its Stormwater Management Standards since 1996. The 2008 technical specifications for BMPs set forth in Volume 2, Chapter 2 of the Massachusetts Stormwater Handbook also concur with this practice by requiring that all stormwater practices designed to drain do so within 72 hours.

Some stormwater practices are designed to include permanent wet pools. These practices – if maintained properly – can limit mosquito breeding by providing habitat for mosquito predators. Additional measures that can be taken to reduce mosquito populations include increasing water circulation, attracting mosquito predators by adding suitable habitat, and applying larvicides.

The Massachusetts State Reclamation and Mosquito Control Board (SRMCB), through the Massachusetts Mosquito Control Districts, can undertake further mosquito control actions specifically for the purpose of mosquito control pursuant to Massachusetts General Law Chapter 252. The Mosquito Control Board, <u>http://www.mass.gov/agr/mosquito/</u>, describes mosquito control methods and is in the process of developing guidance documents that describe Best Management Practices for mosquito control projects.

The SRMCB and Mosquito Control Districts are not responsible for operating and maintaining stormwater BMPs to reduce mosquito populations. The owners of property that construct the stormwater BMPs or municipalities that "accept" them through local subdivision approval are responsible for their maintenance.¹ The SRMCB is composed of officials from MassDEP, Department of Agricultural Resources, and Department of Conservation and Recreation. The nine (9) Mosquito Control Districts overseen by the SRMCB are located throughout Massachusetts, covering 176 municipalities.

Construction Period Best Management Practices for Mosquito Control

To minimize mosquito breeding during construction, it is essential that the following actions be taken to minimize the creation of standing pools by taking the following actions:

- *Minimize Land Disturbance:* Minimizing land disturbance reduces the likelihood of mosquito breeding by reducing silt in runoff that will cause construction period controls to clog and retain standing pools of water for more than 72 hours.
- *Catch Basin inlets:* Inspect and refresh filter fabric, hay bales, filter socks or stone dams on a regular basis to ensure that any stormwater ponded at the inlet drains within 8 hours after precipitation stops. Shorter periods may be necessary to avoid hydroplaning in roads

¹ MassDEP and MassHighway understand that the numerous stormwater BMPs along state highways pose a unique challenge. To address this challenge, the 2004 MassHighway Stormwater Handbook will provide additional information on appropriate operation and maintenance practices for mosquito control when the Handbook is revised to reflect the 2008 changes to the Stormwater Management Standards..

caused by water ponded at the catch basin inlet. Treat catch basin sumps with larvicides such as *Bacillus sphaericus* (*Bs*) using a licensed pesticide applicator.

- *Check Dams:* If temporary check dams are used during the construction period to lag peak rate of runoff or pond runoff for exfiltration, inspect and repair the check dams on a regular basis to ensure that any stormwater ponded behind the check dam drains within 72 hours.
- **Design construction period sediment traps** to dewater within 72 hours after precipitation. Because these traps are subject to high silt loads and tend to clog, treat them with the larvicide *Bs* after it rains from June through October, until the first frost occurs.
- *Construction period open conveyances:* When temporary manmade ditches are used for channelizing construction period runoff, inspect them on a regular basis to remove any accumulated sediment to restore flow capacity to the temporary ditch.
- *Revegetating Disturbed Surfaces:* Revegetating disturbed surfaces reduces sediment in runoff that will cause construction period controls to clog and retain standing pools of water for greater than 72 hours.
- *Sediment fences/hay bale barriers:* When inspections find standing pools of water beyond the 24-hour period after a storm, take action to restore barrier to its normal function.

Post-Construction Stormwater Treatment Practices

- Mosquito control begins with the environmentally sensitive site design. Environmentally sensitive site design that minimizes impervious surfaces reduces the amount of stormwater runoff. Disconnecting runoff using the LID Site Design credits outlined in the Massachusetts Stormwater Handbook reduces the amount of stormwater that must be conveyed to a treatment practice. Utilizing green roofs minimizes runoff from smaller storms. Storage media must be designed to dewater within 72 hours after precipitation.
- Mosquito control continues with the selection of structural stormwater BMPs that are unlikely to become breeding grounds for mosquitoes, such as:
 - **Bioretention Areas/Rain Gardens/Sand Filter:** These practices tend not to result in mosquito breeding. If any level spreaders, weirs or sediment forebays are used as part of the design, inspect them and correct them as necessary to prevent standing pools of water for more than 72 hours.
 - *Infiltration Trenches:* This practice tends not to result in mosquito breeding. If any level spreaders, weirs, or sediment forebays are used as part of the design, inspect them and correct them as necessary to prevent standing pools of water for more than 72 hours.
- Another mosquito control strategy is to select BMPs that can become habitats for mosquito predators, such as:
 - *Constructed Stormwater Wetlands:* Habitat features can be incorporated in constructed stormwater wetlands to attract dragonflies, amphibians, turtles, birds, bats, and other natural predators of mosquitoes.
 - Wet Basins: Wet basins can be designed to incorporate fish habitat features, such as deep pools. Introduce fish in consultation with Massachusetts Division of Fisheries and Wildlife. Vegetation within wet basins designed as fish habitat must be properly managed to ensure that vegetation does not overtake the habitat. Proper design to ensure that no low circulation or "dead" zones are created may reduce the potential for mosquito breeding. Introducing bubblers may increase water circulation in the wet basin.

Massachusetts Stormwater Handbook

Effective mosquito controls require proponents to design structural BMPs to prevent ponding and facilitate maintenance and, if necessary, the application of larvicides. Examples of such design practices include the following:

- **Basins:** Provide perimeter access around wet basins, extended dry detention basins and dry detention basins for both larviciding and routine maintenance. Control vegetation to ensure that access pathways stay open.
- *BMPs without a permanent pool of water:* All structural BMPs that do not rely on a permanent pool of water must drain and completely dewater within 72 hours after precipitation. This includes dry detention basins, extended dry detention basins, infiltration basins, and dry water quality swales. Use underdrains at extended dry detention basins to drain the small pools that form due to accumulation of silts. Wallace indicates that extended dry extended detention basins may breed more mosquitoes than wet basins. It is, therefore, imperative to design outlets from extended dry detention basins to completely dewater within the 72-hour period.
- *Energy Dissipators and Flow Spreaders:* Currier and Moeller, 2000 indicate that shallow recesses in energy dissipators and flow spreaders trap water where mosquitoes breed. Set the riprap in grout to reduce the shallow recesses and minimize mosquito breeding.
- *Outlet control structures:* Debris trapped in small orifices or on trash racks of outlet control structures such as multiple stage outlet risers may clog the orifices or the trash rack, causing a standing pool of water. Optimize the orifice size or trash rack mesh size to provide required peak rate attenuation/water quality detention/retention time while minimizing clogging.
- *Rain Barrels and Cisterns:* Seal lids to reduce the likelihood of mosquitoes laying eggs in standing water. Install mosquito netting over inlets. The cistern system should be designed to ensure that all collected water is drained into it within 72 hours.
- Subsurface Structures, Deep Sump Catch Basins, Oil Grit Separators, and Leaching Catch Basins: Seal all manhole covers to reduce likelihood of mosquitoes laying eggs in standing water. Install mosquito netting over the outlet (CALTRANS 2004).

The Operation and Maintenance Plan should provide for mosquito prevention and control.

- *Check dams:* Inspect permanent check dams on the schedule set forth in the O&M Plan. Inspect check dams 72 hours after storms for standing water ponding behind the dam. Take corrective action if standing water is found.
- *Cisterns:* Apply *Bs* larvicide in the cistern if any evidence of mosquitoes is found. The Operation and Maintenance Plan shall specify how often larvicides should be applied to waters in the cistern.
- *Water quality swales:* Remove and properly dispose of any accumulated sediment as scheduled in the Operation and Maintenance Plan.
- *Larvicide Treatment:* The Operation and Maintenance Plan must include measures to minimize mosquito breeding, including larviciding.
- The party identified in the Operation and Maintenance Plan as responsible for maintenance shall see that larvicides are applied as necessary to the following stormwater treatment practices: catch basins, oil/grit separators, wet basins, wet water quality swales, dry extended detention basins, infiltration basins, and constructed stormwater wetlands. The Operation and Maintenance Plan must ensure that all larvicides are applied by a licensed pesticide applicator and in compliance with all pesticide label requirements.
- The Operation and Maintenance Plan should identify the appropriate larvicide and the time and method of application. For example, *Bacillus sphaericus (Bs)*, the preferred

larvicide for stormwater BMPs, should be hand-broadcast.² Alternatively, Altosid, a Methopren product, may be used. Because some practices are designed to dewater between storms, such as dry extended detention and infiltration basins, the Operation and Maintenance Plan should provide that larviciding must be conducted during or immediately after wet weather, when the detention or infiltration basin has a standing pool of water, unless a product is used that can withstand extended dry periods.

REFERENCES

California Department of Transportation, 2004, BMP Retrofit Pilot Program, Final Report, Report ID CTSW - RT - 1 - 050,

http://www.dot.ca.gov/hq/env/stormwater/special/newsetup/_pdfs/new_technology/CTSW-RT-01-050.pdf#xml=http://dap1.dot.ca.gov/cgi-

bin/texis/webinator/search/pdfhi.txt?query=mosquito&db=db&pr=www&prox=page&rorder=50 0&rprox=500&rdfreq=500&rwfreq=500&rlead=500&sufs=0&order=r&cq=&id=4673373b7 Appendix E: Vector Monitoring and Abatement,

<u>http://www.dot.ca.gov/hq/env/stormwater/special/newsetup/_pdfs/new_technology/</u> California Department of Transportation, 2001, Final Vector Report, Caltrans BMP Retrofit

Project Sites, Districts 7 and 11, <u>http://www.dot.ca.gov/hq/env/stormwater/special/newsetup/_pdfs/new_technology/CTSW-RT-</u>01-050/AppendixE/01_FinalVectorReport.pdf

Currier, Brian, and Moeller, 2000, Glenn, Lessons Learned: The CALTRANS Storm Water Best Management Practice Retrofit Pilot Study, prepared by the California State University Sacramento and University of California Davis for the California Department of Transportation, http://www.owp.csus.edu/research/papers/papers/PP015.pdf

Massachusetts Department of Environmental Protection, 2001, West Nile Virus, Application of Pesticides to Wetland Resource Areas and Buffer Zones and Public Water systems, Guideline No. BRPG01-02, <u>http://www.mass.gov/dep/water/wnvpolcy.doc</u>

O'Meara, G.F., 2003, Mosquitoes Associated With Stormwater Detention/Retention Areas, ENY627, University of Florida, Institute of Food and Agricultural Sciences Extension, http://edis.ifas.ufl.edu/mg338

Taylor, Scott M., and Currier, Brian, 1999, A Wet Pond as a Storm Water Runoff BMP – Case Study, presented at Department of Environmental Resources Engineering, Humboldt State University, Arcata, California <u>http://www.owp.csus.edu/research/papers/Papers/PP004.pdf</u> U.S. EPA, 2005, Stormwater Structures and Mosquitoes, EPA 833-F-05-003, http://www.epa.gov/npdes/pubs/sw_wnv.pdf

U.S. EPA, 2003, Do Stormwater Retention Ponds Contribute to Mosquito Problems, Nonpoint source News-Notes, Issue No. 71, <u>http://notes.tetratech-</u>

ffx.com/newsnotes.nsf/0/143f7fa99c3ea25485256d0100618bc9?OpenDocument

Virginia Department of Conservation and Recreation, 2003, Vector Control, Mosquitoes and Stormwater Management, Stormwater Management Technical Bulletin No. 8, http://www.dcr.virginia.gov/soil & water/documents/tecbltn8.pdf

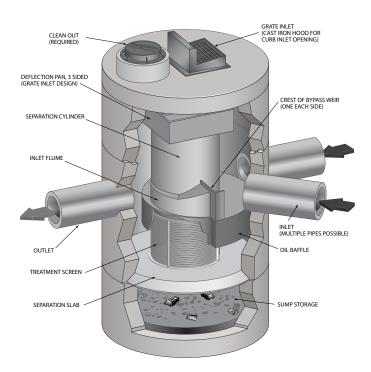
Wallace, John R., Stormwater Management and Mosquito Ecology, Stormwater Magazine, March/April 2007, <u>http://www.gradingandexcavation.com/sw_0703_management.html</u>

² Bacillus thuringienis israelensis or Bti is usually applied by helicopter to wetlands and floodplains

CDS Guide Operation, Design, Performance and Maintenance

CDS®

Using patented continuous deflective separation technology, the CDS system screens, separates and traps debris, sediment, and oil and grease from stormwater runoff. The indirect screening capability of the system allows for 100% removal of floatables and neutrally buoyant material without blinding. Flow and screening controls physically separate captured solids, and minimize the re-suspension and release of previously trapped pollutants. Inline units can treat up to 6 cfs, and internally bypass flows in excess of 50 cfs (1416 L/s). Available precast or cast-in-place, offline units can treat flows from 1 to 300 cfs (28.3 to 8495 L/s). The pollutant removal capacity of the CDS system has been proven in lab and field testing.


Operation Overview

Stormwater enters the diversion chamber where the diversion weir guides the flow into the unit's separation chamber and pollutants are removed from the flow. All flows up to the system's treatment design capacity enter the separation chamber and are treated.

Swirl concentration and screen deflection force floatables and solids to the center of the separation chamber where 100% of floatables and neutrally buoyant debris larger than the screen apertures are trapped.

Stormwater then moves through the separation screen, under the oil baffle and exits the system. The separation screen remains clog free due to continuous deflection.

During the flow events exceeding the treatment design capacity, the diversion weir bypasses excessive flows around the separation chamber, so captured pollutants are retained in the separation cylinder.

Design Basics

There are three primary methods of sizing a CDS system. The Water Quality Flow Rate Method determines which model size provides the desired removal efficiency at a given flow rate for a defined particle size. The Rational Rainfall Method[™] or the and Probabilistic Method is used when a specific removal efficiency of the net annual sediment load is required.

Typically in the Unites States, CDS systems are designed to achieve an 80% annual solids load reduction based on lab generated performance curves for a gradation with an average particle size (d50) of 125 microns (μ m). For some regulatory environments, CDS systems can also be designed to achieve an 80% annual solids load reduction based on an average particle size (d50) of 75 microns (μ m) or 50 microns (μ m).

Water Quality Flow Rate Method

In some cases, regulations require that a specific treatment rate, often referred to as the water quality design flow (WQQ), be treated. This WQQ represents the peak flow rate from either an event with a specific recurrence interval, e.g. the six-month storm, or a water quality depth, e.g. 1/2-inch (13 mm) of rainfall.

The CDS is designed to treat all flows up to the WQQ. At influent rates higher than the WQQ, the diversion weir will direct most flow exceeding the WQQ around the separation chamber. This allows removal efficiency to remain relatively constant in the separation chamber and eliminates the risk of washout during bypass flows regardless of influent flow rates.

Treatment flow rates are defined as the rate at which the CDS will remove a specific gradation of sediment at a specific removal efficiency. Therefore the treatment flow rate is variable, based on the gradation and removal efficiency specified by the design engineer.

Rational Rainfall Method™

Differences in local climate, topography and scale make every site hydraulically unique. It is important to take these factors into consideration when estimating the long-term performance of any stormwater treatment system. The Rational Rainfall Method combines site-specific information with laboratory generated performance data, and local historical precipitation records to estimate removal efficiencies as accurately as possible.

Short duration rain gauge records from across the United States and Canada were analyzed to determine the percent of the total annual rainfall that fell at a range of intensities. US stations' depths were totaled every 15 minutes, or hourly, and recorded in 0.01-inch increments. Depths were recorded hourly with 1-mm resolution at Canadian stations. One trend was consistent at all sites; the vast majority of precipitation fell at low intensities and high intensity storms contributed relatively little to the total annual depth.

These intensities, along with the total drainage area and runoff coefficient for each specific site, are translated into flow rates using the Rational Rainfall Method. Since most sites are relatively small and highly impervious, the Rational Rainfall Method is appropriate. Based on the runoff flow rates calculated for each intensity, operating rates within a proposed CDS system are determined. Performance efficiency curve determined from full scale laboratory tests on defined sediment PSDs is applied to calculate solids removal efficiency. The relative removal efficiency at each operating rate is added to produce a net annual pollutant removal efficiency estimate.

Probabilistic Rational Method

The Probabilistic Rational Method is a sizing program Contech developed to estimate a net annual sediment load reduction for a particular CDS model based on site size, site runoff coefficient, regional rainfall intensity distribution, and anticipated pollutant characteristics.

The Probabilistic Method is an extension of the Rational Method used to estimate peak discharge rates generated by storm events of varying statistical return frequencies (e.g. 2-year storm event). Under the Rational Method, an adjustment factor is used to adjust the runoff coefficient estimated for the 10-year event, correlating a known hydrologic parameter with the target storm event. The rainfall intensities vary depending on the return frequency of the storm event under consideration. In general, these two frequency dependent parameters (rainfall intensity and runoff coefficient) increase as the return frequency increases while the drainage area remains constant.

These intensities, along with the total drainage area and runoff coefficient for each specific site, are translated into flow rates using the Rational Method. Since most sites are relatively small and highly impervious, the Rational Method is appropriate. Based on the runoff flow rates calculated for each intensity, operating rates within a proposed CDS are determined. Performance efficiency curve on defined sediment PSDs is applied to calculate solids removal efficiency. The relative removal efficiency at each operating rate is added to produce a net annual pollutant removal efficiency estimate.

Treatment Flow Rate

The inlet throat area is sized to ensure that the WQQ passes through the separation chamber at a water surface elevation equal to the crest of the diversion weir. The diversion weir bypasses excessive flows around the separation chamber, thus preventing re-suspension or re-entrainment of previously captured particles.

Hydraulic Capacity

The hydraulic capacity of a CDS system is determined by the length and height of the diversion weir and by the maximum allowable head in the system. Typical configurations allow hydraulic capacities of up to ten times the treatment flow rate. The crest of the diversion weir may be lowered and the inlet throat may be widened to increase the capacity of the system at a given water surface elevation. The unit is designed to meet project specific hydraulic requirements.

Performance

Full-Scale Laboratory Test Results

A full-scale CDS system (Model CDS2020-5B) was tested at the facility of University of Florida, Gainesville, FL. This CDS unit was evaluated under controlled laboratory conditions of influent flow rate and addition of sediment.

Two different gradations of silica sand material (UF Sediment & OK-110) were used in the CDS performance evaluation. The particle size distributions (PSDs) of the test materials were analyzed using standard method "Gradation ASTM D-422 "Standard Test Method for Particle-Size Analysis of Soils" by a certified laboratory.

UF Sediment is a mixture of three different products produced by the U.S. Silica Company: "Sil-Co-Sil 106", "#1 DRY" and "20/40 Oil Frac". Particle size distribution analysis shows that the UF Sediment has a very fine gradation (d50 = 20 to 30 μ m) covering a wide size range (Coefficient of Uniformity, C averaged at 10.6). In comparison with the hypothetical TSS gradation specified in the NJDEP (New Jersey Department of Environmental Protection) and NJCAT (New Jersey Corporation for Advanced Technology) protocol for lab testing, the UF Sediment covers a similar range of particle size but with a finer d50 (d50 for NJDEP is approximately 50 μ m) (NJDEP, 2003).

The OK-110 silica sand is a commercial product of U.S. Silica Sand. The particle size distribution analysis of this material, also included in Figure 1, shows that 99.9% of the OK-110 sand is finer than 250 microns, with a mean particle size (d50) of 106 microns. The PSDs for the test material are shown in Figure 1.

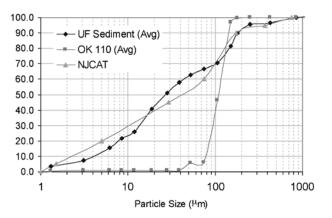


Figure 1. Particle size distributions

Tests were conducted to quantify the performance of a specific CDS unit (1.1 cfs (31.3-L/s) design capacity) at various flow rates, ranging from 1% up to 125% of the treatment design capacity of the unit, using the 2400 micron screen. All tests were conducted with controlled influent concentrations of approximately 200 mg/L. Effluent samples were taken at equal time intervals across the entire duration of each test run. These samples were then processed with a Dekaport Cone sample splitter to obtain representative sub-samples for Suspended Sediment Concentration (SSC) testing using ASTM D3977-97 "Standard Test Methods for Determining Sediment Concentration in Water Samples", and particle size distribution analysis.

Results and Modeling

Based on the data from the University of Florida, a performance model was developed for the CDS system. A regression analysis was used to develop a fitting curve representative of the scattered data points at various design flow rates. This model, which demonstrated good agreement with the laboratory data, can then be used to predict CDS system performance with respect to SSC removal for any particle size gradation, assuming the particles are inorganic sandy-silt. Figure 2 shows CDS predictive performance for two typical particle size gradations (NJCAT gradation and OK-110 sand) as a function of operating rate.

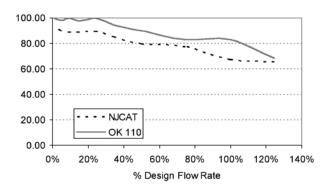


Figure 2. CDS stormwater treatment predictive performance for various particle gradations as a function of operating rate.

Many regulatory jurisdictions set a performance standard for hydrodynamic devices by stating that the devices shall be capable of achieving an 80% removal efficiency for particles having a mean particle size (d50) of 125 microns (e.g. Washington State Department of Ecology — WASDOE - 2008). The model can be used to calculate the expected performance of such a PSD (shown in Figure 3). The model indicates (Figure 4) that the CDS system with 2400 micron screen achieves approximately 80% removal at the design (100%) flow rate, for this particle size distribution (d50 = 125 μ m).

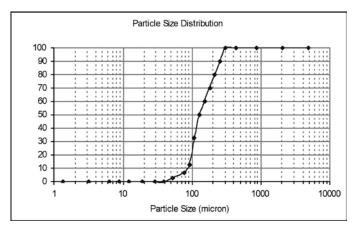
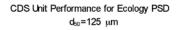



Figure 3. WASDOE PSD

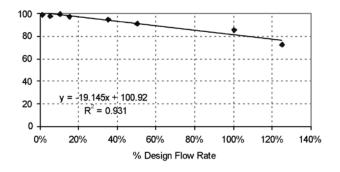


Figure 4. Modeled performance for WASDOE PSD.

Maintenance

The CDS system should be inspected at regular intervals and maintained when necessary to ensure optimum performance. The rate at which the system collects pollutants will depend more heavily on site activities than the size of the unit. For example, unstable soils or heavy winter sanding will cause the grit chamber to fill more quickly but regular sweeping of paved surfaces will slow accumulation.

Inspection

Inspection is the key to effective maintenance and is easily performed. Pollutant transport and deposition may vary from year to year and regular inspections will help ensure that the system is cleaned out at the appropriate time. At a minimum, inspections should be performed twice per year (e.g. spring and fall) however more frequent inspections may be necessary in climates where winter sanding operations may lead to rapid accumulations, or in equipment washdown areas. Installations should also be inspected more frequently where excessive amounts of trash are expected.

The visual inspection should ascertain that the system components are in working order and that there are no blockages or obstructions in the inlet and separation screen. The inspection should also quantify the accumulation of hydrocarbons, trash, and sediment in the system. Measuring pollutant accumulation can be done with a calibrated dipstick, tape measure or other measuring instrument. If absorbent material is used for enhanced removal of hydrocarbons, the level of discoloration of the sorbent material should also be identified

during inspection. It is useful and often required as part of an operating permit to keep a record of each inspection. A simple form for doing so is provided.

Access to the CDS unit is typically achieved through two manhole access covers. One opening allows for inspection and cleanout of the separation chamber (cylinder and screen) and isolated sump. The other allows for inspection and cleanout of sediment captured and retained outside the screen. For deep units, a single manhole access point would allows both sump cleanout and access outside the screen.

The CDS system should be cleaned when the level of sediment has reached 75% of capacity in the isolated sump or when an appreciable level of hydrocarbons and trash has accumulated. If absorbent material is used, it should be replaced when significant discoloration has occurred. Performance will not be impacted until 100% of the sump capacity is exceeded however it is recommended that the system be cleaned prior to that for easier removal of sediment. The level of sediment is easily determined by measuring from finished grade down to the top of the sediment pile. To avoid underestimating the level of sediment in the chamber, the measuring device must be lowered to the top of the sediment pile carefully. Particles at the top of the pile typically offer less resistance to the end of the rod than consolidated particles toward the bottom of the pile. Once this measurement is recorded, it should be compared to the as-built drawing for the unit to determine weather the height of the sediment pile off the bottom of the sump floor exceeds 75% of the total height of isolated sump.

Cleaning

Cleaning of a CDS systems should be done during dry weather conditions when no flow is entering the system. The use of a vacuum truck is generally the most effective and convenient method of removing pollutants from the system. Simply remove the manhole covers and insert the vacuum hose into the sump. The system should be completely drained down and the sump fully evacuated of sediment. The area outside the screen should also be cleaned out if pollutant build-up exists in this area.

In installations where the risk of petroleum spills is small, liquid contaminants may not accumulate as quickly as sediment. However, the system should be cleaned out immediately in the event of an oil or gasoline spill. Motor oil and other hydrocarbons that accumulate on a more routine basis should be removed when an appreciable layer has been captured. To remove these pollutants, it may be preferable to use absorbent pads since they are usually less expensive to dispose than the oil/water emulsion that may be created by vacuuming the oily layer. Trash and debris can be netted out to separate it from the other pollutants. The screen should be cleaned to ensure it is free of trash and debris.

Manhole covers should be securely seated following cleaning activities to prevent leakage of runoff into the system from above and also to ensure that proper safety precautions have been followed. Confined space entry procedures need to be followed if physical access is required. Disposal of all material removed from the CDS system should be done in accordance with local regulations. In many jurisdictions, disposal of the sediments may be handled in the same manner as the disposal of sediments removed from catch basins or deep sump manholes. Check your local regulations for specific requirements on disposal.

CDS Model	Diameter		Distance from to Top of Se		Sediment Storage Capacity	
	ft	m	ft	m	У³	m³
CDS1515	3	0.9	3.0	0.9	0.5	0.4
CDS2015	4	1.2	3.0	0.9	0.9	0.7
CDS2015	5	1.5	3.0	0.9	1.3	1.0
CDS2020	5	1.5	3.5	1.1	1.3	1.0
CDS2025	5	1.5	4.0	1.2	1.3	1.0
CDS3020	6	1.8	4.0	1.2	2.1	1.6
CDS3025	6	1.8	4.0	1.2	2.1	1.6
CDS3030	6	1.8	4.6	1.4	2.1	1.6
CDS3035	6	1.8	5.0	1.5	2.1	1.6
CDS4030	8	2.4	4.6	1.4	5.6	4.3
CDS4040	8	2.4	5.7	1.7	5.6	4.3
CDS4045	8	2.4	6.2	1.9	5.6	4.3
CDS5640	10	3.0	6.3	1.9	8.7	6.7
CDS5653	10	3.0	7.7	2.3	8.7	6.7
CDS5668	10	3.0	9.3	2.8	8.7	6.7
CDS5678	10	3.0	10.3	3.1	8.7	6.7

Table 1: CDS Maintenance Indicators and Sediment Storage Capacities

Note: To avoid underestimating the volume of sediment in the chamber, carefully lower the measuring device to the top of the sediment pile. Finer silty particles at the top of the pile may be more difficult to feel with a measuring stick. These finer particles typically offer less resistance to the end of the rod than larger particles toward the bottom of the pile.

CDS Inspection & Maintenance Log

CDS Mode	l:	Location:								
Date	Water depth to sediment ¹	Floatable Layer Thickness ²	Describe Maintenance Performed	Maintenance Personnel	Comments					

1. The water depth to sediment is determined by taking two measurements with a stadia rod: one measurement from the manhole opening to the top of the sediment pile and the other from the manhole opening to the water surface. If the difference between these measurements is less than the values listed in table 1 the system should be cleaned out. Note: to avoid underestimating the volume of sediment in the chamber, the measuring device must be carefully lowered to the top of the sediment pile.

2. For optimum performance, the system should be cleaned out when the floating hydrocarbon layer accumulates to an appreciable thickness. In the event of an oil spill, the system should be cleaned immediately.

SUPPORT

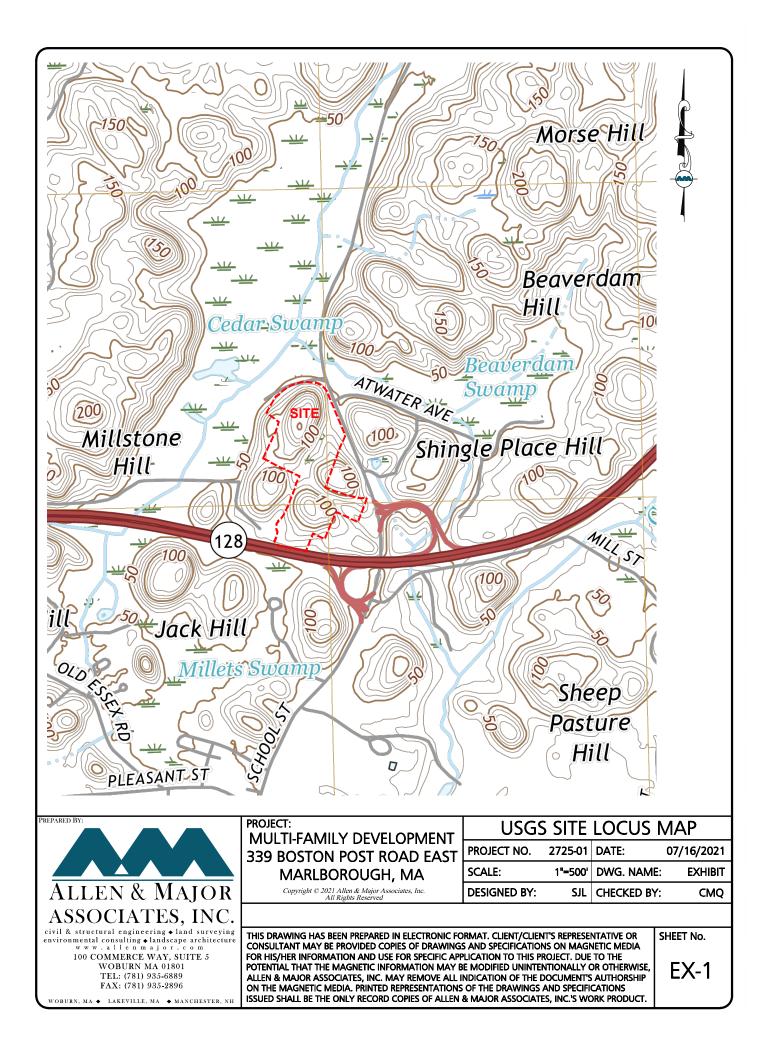
- Drawings and specifications are available at www.ContechES.com.
- Site-specific design support is available from our engineers.

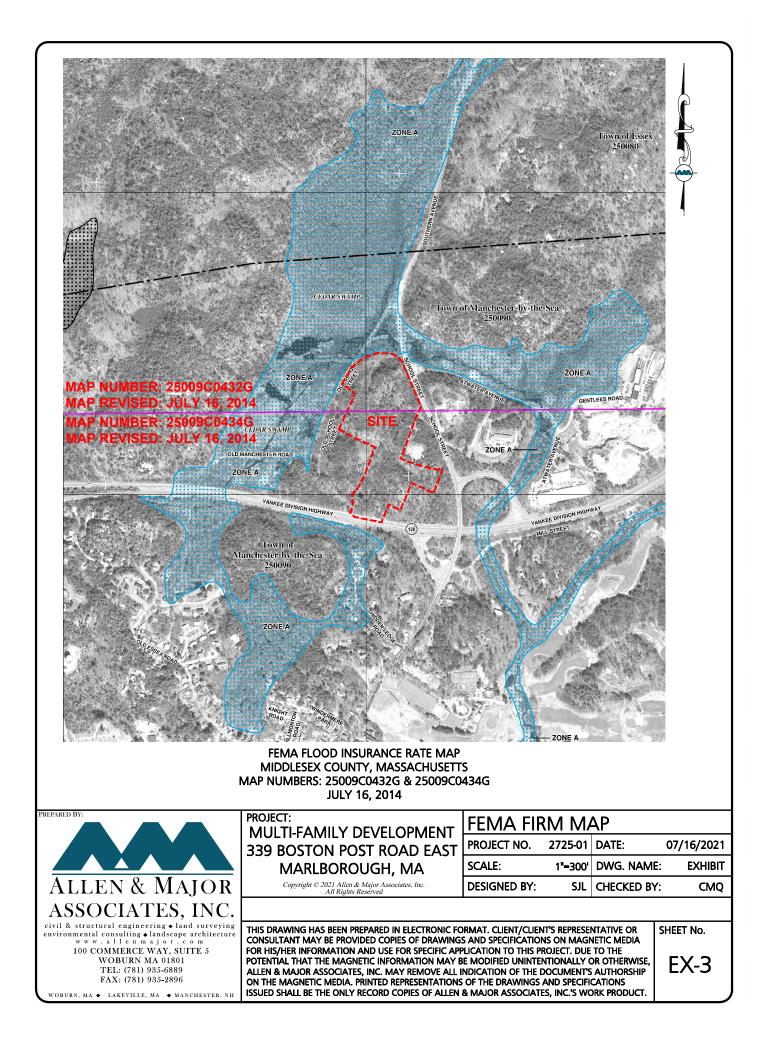
©2017 Contech Engineered Solutions LLC, a QUIKRETE Company

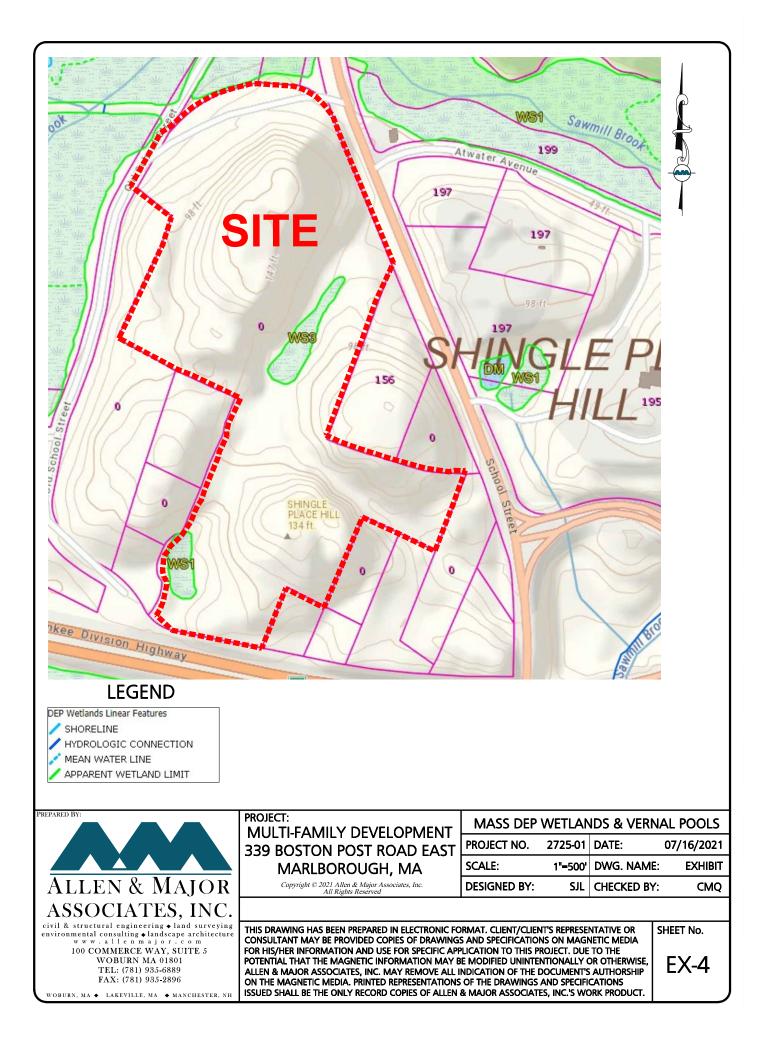
Contech Engineered Solutions provides site solutions for the civil engineering industry. Contech's portfolio includes bridges, drainage, sanitary sewer, earth stabilization and stormwater treatment products. For information on other Contech division offerings, visit www.ContechES.com or call 800.338.1122

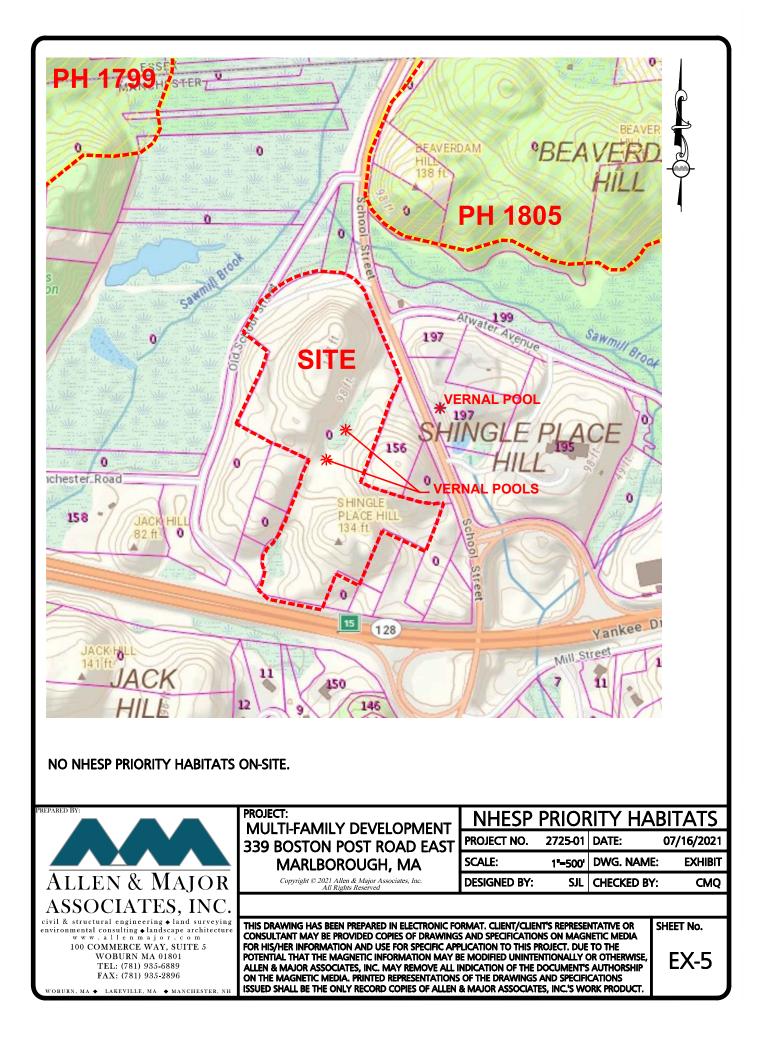
NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS A WARRANTY. APPLICATIONS SUGGESTED HEREIN ARE DESCRIBED ONLY TO HELP READERS MAKE THEIR OWN EVALUATIONS AND DECISIONS, AND ARE NEITHER GUARANTEES NOR WARRANTIES OF SUITABILITY FOR ANY APPLICATION. CONTECH MAKES NO WARRANTY WHATSOEVER, EXPRESS OR IMPLIED, RELATED TO THE APPLICATIONS, MATERIALS, COATINGS, OR PRODUCTS DISCUSSED HEREIN. ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULAR PURPOSE ARE DISCLAIMED BY CONTECH. SEE CONTECH'S CONDITIONS OF SALE (AVAILABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION.

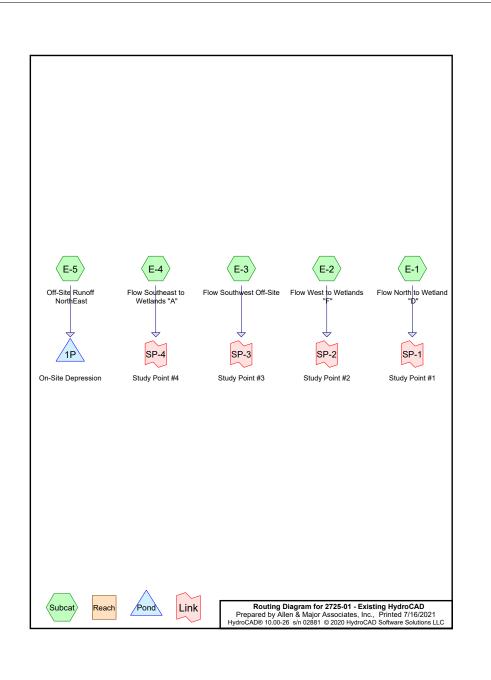
The product(s) described may be protected by one or more of the following US patents: 5,322,629; 5,624,576; 5,707,527; 5,759,415; 5,788,848; 5,985,157; 6,027,639; 6,350,374; 6,406,218; 6,641,720; 6,511,595; 6,649,048; 6,991,114; 6,998,038; 7,186,058; 7,296,692; 7,297,266; related foreign patents or other patents pending.






SECTION 3.0 - EXHIBITS





SECTION 4.0 – HYDRO CAD

	The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Existing HydroCAD	
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 2

Area Listing (all nodes)

	Area :q-ft)	CN	Description (subcatchment-numbers)
9	,028	91	Gravel roads, HSG D (E-1, E-3, E-5)
8	,184	77	Wetlands, Good, HSG D (E-5)
422	,664	77	Woods, Good, HSG D (E-1, E-2, E-3, E-4, E-5)
439	,876	77	TOTAL AREA

The Sanctuary, Manchester-by-the-Sea, MA

Printed 7/16/2021

Page 3

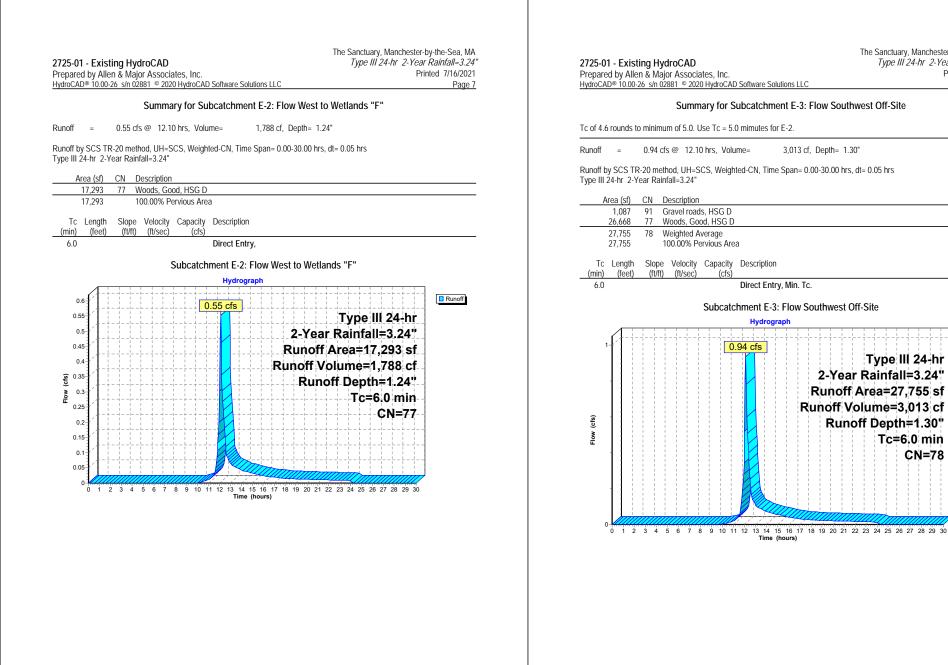
The Sanctuary, Manchester-by-the-Sea, MA

2725-01 - Existing HydroCAD
Prepared by Allen & Major Associates, Inc.
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC

Printed 7/16/2021 Page 4

Soil Listing (all nodes)

Area (sq-ft)	Soil Group	Subcatchment Numbers
0	HSG A	
0	HSG B	
0	HSG C	
439,876	HSG D	E-1, E-2, E-3, E-4, E-5
0	Other	
439,876		TOTAL AREA


2725-01 - Existing HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC

Ground Covers (all nodes)								
HSG-A (sq-ft)	HSG-B (sq-ft)	HSG-C (sq-ft)	HSG-D (sq-ft)	Other (sq-ft)	Total (sq-ft)	Ground Cover	Subcatchment Numbers	
0	0	0	9,028	0	9,028	Gravel roads	E-1, E-3, E-5	
0	0	0	8,184	0	8,184	Wetlands, Good	E-5	
0	0	0	422,664	0	422,664	Woods, Good	E-1, E-2, E-3, E-4, E-5	
0	0	0	439,876	0	439,876	TOTAL AREA		

2725-01 - Existing HydroCAD Prepared by Allen & Major Associates, Inc. 4ydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Sr	The Sanctuary, Manchester-by-the-Sea, MA <i>Type III 24-hr 2-Year Rainfall=3.24</i> Printed 7/16/2021 Page 5
Runoff by SCS TR-20	.00 hrs, dt=0.05 hrs, 601 points method, UH=SCS, Weighted-CN thod - Pond routing by Stor-Ind method
Subcatchment E-1: Flow North to Wetland "D"	$\label{eq:Runoff} Runoff Area=122,563 \mbox{ sf} 0.00\% \mbox{ Impervious Runoff Depth=1.30} \\ Flow Length=404' \mbox{ Tc}=12.4 \mbox{ min } CN=78 \mbox{ Runoff}=3.37 \mbox{ cfs } 13,306 \mbox{ cfs} \mbox{ cfs} \mbox{ sh} s$
Subcatchment E-2: Flow West to Wetlands "F"	Runoff Area=17,293 sf 0.00% Impervious Runoff Depth=1.24 Tc=6.0 min CN=77 Runoff=0.55 cfs 1,788 c
subcatchment E-3: Flow Southwest Off-Site	Runoff Area=27,755 sf 0.00% Impervious Runoff Depth=1.30 Tc=6.0 min CN=78 Runoff=0.94 cfs 3,013 c
ubcatchment E-4: Flow Southeast to Wetlands "A"	Runoff Area=185,366 sf 0.00% Impervious Runoff Depth=1.24 Flow Length=300' Tc=20.2 min CN=77 Runoff=4.02 cfs 19,162 c
ubcatchment E-5: Off-Site Runoff NorthEast	Runoff Area=86,899 sf 0.00% Impervious Runoff Depth=1.30 Flow Length=299' Tc=9.8 min CN=78 Runoff=2.59 cfs 9,434 c
ond 1P: On-Site Depression	Peak Elev=95.08' Storage=8,931 cf Inflow=2.59 cfs 9,434 c Discarded=0.01 cfs 755 cf Primary=0.00 cfs 0 cf Outflow=0.01 cfs 755 c
ink SP-1: Study Point #1	Inflow=3.37 cfs 13,306 cf Primary=3.37 cfs 13,306 cf
ink SP-2: Study Point #2	Inflow=0.55 cfs 1,788 cf Primary=0.55 cfs 1,788 cf
ink SP-3: Study Point #3	Inflow=0.94 cfs 3,013 cf Primary=0.94 cfs 3,013 cf
ink SP-4: Study Point #4	Inflow=4.02 cfs 19,162 cf Primary=4.02 cfs 19,162 cf

Total Runoff Area = 439,876 sf Runoff Volume = 46,702 cf Average Runoff Depth = 1.27" 100.00% Pervious = 439,876 sf 0.00% Impervious = 0 sf

2725-01 - Existing HydroCAD Prepared by Allen & Major Associates, HydroCAD® 10.00-26 s/n 02881 © 2020 Hyc		The Sanctuary, Manchester-by-the-Sea, MA <i>Type III 24-hr 2-Year Rainfall=3.24"</i> Printed 7/16/2021 Page 6
Summary f	for Subcatchment E-1: Flow North to	o Wetland "D"
Runoff = 3.37 cfs @ 12.18 hrs	rs, Volume= 13,306 cf, Depth= 1.30	0"
Runoff by SCS TR-20 method, UH=SCS, Type III 24-hr 2-Year Rainfall=3.24"	, Weighted-CN, Time Span= 0.00-30.00 hrs,	dt= 0.05 hrs
Area (sf) CN Description		
4,563 91 Gravel roads, HS 118,000 77 Woods, Good, H		
122,563 78 Weighted Avera 122,563 100.00% Perviou	age	
Tc Length Slope Velocity Car (min) (feet) (ft/ft) (ft/sec)	apacity Description (cfs)	
7.8 50 0.2556 0.11	Sheet Flow, Woods: Dense underbrush n= 0.8	00 02- 3 16"
4.6 354 0.2610 1.28	Shallow Concentrated Flow,	
12.4 404 Total	Forest w/Heavy Litter Kv= 2.5 fps	
Sub	ocatchment E-1: Flow North to Wetla	and "D"
300	Hydrograph	
	3.37 cfs	Type III 24-hr
3-		r Rainfall=3.24"
	 _	Area=122,563 sf
→ → → → → → → → → → → → → → → → →		olume=13,306 cf
		off Depth=1.30"
	F	ow Length=404' Tc=12.4 min
		CN=78
	9 10 11 12 13 14 15 16 17 18 19 20 21 2 Time (hours)	2 23 24 25 26 27 28 29 30

The Sanctuary, Manchester-by-the-Sea, MA

Type III 24-hr 2-Year Rainfall=3.24"

Printed 7/16/2021

Runoff

Type III 24-hr

Tc=6.0 min

CN=78

Page 8

Summary for Subcatchment E-4: Flow Southeast to Wetlands "A"	
= 4.02 cfs @ 12.30 hrs, Volume= 19,162 cf, Depth= 1.24"	
by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs	
24-hr 2-Year Rainfall=3.24"	
irea (sf) CN Description	
185,366 77 Woods, Good, HSG D	
185,366 100.00% Pervious Area	
Length Slope Velocity Capacity Description (feet) (ft/ft) (ft/sec) (cfs)	
50 0.0350 0.05 Sheet Flow,	
Woods: Dense underbrush n= 0.800 P2= 3.16" 250 0.3200 1.41 Shallow Concentrated Flow.	
Forest w/Heavy Litter Kv= 2.5 fps	
300 Total	
Subcatchment E-4: Flow Southeast to Wetlands "A"	
Subcatchment E-4: Flow Southeast to Wetlands "A" Hydrograph	
	Runoff
Hydrograph 4 4 Type III 24-	nr
Hydrograph	nr
Hydrograph 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ייייייייייייייייייייייייייייייייייייי
Hydrograph 4.02 cfs 2-Year Rainfall=3.2 Runoff Area=185,366 Runoff Volume=19,162	 hr k" sf cf
Hydrograph 4.02 cfs 2-Year Rainfall=3.2 Runoff Area=185,366 Runoff Volume=19,162 Runoff Depth=1.2	1
Hydrograph 4.02 cfs 2-Year Rainfall=3.2 Runoff Area=185,366 Runoff Volume=19,162 Runoff Depth=1.2 Flow Length=30	11 11 14 14 15 15 17 17 17 17
Hydrograph 4.02 cfs 2-Year Rainfall=3.2 Runoff Area=185,366 Runoff Volume=19,162 Runoff Depth=1.2 Flow Length=30 Tc=20.2 m	nr I'' Sf Cf I'' 0'
Hydrograph 4.02 cfs 3 4 4.02 cfs Characteristic state in the stat	nr I'' Sf Cf I'' 0'
Hydrograph 4.02 cfs 2-Year Rainfall=3.2 Runoff Area=185,366 Runoff Volume=19,162 Runoff Depth=1.2 Flow Length=30 Tc=20.2 m	nr I'' Sf Cf I'' 0'
Hydrograph 4.02 cfs 3 4 4.02 cfs Characteristic state in the stat	nr I'' Sf Cf I'' 0'

Prepare		en & Maj	or Associa		Software Solution	The Sanctuary, Manchester-by-the-Sea, MA <i>Type III 24-hr 2-Year Rainfall=3.24</i> Printed 7/16/2021 Page 10
			Summa	ary for Su	ibcatchment	E-5: Off-Site Runoff NorthEast
Tc of 4.	6 rounds t	o minimu	ım of 5.0. L	Jse Tc = 5.0) mimutes for E	-2.
Runoff	=	2.59 cf	fs@ 12.1	5 hrs, Volu	me=	,434 cf, Depth= 1.30"
			hod, UH=S nfall=3.24"	iCS, Weigh	ied-CN, Time S	pan= 0.00-30.00 hrs, dt= 0.05 hrs
A	Area (sf)	CN E	Description			
	3,378		Gravel road			
	75,337 8,184		Noods, Go Notlands	od, HSG D Good, HSG	П	
	86.899		Neighted A		U	
	86,899			ervious Are	а	
Tc	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)		(cfs)	Description	
6.9	50	0.3460	0.12		Sheet Flow,	
2.9	2/10	0.3267	1.43			e underbrush n= 0.800 P2= 3.16" eentrated Flow.
2.7	247	0.3207	1.45			y Litter Kv= 2.5 fps
9.8	299	Total				
				Subcatch	mont E 5. O	ff-Site Runoff NorthEast
				Jubcatci	Hydrograp	
				2	59 cfs	Type III 24-hr 2-Year Rainfall=3.24" Runoff Area=86,899 sf

 2725-01 - Existing HydroCAD
 Type III 24

 Prepared by Allen & Major Associates, Inc.
 HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC

The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 2-Year Rainfall=3.24" Printed 7/16/2021 Page 11

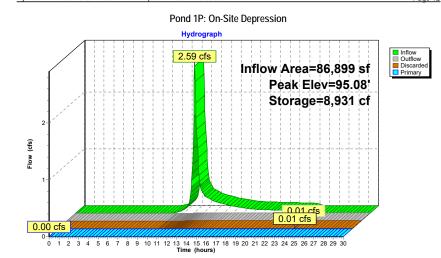
Summary for Pond 1P: On-Site Depression

[92] Warning: Device #2 is above defined storage

Inflow Area =	86,899 sf, 0.00% Impervious,	Inflow Depth = 1.30" for 2-Year event
Inflow =	2.59 cfs @ 12.15 hrs, Volume=	9,434 cf
Outflow =	0.01 cfs @ 24.18 hrs, Volume=	755 cf, Atten= 100%, Lag= 722.0 min
Discarded =	0.01 cfs @ 24.18 hrs, Volume=	755 cf
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 95.08' @ 24.18 hrs Surf.Area= 5,886 sf Storage= 8,931 cf

Plug-Flow detention time= 586.7 min calculated for 754 cf (8% of inflow) Center-of-Mass det. time= 425.2 min (1,277.2 - 852.0)

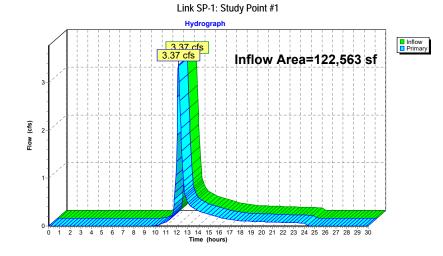

Volume	Invert	Avail.Storage	Storage Description
#1	92.00'	78.776 cf	Custom Stage Data (Irregular) Listed below (Recalc)

#1	92.00	70,770 U	Custom Stage Da	ala (ineguiar) Lisi	eu below (Recalc)
Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
92.00	52	29.0	0	0	52
93.00	2,124	187.3	836	836	2,779
94.00	3,737	252.7	2,893	3,729	5,079
95.00	5,767	332.6	4,715	8,444	8,812
96.00	7,274	378.0	6,506	14,950	11,404
97.00	8,988	420.3	8,116	23,066	14,121
98.00	10,640	460.0	9,802	32,869	16,936
99.00	12,541	514.7	11,577	44,446	21,207
100.00	17,768	671.0	15,079	59,525	35,967
101.00	20,774	729.5	19,251	78,776	42,524

Device	Routing	Invert	Outlet Devices
#1	Discarded	92.00'	0.090 in/hr Exfiltration (D Soil) over Surface area
#2	Primary	101.00'	100.0' long x 1.0' breadth Broad-Crested Rectangular Weir
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32

Discarded OutFlow Max=0.01 cfs @ 24.18 hrs HW=95.08' (Free Discharge) 1=Exfiltration (D Soil) (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=92.00' (Free Discharge) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs) 2725-01 - Existing HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 2-Year Rainfall=3.24" Printed 7/16/2021 Page 12

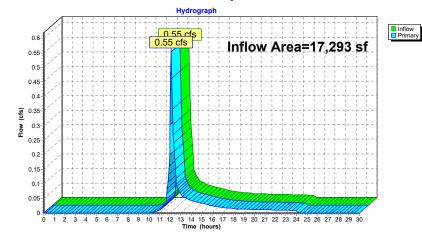


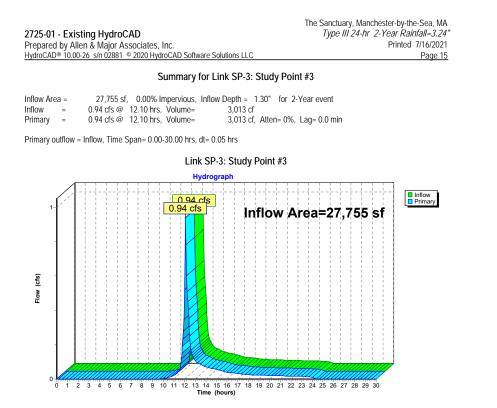
	The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Existing HydroCAD	Type III 24-hr 2-Year Rainfall=3.24"
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 13

Summary for Link SP-1: Study Point #1

Inflow Area =	122,563 sf, 0.00% Impervious,	Inflow Depth = 1.30" for 2-Year event	
Inflow =	3.37 cfs @ 12.18 hrs, Volume=	13,306 cf	
Primary =	3 37 cfs @ 12 18 hrs Volume=	13 306 cf Atten= 0% ag= 0.0 min	

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

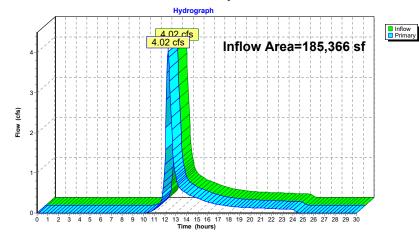

	The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Existing HydroCAD	Type III 24-hr 2-Year Rainfall=3.24"
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 14


Summary for Link SP-2: Study Point #2

Inflow Area =	17,293 sf,	0.00% Impervious,	Inflow Depth = 1.24"	for 2-Year event
Inflow =	0.55 cfs @ 1	12.10 hrs, Volume=	1,788 cf	
Primary =	0.55 cfs @ 1	12.10 hrs, Volume=	1,788 cf, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

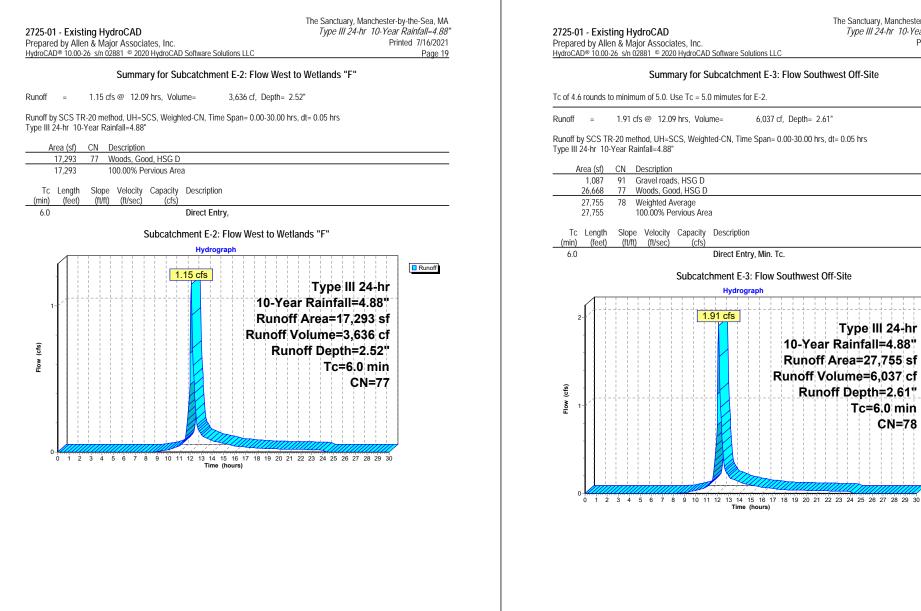
Link SP-2: Study Point #2


	The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Existing HydroCAD	Type III 24-hr 2-Year Rainfall=3.24"
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 16

Summary for Link SP-4: Study Point #4

Inflow Area =	185,366 sf,	0.00% Impervious,	Inflow Depth = 1.24"	for 2-Year event
Inflow =	4.02 cfs @ 1	12.30 hrs, Volume=	19,162 cf	
Primary =	4.02 cfs @ 1	12.30 hrs, Volume=	19,162 cf, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs


Link SP-4: Study Point #4

2725-01 - Existing HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software S	The Sanctuary, Manchester-by-the-Sea, MA <i>Type III 24-hr 10-Year Rainfall=4.88</i> Printed 7/16/2021 Solutions LLC Page 17
Runoff by SCS TR-20	0.00 hrs, dt=0.05 hrs, 601 points 0 method, UH=SCS, Weighted-CN ethod - Pond routing by Stor-Ind method
Subcatchment E-1: Flow North to Wetland "D"	Runoff Area=122,563 sf 0.00% Impervious Runoff Depth=2.61" Flow Length=404' Tc=12.4 min CN=78 Runoff=6.94 cfs 26,659 cf
Subcatchment E-2: Flow West to Wetlands "F"	Runoff Area=17,293 sf 0.00% Impervious Runoff Depth=2.52° Tc=6.0 min CN=77 Runoff=1.15 cfs 3,636 cf
Subcatchment E-3: Flow Southwest Off-Site	Runoff Area=27,755 sf 0.00% Impervious Runoff Depth=2.61 Tc=6.0 min CN=78 Runoff=1.91 cfs 6,037 cf
Subcatchment E-4: Flow Southeast to Wetlands "A"	Runoff Area=185,366 sf 0.00% Impervious Runoff Depth=2.52' Flow Length=300' Tc=20.2 min CN=77 Runoff=8.40 cfs 38,972 c
Subcatchment E-5: Off-Site Runoff NorthEast	Runoff Area=86,899 sf 0.00% Impervious Runoff Depth=2.61' Flow Length=299' Tc=9.8 min CN=78 Runoff=5.30 cfs 18,901 c
Pond 1P: On-Site Depression	Peak Elev=96.42' Storage=18,188 cf Inflow=5.30 cfs 18,901 c Discarded=0.02 cfs 1,056 cf Primary=0.00 cfs 0 cf Outflow=0.02 cfs 1,056 c
ink SP-1: Study Point #1	Inflow=6.94 cfs 26,659 ct Primary=6.94 cfs 26,659 ct
Link SP-2: Study Point #2	Inflow=1.15 cfs 3,636 cf Primary=1.15 cfs 3,636 cf
ink SP-3: Study Point #3	Inflow=1.91 cfs 6,037 cf Primary=1.91 cfs 6,037 cf
Link SP-4: Study Point #4	Inflow=8.40 cfs 38,972 cf Primary=8.40 cfs 38,972 cf

Total Runoff Area = 439,876 sf Runoff Volume = 94,205 cf Average Runoff Depth = 2.57" 100.00% Pervious = 439,876 sf 0.00% Impervious = 0 sf

2725-01 - Existing HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	The Sanctuary, Manchester-by-the-Sea, MA <i>Type III 24-hr 10-Year Rainfall=4.88"</i> Printed 7/16/2021 Page 18
Summary for Subcatchment E-1: Flow Nor	th to Wetland "D"
Runoff = 6.94 cfs @ 12.17 hrs, Volume= 26,659 cf, Depth=	2.61"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 Type III 24-hr 10-Year Rainfall=4.88"	hrs, dt= 0.05 hrs
Area (sf) CN Description	
4,563 91 Gravel roads, HSG D 118,000 77 Woods, Good, HSG D	
122,563 78 Weighted Average	
122,563 100.00% Pervious Area	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
7.8 50 0.2556 0.11 Sheet Flow,	
4.6 354 0.2610 1.28 Woods: Dense underbrush n= Shallow Concentrated Flow, Forest w/Heavy Litter Kv= 2.5	
12.4 404 Total	
Subcatchment E-1: Flow North to W	/etland "D"
Hydrograph	
	Runoff
7	Type III 24-hr
6	ear Rainfall=4.88"
	ff Area=122,563 sf
5 Runoff	Volume=26,659 cf
$\widehat{g}_{a} = \left[\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	unoff Depth=2.61"
	Flow Length=404'
3	Tc=12.4 min
	CN=78
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Time (hours)	21 22 23 24 25 26 27 28 29 30

The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 10-Year Rainfall=4.88" Printed 7/16/2021 Page 20

Runoff

Tc=6.0 min **CN=78**

Summary for Subcatchment E-3: Flow Southwest Off-Site

					2 Software Solutions LLC Page 21 atchment E-4: Flow Southeast to Wetlands "A"
			,		
noff	=	8.40 cf	s@ 12.2	3 hrs, Volu	ime= 38,972 cf, Depth= 2.52"
			hod, UH=S nfall=4.88		ted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs
			Description		
	Area (sf) 185,366			od, HSG D	
	185,366			ervious Are	
Tc min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
17.3	50	0.0350	0.05	(2.0)	Sheet Flow,
2.9	250	0.3200	1.41		Woods: Dense underbrush n= 0.800 P2= 3.16" Shallow Concentrated Flow,
20.2	300	Total			Forest w/Heavy Litter Kv= 2.5 fps
-0.2	000	, 0.01			
			Sul	ocatchme	ent E-4: Flow Southeast to Wetlands "A" Hydrograph
				· - + + +-	
ę	9			8	3.40 cfs
8	8				Type III 24-hr 10-Year Rainfall=4.88"
7	7				Runoff Area=185,366 sf
6	6			-+	Runoff Volume=38,972 cf
cts)	5	+		-+	Runoff Depth=2.52"
ð				· - +	Flow Length=300'
- 2	4				Tc=20.2 min
3	3				CN=77
2	2				
	1			· - + + - + - + - + - + - + - + - +	
		- i i	i i i	1 1	

Prepared by All	ting HydroCAD The Sanctuary, Manchester-by Type III 24-hr 10-Year I en & Major Associates, Inc. Print -26 s/n 02881 © 2020 HydroCAD Software Solutions LLC Print	
	Summary for Subcatchment E-5: Off-Site Runoff NorthEast	
C of 4.6 rounds	to minimum of 5.0. Use Tc = 5.0 mimutes for E-2.	
Runoff =	5.30 cfs @ 12.14 hrs, Volume= 18,901 cf, Depth= 2.61"	
	R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs -Year Rainfall=4.88"	
Area (sf)	CN Description	
3,378 75,337 8,184	 Gravel roads, HSG D Woods, Good, HSG D Wetlands, Good, HSG D 	
86,899 86,899	78 Weighted Average 100.00% Pervious Area	
Tc Length (min) (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)	
\rightarrow	0.3460 0.12 Sheet Flow,	
2.9 249	0.3267 1.43 Woods: Dense underbrush n= 0.800 P2= 3.16" Shallow Concentrated Flow, Forest w/Heavy Litter Kv= 2.5 fps	
Elow (dg)	Subcatchment E-5: Off-Site Runoff NorthEast Hydrograph 5.30 cfs Type III 24-hr 10-Year Rainfall=4.88" Runoff Area=86,899 sf Runoff Volume=18,901 cf Runoff Depth=2.61" Flow Length=299' Tc=9.8 min CN=78	Runoff

 2725-01 - Existing HydroCAD
 Type III 24-hr 10

 Prepared by Allen & Major Associates, Inc.
 HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC

The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 10-Year Rainfall=4.88" Printed 7/16/2021 Page 23

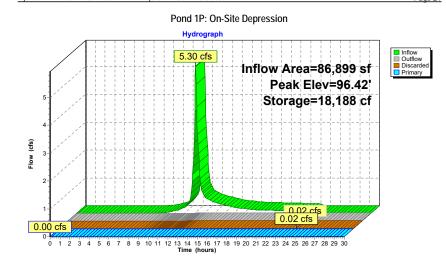
Summary for Pond 1P: On-Site Depression

[92] Warning: Device #2 is above defined storage

Inflow Area =	86,899 sf, 0.00% Impervious,	Inflow Depth = 2.61" for 10-Year event
Inflow =	5.30 cfs @ 12.14 hrs, Volume=	18,901 cf
Outflow =	0.02 cfs @ 24.20 hrs, Volume=	1,056 cf, Atten= 100%, Lag= 723.4 min
Discarded =	0.02 cfs @ 24.20 hrs, Volume=	1,056 cf
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 96.42' @ 24.20 hrs Surf.Area= 7,980 sf Storage= 18,188 cf

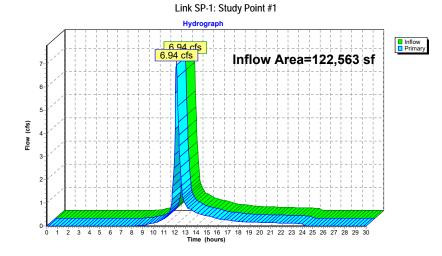
Plug-Flow detention time= 631.2 min calculated for 1,056 cf (6% of inflow) Center-of-Mass det. time= 428.3 min (1,260.0 - 831.7)


Volume Invert Avail.Storage Storage Description

#1	92.00'	78,776 cf	Custom Stage Da	ita (Irregular) List	ed below (Recalc)
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
92.00	52	29.0	0	0	52
93.00	2,124	187.3	836	836	2,779
94.00	3,737	252.7	2,893	3,729	5,079
95.00	5,767	332.6	4,715	8,444	8,812
96.00	7,274	378.0	6,506	14,950	11,404
97.00	8,988	420.3	8,116	23,066	14,121
98.00	10,640	460.0	9,802	32,869	16,936
99.00	12,541	514.7	11,577	44,446	21,207
100.00	17,768	671.0	15,079	59,525	35,967
101.00	20,774	729.5	19,251	78,776	42,524

Device	Routing	Invert	Outlet Devices
#1	Discarded	92.00'	0.090 in/hr Exfiltration (D Soil) over Surface area
#2	Primary	101.00'	100.0' long x 1.0' breadth Broad-Crested Rectangular Weir
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32

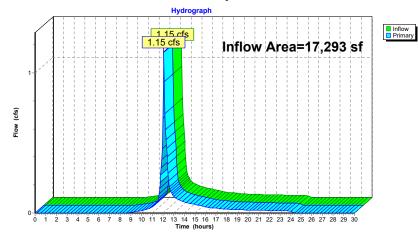
Discarded OutFlow Max=0.02 cfs @ 24.20 hrs HW=96.42' (Free Discharge) 1=Exfiltration (D Soil) (Exfiltration Controls 0.02 cfs)

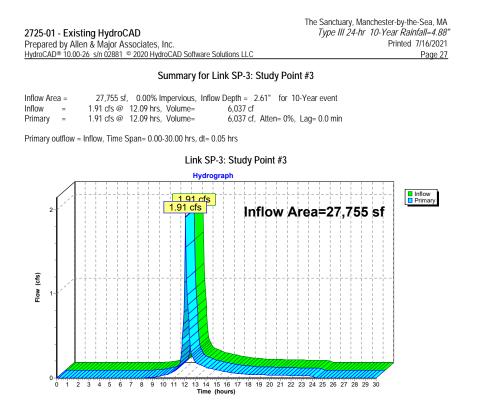

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=92.00' (Free Discharge) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs) 2725-01 - Existing HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 10-Year Rainfall=4.88" Printed 7/16/2021 Page 24

		The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Exis	sting HydroCAD	Type III 24-hr 10-Year Rainfall=4.88"
Prepared by Al	len & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.0	D-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 25
	Summary for Link SP-1: Study P	Point #1
Inflow Area =	122,563 sf, 0.00% Impervious, Inflow Depth = 2.61° for	r 10-Year event

Inflow	=	6.94 cfs @ 12.17 hrs, Volume=	26,659 cf
Primary	=	6.94 cfs @ 12.17 hrs, Volume=	26,659 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

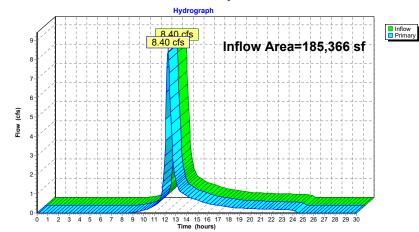

	The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Existing HydroCAD	Type III 24-hr 10-Year Rainfall=4.88"
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 26


Summary for Link SP-2: Study Point #2

Inflow Area =	17,293 sf,	0.00% Impervious,	Inflow Depth = 2.52"	for 10-Year event
Inflow =	1.15 cfs @	12.09 hrs, Volume=	3,636 cf	
Primary =	1.15 cfs @	12.09 hrs, Volume=	3,636 cf, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

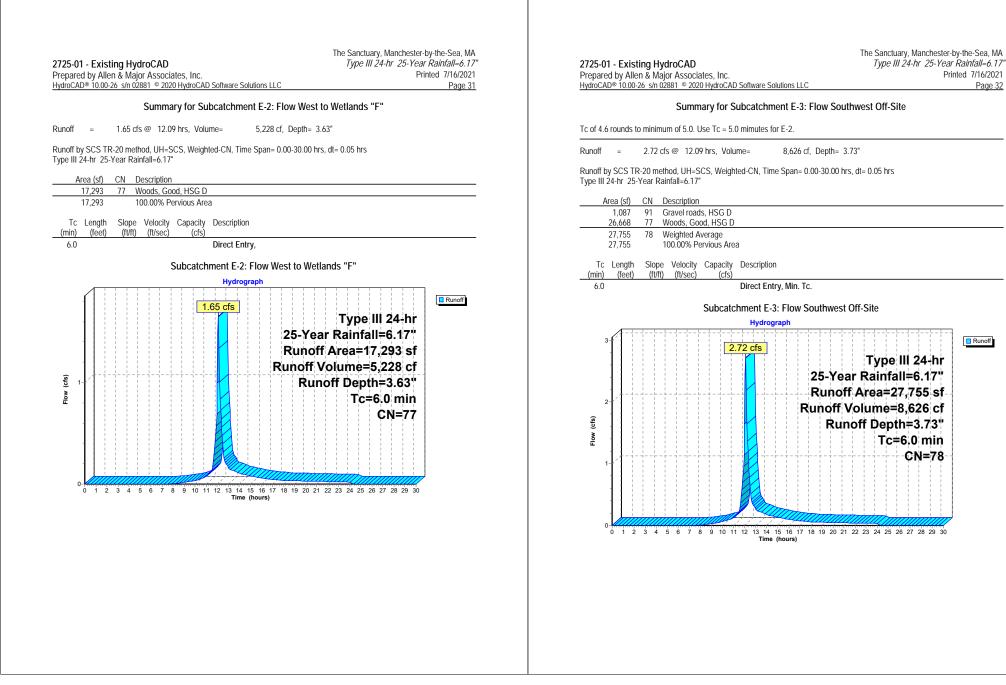
Link SP-2: Study Point #2


	The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Existing HydroCAD	Type III 24-hr 10-Year Rainfall=4.88"
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 28

Summary for Link SP-4: Study Point #4

Inflow Area =	185,366 sf	, 0.00% Impervious,	Inflow Depth = 2.52"	for 10-Year event
Inflow =	8.40 cfs @	12.28 hrs, Volume=	38,972 cf	
Primary =	8.40 cfs @	12.28 hrs, Volume=	38,972 cf, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs


Link SP-4: Study Point #4

The Sanctuary, Manchester-by-the-Sea, MA <i>Type III 24-hr 25-Year Rainfall=6.17</i> Printed 7/16/2021 Solutions LLC Page 29	2725-01 - Existing HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software
30.00 hrs, dt=0.05 hrs, 601 points 20 method, UH=SCS, Weighted-CN nethod - Pond routing by Stor-Ind method	Runoff by SCS TR
Runoff Area=122,563 sf 0.00% Impervious Runoff Depth=3.73 Flow Length=404' Tc=12.4 min CN=78 Runoff=9.92 cfs 38,091	Subcatchment E-1: Flow North to Wetland "D"
Runoff Area=17,293 sf 0.00% Impervious Runoff Depth=3.63 Tc=6.0 min CN=77 Runoff=1.65 cfs 5,228 (Subcatchment E-2: Flow West to Wetlands "F"
Runoff Area=27,755 sf 0.00% Impervious Runoff Depth=3.73 Tc=6.0 min CN=78 Runoff=2.72 cfs 8,626 d	Subcatchment E-3: Flow Southwest Off-Site
Runoff Area=185,366 sf 0.00% Impervious Runoff Depth=3.63 Flow Length=300' Tc=20.2 min CN=77 Runoff=12.10 cfs 56,042 of	Subcatchment E-4: Flow Southeast to Wetlands "A"
Runoff Area=86,899 sf 0.00% Impervious Runoff Depth=3.73 Flow Length=299 Tc=9.8 min CN=78 Runoff=7.56 cfs 27,007	Subcatchment E-5: Off-Site Runoff NorthEast
Peak Elev=97.33' Storage=26,139 cf Inflow=7.56 cfs 27,007 (Discarded=0.02 cfs 1,277 cf Primary=0.00 cfs 0 cf Outflow=0.02 cfs 1,277 cf	Pond 1P: On-Site Depression
Inflow=9.92 cfs 38,091 c Primary=9.92 cfs 38,091 c	Link SP-1: Study Point #1
Inflow=1.65 cfs 5,228 c Primary=1.65 cfs 5,228 c	Link SP-2: Study Point #2
Inflow=2.72 cfs 8,626 c Primary=2.72 cfs 8,626 c	ink SP-3: Study Point #3
Inflow=12.10 cfs 56,042 c Primary=12.10 cfs 56,042 c	Link SP-4: Study Point #4

Total Runoff Area = 439,876 sf Runoff Volume = 134,994 cf Average Runoff Depth = 3.68" 100.00% Pervious = 439,876 sf 0.00% Impervious = 0 sf

2725-01 - Existing HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 25-Year Rainfall=6.17" Printed 7/16/2021 Page 30
Summary for Subcatchment E-1: Flo	w North to Wetland "D"
Runoff = 9.92 cfs @ 12.17 hrs, Volume= 38,091 cf,	Depth= 3.73"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.0 Type III 24-hr 25-Year Rainfall=6.17"	0-30.00 hrs, dt= 0.05 hrs
Area (sf) CN Description	
4,563 91 Gravel roads, HSG D 118,000 77 Woods, Good, HSG D	
122,56378Weighted Average122,563100.00% Pervious Area	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
7.8 50 0.2556 0.11 Sheet Flow,	
4.6 354 0.2610 1.28 Woods: Dense underby Shallow Concentrated Forest w/Heavy Litter	
12.4 404 Total	
Subcatchment E-1: Flow Nor	h to Wetland "D"
Hydrograph	* + + + +
111	Runoff
	Type III 24-hr
9	25-Year Rainfall=6.17"
	unoff Area=122,563 sf
	noff Volume=38,091 cf
(sp) 6 	Runoff Depth=3.73"
Set 5-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Flow Length=404
4	Tc=12.4 min
3	CN=78-
2	
	19 20 21 22 23 24 25 26 27 28 29 30
Time (hours)	

Printed 7/16/2021

Runoff

Page 32

2725-01 - Existing HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC			or Associa	Type III 24-hr 25-Year Rainfall=6.17 Printed 7/16/202 s LLC Page 3:	
		S	ummary	for Subcatchment E-4:	Flow Southeast to Wetlands "A"
unoff	=	12.10 cfs	s@ 12.28	8 hrs, Volume= 56,0	042 cf, Depth= 3.63"
				CS, Weighted-CN, Time Spa	an= 0.00-30.00 hrs, dt= 0.05 hrs
51			nfall=6.17"		
	rea (sf) 85,366		escription	NH HSG D	
	85,366			rvious Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity Description (cfs)	
17.3	50	0.0350	0.05	Sheet Flow,	underbrush n= 0.800 P2= 3.16"
2.9	250	0.3200	1.41	Shallow Conce	
20.2	300	Total		T or est witheavy	
13. 12- 11. 9- 7- 6- 5- 4- 3-				Hydrograph	Type III 24-hr 25-Year Rainfall=6.17" Runoff Area=185,366 sf Runoff Volume=56,042 cf Runoff Depth=3.63" Flow Length=300 Tc=20.2 min CN=77
2- 1- 0-		3 4 5	6 7 8	9 10 11 12 13 14 15 16 Time (hours	17 18 19 20 21 22 23 24 25 26 27 28 29 30 a

2725-01 - Ex Prepared by A HydroCAD® 10.	Ilen & M	ajor Associa	ates, Inc. 0 HydroCAD Softwa	e Solutions LLC	The Sanctuary, Manchester <i>Type III 24-hr 25-Yea</i> Pi	
		Summa	ary for Subcate	hment E-5: Off-Si	te Runoff NorthEast	
Tc of 4.6 round	s to minin	num of 5.0. L	Jse Tc = 5.0 mimu	es for E-2.		
Runoff =	7.56	cfs @ 12.1	4 hrs, Volume=	27,007 cf, Dep	th= 3.73"	
Runoff by SCS Type III 24-hr				Time Span= 0.00-30	.00 hrs, dt= 0.05 hrs	
Area (sf) CN	Description				
3,378 75,33 * 8,184	77	Gravel road Woods, Go Wetlands, C				
86,899 86,899	78	Weighted A				
Tc Leng (min) (fee			Capacity Desc (cfs)	ption		
6.9 5	0.346	0 0.12		Flow,	- 0.000 D2 0.1/#	
2.9 24	9 0.326	7 1.43	Shall	w Concentrated Flo w/Heavy Litter Kv=		
9.8 29	99 Total					
			Subcatchment	E-5: Off-Site Run	off NorthEast	
			ну	drograph		
8- 7- 6- 5- 4- 4- 3- 2-			7.56 ci	25 Ru Runo	Type III 24-hr -Year Rainfall=6.17" Inoff Area=86,899 sf ff Volume=27,007 cf Runoff Depth=3.73" Flow Length=299' Tc=9.8 min CN=78	Runoff

 2725-01 - Existing HydroCAD
 Type III 24

 Prepared by Allen & Major Associates, Inc.
 HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC

The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 25-Year Rainfall=6.17" Printed 7/16/2021 Page 35

Summary for Pond 1P: On-Site Depression

[92] Warning: Device #2 is above defined storage

Inflow Area =	86,899 sf, 0.00% Impervious,	Inflow Depth = 3.73" for 25-Year event
Inflow =	7.56 cfs @ 12.14 hrs, Volume=	27,007 cf
Outflow =	0.02 cfs @ 24.21 hrs, Volume=	1,277 cf, Atten= 100%, Lag= 724.0 min
Discarded =	0.02 cfs @ 24.21 hrs, Volume=	1,277 cf
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf

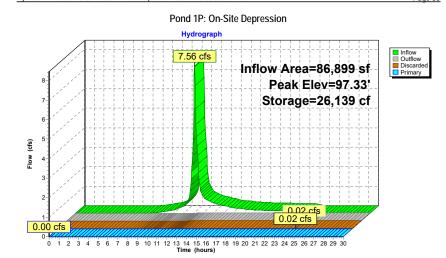
Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 97.33' @ 24.21 hrs Surf.Area= 9,521 sf Storage= 26,139 cf

Plug-Flow detention time= 664.6 min calculated for 1,274 cf (5% of inflow) Center-of-Mass det. time= 430.6 min (1,252.1 - 821.5)

Volume	Invert	Avail.Storage	Storage Description

#1	92.00'	78,776 cf	Custom Stage Da	ata (Irregular) List	ed below (Recalc)
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
92.00	52	29.0	0	0	52
93.00	2,124	187.3	836	836	2,779
94.00	3,737	252.7	2,893	3,729	5,079
95.00	5,767	332.6	4,715	8,444	8,812
96.00	7,274	378.0	6,506	14,950	11,404
97.00	8,988	420.3	8,116	23,066	14,121
98.00	10,640	460.0	9,802	32,869	16,936
99.00	12,541	514.7	11,577	44,446	21,207
100.00	17,768	671.0	15,079	59,525	35,967
101.00	20,774	729.5	19,251	78,776	42,524

 Device
 Routing
 Invert
 Outlet Devices

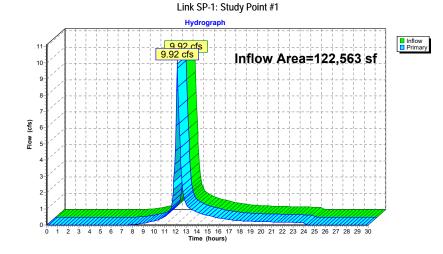

 #1
 Discarded
 92.00'
 0.090 in/hr Exfiltration (D Soil) over Surface area

 #2
 Primary
 101.00'
 100.0' long x 1.0' breadth Broad-Crested Rectangular Weir

 Head (feet)
 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00
 0.60 coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32

Discarded OutFlow Max=0.02 cfs @ 24.21 hrs HW=97.33' (Free Discharge) 1=Exfiltration (D Soil) (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=92.00' (Free Discharge) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs) 2725-01 - Existing HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 25-Year Rainfall=6.17" Printed 7/16/2021 Page 36

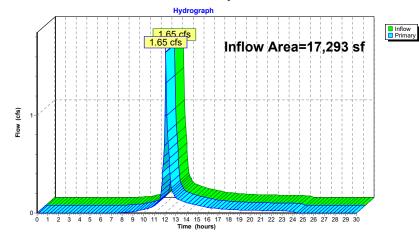


	The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Existing HydroCAD	Type III 24-hr 25-Year Rainfall=6.17"
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 37

Summary for Link SP-1: Study Point #1

Inflow Area	J =	122,563 sf, 0.00%	Impervious,	Inflow Depth =	3.73" f	or 25-Year event
Inflow	=	9.92 cfs @ 12.17 hr	s, Volume=	38,091 ct	f	
Primary	=	9.92 cfs @ 12.17 hr	s, Volume=	38,091 cf	f, Atten=	0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

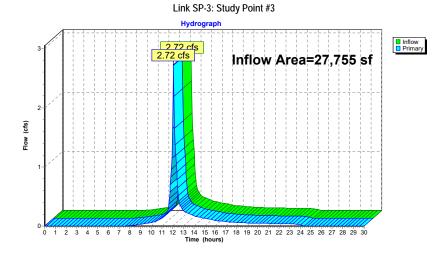

2725-01 - Existing HydroCAD The Sanctuary, Manchester-by-the-Sea, MA 7/2725-01 - Existing HydroCAD Type III 24-hr 25-Year Rainfall=6.17" Prepared by Allen & Major Associates, Inc. Printed 7/16/2021 HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC Page 38

Summary for Link SP-2: Study Point #2

Inflow Area =	17,293 sf,	0.00% Impervious,	Inflow Depth = 3.63"	for 25-Year event
Inflow =	1.65 cfs @ 1	2.09 hrs, Volume=	5,228 cf	
Primary =	1.65 cfs @ 1	2.09 hrs, Volume=	5,228 cf, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Link SP-2: Study Point #2

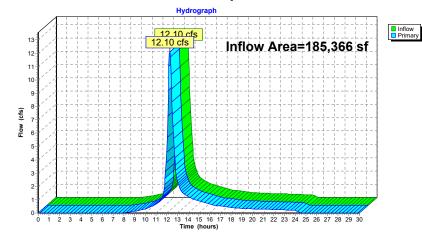


Prepared by Allen & Major Associates, Inc. Printed 7/16/2021		The Sanctuary, Manchester-by-the-Sea, MA
ribbarda by Alleh a Major Associates, inc.	2725-01 - Existing HydroCAD	Type III 24-hr 25-Year Rainfall=6.17"
	Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC Page 39	HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 39

Summary for Link SP-3: Study Point #3

Inflow Are	a =	27,755 sf,	0.00% Impervious,	Inflow Depth = 3.73"	for 25-Year event
Inflow	=	2.72 cfs @ 1	12.09 hrs, Volume=	8,626 cf	
Primary	=	2.72 cfs @ 1	12.09 hrs, Volume=	8,626 cf, Atter	n= 0%, Lag= 0.0 min

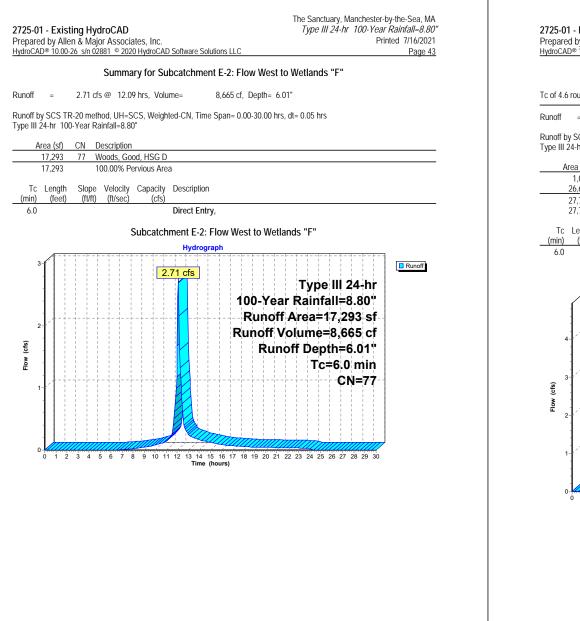
Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs


	The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Existing HydroCAD	Type III 24-hr 25-Year Rainfall=6.17"
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 40

Summary for Link SP-4: Study Point #4

Inflow Area	9 =	185,366 sf,	0.00% Impervious,	Inflow Depth = 3.63"	for 25-Year event
Inflow	=	12.10 cfs @ 1	2.28 hrs, Volume=	56,042 cf	
Primary	=	12.10 cfs @ 1	2.28 hrs, Volume=	56,042 cf, Atte	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs


Link SP-4: Study Point #4

2725-01 - Existing HydroCAD Yrepared by Allen & Major Associates, Inc. IydroCAD® 10.00-26 sin 02881 © 2020 HydroCAD Software Soli	The Sanctuary, Manchester-by-the-Sea, MA <i>Type III 24-hr 100-Year Rainfall=8.80</i> Printed 7/16/2021 Printed 7/16/2021 Page 41
Runoff by SCS TR-20 n	0 hrs, dt=0.05 hrs, 601 points nethod, UH=SCS, Weighted-CN nod - Pond routing by Stor-Ind method
Subcatchment E-1: Flow North to Wetland "D"	Runoff Area=122,563 sf 0.00% Impervious Runoff Depth=6.13 Flow Length=404' Tc=12.4 min CN=78 Runoff=16.14 cfs 62,659 c
Subcatchment E-2: Flow West to Wetlands "F"	Runoff Area=17,293 sf 0.00% Impervious Runoff Depth=6.01 Tc=6.0 min CN=77 Runoff=2.71 cfs 8,665 c
Subcatchment E-3: Flow Southwest Off-Site	Runoff Area=27,755 sf 0.00% Impervious Runoff Depth=6.13 Tc=6.0 min CN=78 Runoff=4.42 cfs 14,190 c
Subcatchment E-4: Flow Southeast to Wetlands "A"	Runoff Area=185,366 sf 0.00% Impervious Runoff Depth=6.01 Flow Length=300' Tc=20.2 min CN=77 Runoff=19.94 cfs 92,883 c
Subcatchment E-5: Off-Site Runoff NorthEast	Runoff Area=86,899 sf 0.00% Impervious Runoff Depth=6.13 Flow Length=299' Tc=9.8 min CN=78 Runoff=12.27 cfs 44,426 c
Pond 1P: On-Site Depression	Peak Elev=98.91' Storage=43,273 cf Inflow=12.27 cfs 44,426 c carded=0.03 cfs 1,682 cf Primary=0.00 cfs 0 cf Outflow=0.03 cfs 1,682 c
ink SP-1: Study Point #1	Inflow=16.14 cfs 62,659 cf Primary=16.14 cfs 62,659 cf
ink SP-2: Study Point #2	Inflow=2.71 cfs 8,665 cf Primary=2.71 cfs 8,665 cf
ink SP-3: Study Point #3	Inflow=4.42 cfs 14,190 cf Primary=4.42 cfs 14,190 cf
ink SP-4: Study Point #4	Inflow=19.94 cfs 92,883 cf Primary=19.94 cfs 92,883 cf

Total Runoff Area = 439,876 sf Runoff Volume = 222,824 cf Average Runoff Depth = 6.08" 100.00% Pervious = 439,876 sf 0.00% Impervious = 0 sf

Prepared by All	ting HydroCAD an & Major Associates, Inc. -26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	The Sanctuary, Manchester-by-the-Sea, MA <i>Type III 24-hr 100-Year Rainfall=8.80"</i> Printed 71/6/2021 Page 42
	Summary for Subcatchment E-1: Flow	v North to Wetland "D"
Runoff =	16.14 cfs @ 12.17 hrs, Volume= 62,659 cf, D	lepth= 6.13"
	R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00 0-Year Rainfall=8.80"	30.00 hrs, dt= 0.05 hrs
Area (sf)	CN Description	
4,563 118,000	91 Gravel roads, HSG D 77 Woods, Good, HSG D	
122,563 122,563	78 Weighted Average 100.00% Pervious Area	
Tc Length (min) (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)	
7.8 50		ab a 0.000 D2 2.1/#
4.6 354	0.2610 1.28 Woods: Dense underbru Shallow Concentrated Forest w/Heavy Litter K	Flow,
12.4 404	Total	
	Subcatchment E-1: Flow North	n to Wetland "D"
	Hydrograph	
How (cts) How (c	Rur	Type III 24-hr D0-Year Rainfall=8.80" unoff Area=122,563 sf noff Volume=62,659 cf Runoff Depth=6.13" Flow Length=404' Tc=12.4 min CN=78

2725-01 - Existing HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 100-Year Rainfall=8.80" Printed 7/16/2021 Page 44
Summary for Subcatchment E-3: Flow South	west Off-Site
Tc of 4.6 rounds to minimum of 5.0. Use Tc = 5.0 mimutes for E-2.	
Runoff = 4.42 cfs @ 12.09 hrs, Volume= 14,190 cf, Depth= 6.13	ju)
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, o Type III 24-hr 100-Year Rainfall=8.80"	dt= 0.05 hrs
Area (sf) CN Description	
1,087 91 Gravel roads, HSG D 26,668 77 Woods, Good, HSG D	
27,755 78 Weighted Average 27,755 100.00% Pervious Area	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
6.0 Direct Entry, Min. Tc.	
Runoff	Type III 24-hr r Rainfall=8.80' Area=27,755 sf lume=14,190 cf off Depth=6.13'' Tc=6.0 min CN=78

UIUCA	0∞ 10.00				D Software Solutions LLC	Page 4
		S	ummary	for Subc	atchment E-4: Flow Southeast to Wetlands "A"	
noff	=	19.94 cf	s@ 12.2	7 hrs, Volu	Ime= 92,883 cf, Depth= 6.01"	
			nod, UH=S ainfall=8.80		ted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs	
				,		
	<u>rea (sf)</u> 85,366		escription	od, HSG D		
1	85,366	1	00.00% Pe	ervious Are	a	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
17.3	50	0.0350	0.05		Sheet Flow, Woods: Dense underbrush n= 0.800 P2= 3.16"	
2.9	250	0.3200	1.41		Shallow Concentrated Flow,	
20.2	300	Total			Forest w/Heavy Litter Kv= 2.5 fps	
			C 1			
			Su	catchme	ent E-4: Flow Southeast to Wetlands "A" Hydrograph	
22-		J				Runoff
21- 20-		+			9.94 cfs	- rtanon
19 18					Type III 24-hr 100-Year Rainfall=8.80"	
17 16		+		- +	Runoff Area=185,366 sf	
15 14					Runoff Volume=92,883 cf	
(sj 13 12		+		- +	Runoff Depth=6.01"	
10. (cfs) 11. 10. 10.					Flow Length=300'	
9 8		+			Tc=20.2 min	
7- 6-				- + 	CN=77	
5-		j				
3-	[/]			- +		
	-1	1 1 1	1 1 1	and		

2725-01 - Ex Prepared by A HydroCAD® 10.	Allen & Ma	, ajor Associa	The Sanctuary, Manchester- <i>Type III 24-hr 100-Year</i> ates, Inc. Pri 20 HydroCAD Software Solutions LLC	
		Summa	ary for Subcatchment E-5: Off-Site Runoff NorthEast	
Tc of 4.6 round	ts to minim	num of 5.0. L	Use Tc = 5.0 mimutes for E-2.	
Runoff =	12.27 (cfs @ 12.14	4 hrs, Volume= 44,426 cf, Depth= 6.13"	
Runoff by SCS Type III 24-hr			SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs 0"	
Area (s	f) CN	Description	1	
3,37		Gravel road		
75,33 * 8,18		Woods, Go Wetlands (Good, HSG D	
86,89		Weighted A		
86,89	9	100.00% Pe	ervious Area	
Tc Leng	th Slope	e Velocity	Capacity Description	
(min) (fee			(cfs)	
6.9	50 0.3460	0.12	Sheet Flow, Woods: Dense underbrush n= 0.800 P2= 3.16"	
2.9 24	49 0.326	7 1.43		
			Forest w/Heavy Litter Kv= 2.5 fps	
9.8 2	99 Total			
			Subcatchment E-5: Off-Site Runoff NorthEast	
			Hydrograph	
13 12 11 10 9 8 8 7 7 7 5			12.27 cfs Type III 24-hr 100-Year Rainfall=8.80" Runoff Area=86,899 sf Runoff Volume=44,426 cf Runoff Depth=6.13" Flow Length=299' Tc=9.8 min CN=78	Runoff

 2725-01 - Existing HydroCAD
 Typ

 Prepared by Allen & Major Associates, Inc.
 HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC

The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 100-Year Rainfall=8.80" Printed 7/16/2021 Page 47

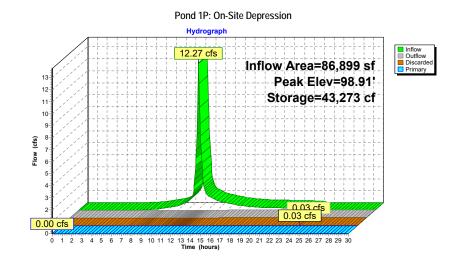
Summary for Pond 1P: On-Site Depression

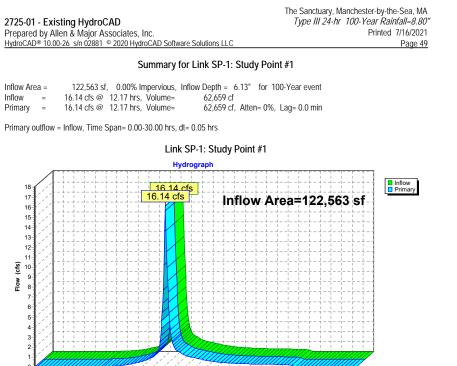
[92] Warning: Device #2 is above defined storage

Inflow Area =	86,899 sf, 0.00% Impervious,	Inflow Depth = 6.13" for 100-Year event
Inflow =	12.27 cfs @ 12.14 hrs, Volume=	44,426 cf
Outflow =	0.03 cfs @ 24.22 hrs, Volume=	1,682 cf, Atten= 100%, Lag= 724.7 min
Discarded =	0.03 cfs @ 24.22 hrs, Volume=	1,682 cf
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 98.91' @ 24.22 hrs Surf.Area= 12,355 sf Storage= 43,273 cf

Plug-Flow detention time= 720.8 min calculated for 1,682 cf (4% of inflow) Center-of-Mass det. time= 433.0 min (1,240.4 - 807.4)


Volume	Invert	Avail.Storage	Storage Description


#1	92.00'	78,776 cf	Custom Stage Data (Irregular) Listed below (Rec		
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
92.00	52	29.0	0	0	52
93.00	2,124	187.3	836	836	2,779
94.00	3,737	252.7	2,893	3,729	5,079
95.00	5,767	332.6	4,715	8,444	8,812
96.00	7,274	378.0	6,506	14,950	11,404
97.00	8,988	420.3	8,116	23,066	14,121
98.00	10,640	460.0	9,802	32,869	16,936
99.00	12,541	514.7	11,577	44,446	21,207
100.00	17,768	671.0	15,079	59,525	35,967
101.00	20,774	729.5	19,251	78,776	42,524

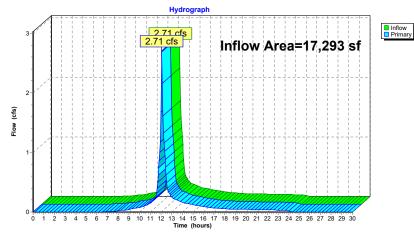
Device	Routing	Invert	Outlet Devices
#1	Discarded	92.00'	0.090 in/hr Exfiltration (D Soil) over Surface area
#2	Primary	101.00'	100.0' long x 1.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32

Discarded OutFlow Max=0.03 cfs @ 24.22 hrs HW=98.91' (Free Discharge) 1=Exfiltration (D Soil) (Exfiltration Controls 0.03 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=92.00' (Free Discharge) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs) 2725-01 - Existing HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 100-Year Rainfall=8.80" Printed 7/16/2021 Page 48

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours)
 2725-01 - Existing HydroCAD
 The Sanctuary, Manchester-by-the-Sea, MA

 Prepared by Allen & Major Associates, Inc.
 Printed 7/16/2021

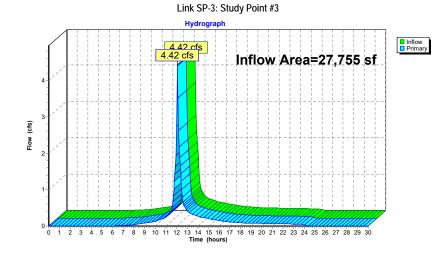

 HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC
 Page 50

Summary for Link SP-2: Study Point #2

Inflow Area =	17,293 sf, 0.00% Impervious	, Inflow Depth = 6.01" for 100-Year event
Inflow =	2.71 cfs @ 12.09 hrs, Volume=	8,665 cf
Primary =	2.71 cfs @ 12.09 hrs, Volume=	8,665 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Link SP-2: Study Point #2

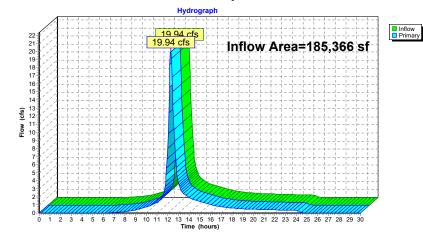


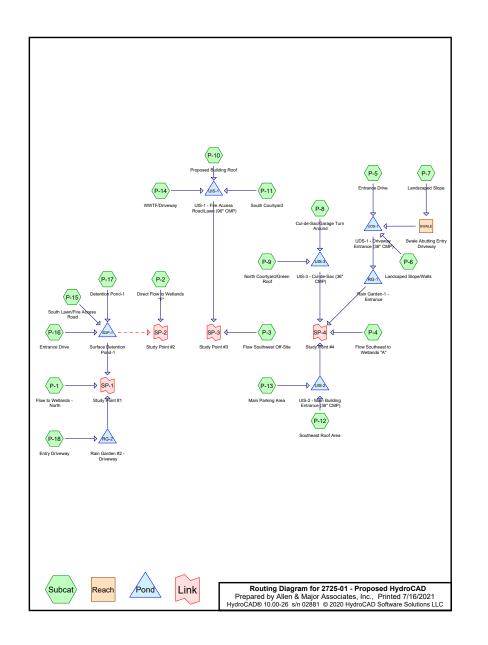
	The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Existing HydroCAD	Type III 24-hr 100-Year Rainfall=8.80"
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 51

Summary for Link SP-3: Study Point #3

Inflow Area =	27,755 sf, 0.00% Impervious, Inflow Depth =	6.13"	for 100-Year event
Inflow =	4.42 cfs @ 12.09 hrs, Volume= 14,190 c	cf	
Primary =	4 42 cfs @ 12 09 hrs Volume= 14 190 c	f Atte	n = 0% l $a = 0.0$ min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs


2725-01 - Existing HydroCAD The Sanctuary, Manchester-by-the-Sea, MA Prepared by Allen & Major Associates, Inc. Printed 7/16/2021 HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC Page 52


Summary for Link SP-4: Study Point #4

Inflow Area =		185,366 sf, 0.0	00% Impervious,	Inflow Depth = 6.01	for 100-Year event
Inflow	=	19.94 cfs @ 12.2	7 hrs, Volume=	92,883 cf	
Primary	=	19.94 cfs @ 12.2	7 hrs, Volume=	92,883 cf, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Link SP-4: Study Point #4

	The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Proposed HydroCAD	
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 2
	-

Area Listing (all nodes)

Area (sq-ft)	CN	Description (subcatchment-numbers)
164,020	80	>75% Grass cover, Good, HSG D (P-1, P-13, P-14, P-15, P-16, P-2, P-3, P-4, P-5, P-6, P-7, P-8, P-9)
6,865	73	Brush, Good, HSG D (P-17)
7,708	80	GrassPave-2 (P-14, P-15)
4,872	91	Gravel roads, HSG D (P-17)
35,808	98	Paved parking, HSG D (P-14, P-5, P-7, P-8)
50,089	98	Unconnected pavement, HSG D (P-11, P-13, P-16, P-18, P-3, P-4, P-6)
62,654	98	Unconnected roofs, HSG D (P-10, P-12, P-9)
107,852	77	Woods, Good, HSG D (P-1, P-2, P-3, P-4)
420 040	OE	

439,868 85 TOTAL AREA

_

The Sanctuary, Manchester-by-the-Sea, MA

Printed 7/16/2021

Page 3

The Sanctuary, Manchester-by-the-Sea, MA

Page 4

2725-01 - Proposed HydroCAD	
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 4

Soil Listing (all nodes)

2725-01 - Proposed HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC

Area	Soil	Subcatchment
 (sq-ft)	Group	Numbers
0	HSG A	
0	HSG B	
0	HSG C	
432,160	HSG D	P-1, P-10, P-11, P-12, P-13, P-14, P-15, P-16, P-17, P-18, P-2, P-3, P-4, P-5, P-6, P-7, P-8, P-9
7,708	Other	P-14, P-15
439,868		TOTAL AREA

Ground Covers (all nodes)								
HSG-A (sq-ft)	HSG-B (sq-ft)	HSG-C (sq-ft)	HSG-D (sq-ft)	Other (sq-ft)	Total (sq-ft)	Ground Cover	Subcatchment Numbers	
 0	0	0	164,020	0	164,020	>75% Grass cover, Good	P-1, P-13, P-14, P-15, P-16, P-2, P-3, P-4, P-5, P-6, P-7, P-8, P-9	
0	0	0	6,865	0	6,865	Brush, Good	P-17	
0	0	0	0	7,708	7,708	GrassPave-2	P-14, P-15	
0	0	0	4,872	0	4,872	Gravel roads	P-17	
0	0	0	35,808	0	35,808	Paved parking	P-14, P-5, P-7, P-8	
0	0	0	50,089	0	50,089	Unconnected pavement	P-11, P-13, P-16, P-18, P-3, P-4, P-6	
0	0	0	62,654	0	62,654	Unconnected roofs	P-10, P-12, P-9	
0	0	0	107,852	0	107,852	Woods, Good	P-1, P-2, P-3, P-4	
0	0	0	432,160	7,708	439,868	TOTAL AREA		

The Sanctuary, Manchester-by-the-Sea, MA

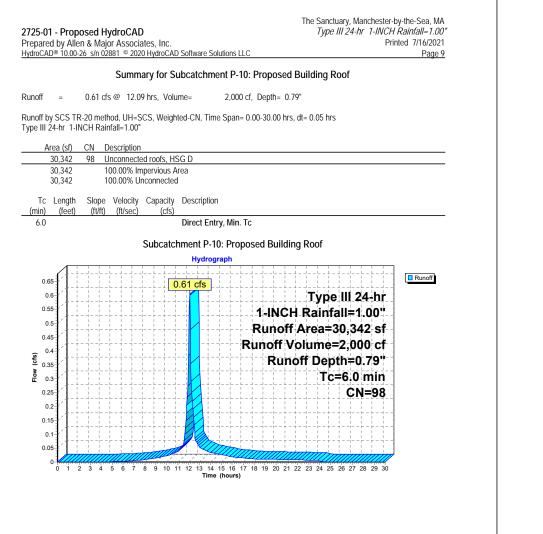
2725-01 - Proposed HydroCAD	
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 5

Pipe Listing (all nodes)

Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
1	RG-1	51.00	50.50	100.0	0.0050	0.013	24.0	0.0	0.0
2	SDP-1	78.00	77.00	100.0	0.0100	0.013	15.0	0.0	0.0
3	UDS-1	47.00	46.00	100.0	0.0100	0.012	18.0	0.0	0.0
4	UIS-1	103.00	102.00	100.0	0.0100	0.013	12.0	0.0	0.0
5	UIS-2	117.00	116.00	100.0	0.0100	0.012	15.0	0.0	0.0
6	UIS-3	107.00	102.00	100.0	0.0500	0.013	12.0	0.0	0.0

	The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Proposed HydroCAD	Type III 24-hr 1-INCH Rainfall=1.00"
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 6

Time span=0.00-30.00 hrs, dt=0.05 hrs, 601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind method - Pond routing by Stor-Ind method


	0,2	0.5
S	Subcatchment P-1: Flow to Wetlands - North	Runoff Area=17,171 sf 0.00% Impervious Runoff Depth=0.07" Tc=6.0 min CN=79 Runoff=0.01 cfs 100 cf
S	Subcatchment P-10: Proposed Building Roof	Runoff Area=30,342 sf 100.00% Impervious Runoff Depth=0.79" Tc=6.0 min CN=98 Runoff=0.61 cfs 2,000 cf
S	Subcatchment P-11: South Courtyard	Runoff Area=20,180 sf 100.00% Impervious Runoff Depth=0.79" Tc=6.0 min CN=98 Runoff=0.40 cfs 1,330 cf
S	Subcatchment P-12: Southeast Roof Area	Runoff Area=27,254 sf 100.00% Impervious Runoff Depth=0.79" Tc=6.0 min CN=98 Runoff=0.54 cfs 1,796 cf
S	Subcatchment P-13: Main Parking Area	Runoff Area=17,700 sf 76.07% Impervious Runoff Depth=0.50" Tc=6.0 min CN=94 Runoff=0.24 cfs 743 cf
S	Subcatchment P-14: WWTF/Driveway	Runoff Area=19,605 sf 33.29% Impervious Runoff Depth=0.20" Tc=6.0 min CN=86 Runoff=0.08 cfs 323 cf
S	Subcatchment P-15: South Lawn/Fire Access Road	Runoff Area=18,445 sf 0.00% Impervious Runoff Depth=0.08" Tc=6.0 min CN=80 Runoff=0.02 cfs 128 cf
S	Subcatchment P-16: Entrance Drive	Runoff Area=20,820 sf 44.13% Impervious Runoff Depth=0.25" Tc=6.0 min CN=88 Runoff=0.12 cfs 439 cf
S	Subcatchment P-17: Detention Pond-1	Runoff Area=11,737 sf 0.00% Impervious Runoff Depth=0.08" Tc=6.0 min CN=80 Runoff=0.01 cfs 82 cf
S	Subcatchment P-18: Entry Driveway	Runoff Area=5,160 sf 100.00% Impervious Runoff Depth=0.79" Tc=6.0 min CN=98 Runoff=0.10 cfs 340 cf
S	Subcatchment P-2: Direct Flow to Wetlands "F"	Runoff Area=9,691 sf 0.00% Impervious Runoff Depth=0.06" Tc=6.0 min CN=78 Runoff=0.00 cfs 47 cf
S	Subcatchment P-3: Flow Southwest Off-Site Flow Length=194	Runoff Area=27,985 sf 1.79% Impervious Runoff Depth=0.08" V Slope=0.0100 '/' Tc=10.9 min CN=80 Runoff=0.02 cfs 194 cf
S	Subcatchment P-4: Flow Southeast to Wetlands "A"	Runoff Area=117,759 sf 0.54% Impervious Runoff Depth=0.06" Flow Length=186' Tc=14.0 min CN=78 Runoff=0.05 cfs 573 cf
S	Subcatchment P-5: Entrance Drive	Runoff Area=14,879 sf 78.94% Impervious Runoff Depth=0.50" Tc=6.0 min CN=94 Runoff=0.20 cfs 625 cf
S	Subcatchment P-6: Landcaped Slope/Walls	Runoff Area=18,477 sf 5.22% Impervious Runoff Depth=0.08" Tc=6.0 min UI Adjusted CN=80 Runoff=0.02 cfs 128 cf
S	Subcatchment P-7: Landscaped Slope	Runoff Area=24,884 sf 3.17% Impervious Runoff Depth=0.10" Tc=6.0 min CN=81 Runoff=0.03 cfs 203 cf

2725-01 - Proposed HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Softwar	The Sanctuary, Manchester-by-the-Sea, MA <i>Type III 24-hr 1-INCH Rainfall=1.00"</i> Printed 7/16/2021 e Solutions LLC Page 7
Subcatchment P-8: Cul-de-Sac/Garage Turn Around	Runoff Area=22,451 sf 74.60% Impervious Runoff Depth=0.45" Tc=6.0 min CN=93 Runoff=0.27 cfs 843 cf
Subcatchment P-9: North Courtyard/Green Roof	Runoff Area=15,328 sf 33.00% Impervious Runoff Depth=0.20" Tc=6.0 min CN=86 Runoff=0.06 cfs 252 cf
Reach SWALE: Swale Abutting Entry Driveway	Avg. Flow Depth=0.02' Max Vel=0.67 fps Inflow=0.03 cfs 203 cf n=0.040 L=427.0' S=0.0749 '/' Capacity=16.60 cfs Outflow=0.02 cfs 203 cf
Pond RG-1: Rain Garden-1 - Entrance	Peak Elev=50.50' Storage=950 cf Inflow=0.09 cfs 950 cf 24.0" Round Culvert n=0.013 L=100.0' S=0.0050 '/' Outflow=0.00 cfs 0 cf
Pond RG-2: Rain Garden #2 - Driveway	Peak Elev=162.49' Storage=340 cf Inflow=0.10 cfs 340 cf Outflow=0.00 cfs 0 cf
Pond SDP-1: Surface Detention Pond-1	Peak Elev=76.91' Storage=648 cf Inflow=0.14 cfs 648 cf Primary=0.00 cfs 0 cf Secondary=0.00 cfs 0 cf Outflow=0.00 cfs 0 cf
Pond UDS-1: UDS-1 - Driveway Entrance (36" CMP)	Peak Elev=47.16' Storage=228 cf Inflow=0.21 cfs 956 cf Outflow=0.09 cfs 950 cf
Pond UIS-1: UIS-1 - Fire Access Road/Lawn (96" CMI	P) Peak Elev=102.08' Storage=3,653 cf Inflow=1.09 cfs 3,653 cf Outflow=0.00 cfs 0 cf
Pond UIS-2: UIS-2 - Main Building Entrance (36" CMF	P) Peak Elev=117.37' Storage=972 cf Inflow=0.78 cfs 2,539 cf Discarded=0.08 cfs 2,539 cf Primary=0.00 cfs 0 cf Outflow=0.08 cfs 2,539 cf
Pond UIS-3: UIS-3 - Cul-de-Sac (36" CMP)	Peak Elev=107.10' Storage=206 cf Inflow=0.33 cfs 1,095 cf Discarded=0.12 cfs 1,095 cf Primary=0.00 cfs 0 cf Outflow=0.12 cfs 1,095 cf
Link SP-1: Study Point #1	Inflow=0.01 cfs 100 cf Primary=0.01 cfs 100 cf
Link SP-2: Study Point #2	Inflow=0.00 cfs 47 cf Primary=0.00 cfs 47 cf
Link SP-3: Study Point #3	Inflow=0.02 cfs 194 cf Primary=0.02 cfs 194 cf
Link SP-4: Study Point #4	Inflow=0.05 cfs 573 cf Primary=0.05 cfs 573 cf

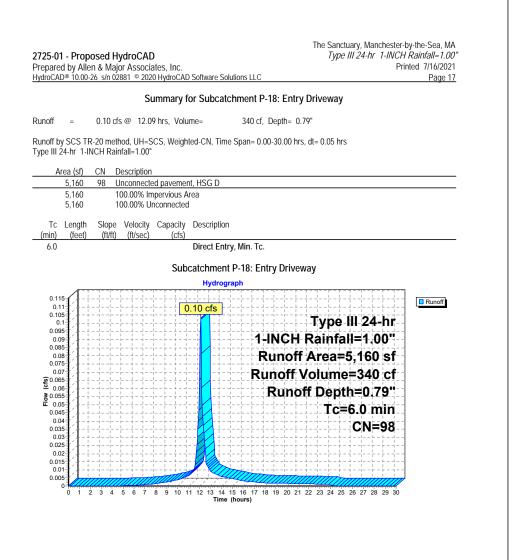
 Total Runoff Area = 439,868 sf
 Runoff Volume = 10,146 cf
 Average Runoff Depth = 0.28"

 66.23%
 Pervious = 291,317 sf
 33.77%
 Impervious = 148,551 sf

2725-01 - Proposed I Prepared by Allen & Ma HydroCAD® 10.00-26 s/n (The Sanctuary, Manchester-by-the-Sea, MA <i>Type III 24-hr 1-INCH Rainfall=1.00</i> Printed 7/16/2021 Page 8
	Summary for Subcatchment P-1: Flow to W	/etlands - North
Runoff = 0.01	cfs @ 12.36 hrs, Volume= 100 cf, Depth= 0	0.07"
Runoff by SCS TR-20 me Type III 24-hr 1-INCH Ra	ethod, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hi ainfall=1.00"	rs, dt= 0.05 hrs
Area (sf) CN	Description	
	>75% Grass cover, Good, HSG D Woods, Good, HSG D	
·	Weighted Average 100.00% Pervious Area	
Tc Length Slope (min) (feet) (ft/ft	e Velocity Capacity Description i) (ft/sec) (cfs)	
6.0	Direct Entry, Min. Tc.	
	Subcatchment P-1: Flow to Wetland	s - North
	Hydrograph	
Here is a second	Runoff	Type III 24-hr I Rainfall=1.00" Area=17,171 sf Volume=100 cf off Depth=0.07" Tc=6.0 min CN=79

HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC Summary for Subcatchment P-11: South Cou Runoff = 0.40 cfs @ 12.09 hrs, Volume= 1,330 cf, Depth= 0.79" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= Type III 24-hr 1-INCH Rainfall=1.00" Area (sf) CN Description 20,180 98 Unconnected pavement, HSG D 20,180 100.00% Impervious Area 100.00% Impervious Area	
Runoff = 0.40 cfs @ 12.09 hrs, Volume= 1,330 cf, Depth= 0.79" Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= Type III 24-hr 1-INCH Rainfall=1.00" Area (sf) CN Description 20,180 98 Unconnected pavement, HSG D 20,180 100.00% Impervious Area	
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= Type III 24-hr 1-INCH Rainfall=1.00" Area (sf) CN Description 20,180 98 Unconnected pavement, HSG D 20,180 100.00% Impervious Area	0.05 hrs
Area (sf) CN Description 20,180 98 Unconnected pavement, HSG D 20,180 100.00% Impervious Area	0.05 hrs
20,180 98 Unconnected pavement, HSG D 20,180 100.00% Impervious Area	
20,180 100.00% Impervious Area	
20,180 100.00% Unconnected	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
6.0 Direct Entry, Min. Tc.	
0.30 0.36 0.34 0.32 0.3 0.28 0.3 0.28 0.3 0.28 0.3 0.28 0.3 0.28 0.30 0.28 0.30 0.30 0.30 0.34 0.30 0.34 0.30 0.34 0.34	Type III 24-hr ainfall=1.00" rea=20,180 sf ume=1,330 cf Depth=0.79" Tc=6.0 min CN=98

epared by Al droCAD® 10.0	Image: Provide and the second secon
	Summary for Subcatchment P-12: Southeast Roof Area
of 4.6 rounds	to minimum of 5.0. Use Tc = 5.0 mimutes for E-2.
noff =	0.54 cfs @ 12.09 hrs, Volume= 1,796 cf, Depth= 0.79"
	FR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs INCH Rainfall=1.00"
Area (sf)	CN Description
27,254	98 Unconnected roofs, HSG D
27,254 27,254	100.00% Impervious Area 100.00% Unconnected
Tc Length (min) (feet) (ft/ft) (ft/sec) (cfs)
6.0	Direct Entry, Min. Tc
	Subcatchment P-12: Southeast Roof Area
	Hydrograph
0.6	0.54 cfs Type III 24-hr
0.5	1-INCH Rainfall=1.00"
0.45	Runoff Area=27,254 sf
0.4	· · · · · · · · · · · · · · · · · · ·
	Runoff Volume=1,796 cf
- 1 Class - 1 Cl	Runoff Depth=0.79"
음 _{0.25}	+Tc=6.0 min
0.2	CN=98
0.15	
1.4-	
0.1	
0.1	

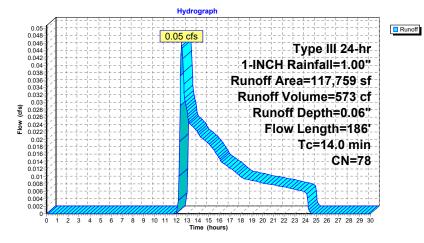

2725-01 - Proposed HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	The Sanctuary, Manchester-by-the-Sea, MA <i>Type III 24-hr 1-INCH Rainfall=1.00</i> " Printed 7/16/2021 Page 12
Summary for Subcatchment P-13: Main Pa	rking Area
Runoff = 0.24 cfs @ 12.09 hrs, Volume= 743 cf, Depth= 0.50)"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, Type III 24-hr 1-INCH Rainfall=1.00"	dt= 0.05 hrs
Area (sf) CN Description	
13,464 98 Unconnected pavement, HSG D	
4,236 80 >75% Grass cover, Good, HSG D 17,700 94 Weighted Average	
4,236 23.93% Pervious Area	
13,464 76.07% Impervious Area	
13,464 100.00% Unconnected	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
6.0 Direct Entry, Min. 6.0	
0.19 0.17 0.17 0.16 0.15 Runoff A Runoff V	Type III 24-hr Rainfall=1.00" rea=17,700 sf olume=743 cf f Depth=0.50" Tc=6.0 min CN=94

			or Associ 1881 © 202		:. AD Softwa	ire Soluti	ions LLC					Pri	nted 7/16/20 Page
			Su	ummary	for Sub	catchr	ment P-	14: WW	/TF/Dr	ivewa	у		
unoff	=	0.08 cf	s@ 12.1	11 hrs, V	olume=		323 cf,	Depth=	0.20"				
			hod, UH=S nfall=1.00'		ghted-CN	, Time S	Span= 0.0	00-30.00	hrs, dt=	= 0.05 h	rs		
,,	rea (sf)		Description										
	6,526		Paved park		i D								
	9,225	80 >	75% Ġras	ss cover,	Good, HS	GD							
	3,854		GrassPave										
	19,605 13.079		Veighted A 6.71% Pe		63								
	6,526		3.29% Im										
_													
					_								
	Length		Velocity			iption							
1C (min) 6.0	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	(Cf	<u>s)</u> Direc bcatchn	t Entry,		VTF/Dri	veway	1			
(min) 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(feet) 09 85 06 65 06 06 06			(Cf	<u>s)</u> Direc bcatchn	t Entry, nent P-	-14: WV	-INC unof unof	H R f Ar f Vc	Type ainf ea=)lum Dep	e III 2 all=1 19,60 ie=32 ith=0 =6.0 CN	.00" 5 sf 3 cf 20"	Runoff
(min) 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(feet) 09 85 06 65 06 06 06			(Cf	<u>s)</u> Direc bcatchn Hy	t Entry, nent P-	-14: WV	-INC unof unof	H R f Ar f Vc	Type ainf ea=)lum Dep	all=1 19,60 e=32 oth=0. =6.0	00" 5 sf 3 cf 20" min	Runoff

2725-01 - Proposed HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 1-INCH Rainfall=1.00" Printed 7/16/2021 Page 14
Summary for Subcatchment P-15: South Lawn/F	ire Access Road
Runoff = 0.02 cfs @ 12.32 hrs, Volume= 128 cf, Depth= 0.0	8"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, Type III 24-hr 1-INCH Rainfall=1.00"	dt= 0.05 hrs
Area (sf) CN Description 14,591 80 >75% Grass cover, Good, HSG D * 3,854 80 GrassPave-2 18,445 80 Weighted Average 18,445 100,00% Pervious Area	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Min. 6.0	
0.012 0.012 0.011 Runoff J	Type III 24-hr Rainfall=1 00" Area=18,445 sf Volume=128 cf ff Depth=0.08" Tc=6.0 min CN=80

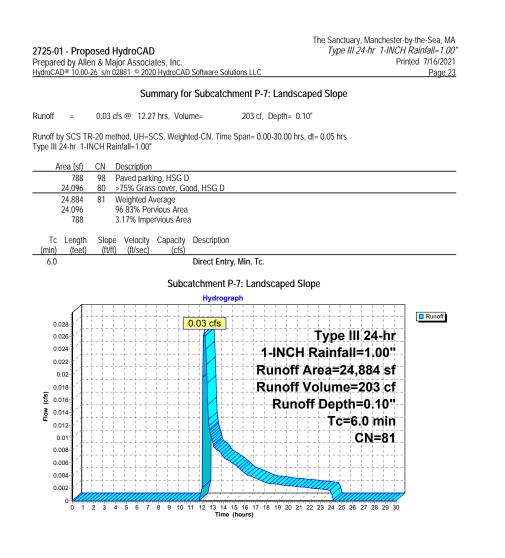
	len & Major Associates, Inc. Printed 7/16/2021 9-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC Page 15
	Summary for Subcatchment P-16: Entrance Drive
inoff =	0.12 cfs @ 12.10 hrs, Volume= 439 cf, Depth= 0.25"
	R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs
pe III 24-hr 1-	INCH Rainfall=1.00"
Area (sf)	CN Description
9,187 11,633	 98 Unconnected pavement, HSG D >75% Grass cover, Good, HSG D
20,820	88 Weighted Average
11,633	55.87% Pervious Area
9,187 9,187	44.13% Impervious Area 100.00% Unconnected
9,107	
Tc Length	
(min) (feet)	
60	Direct Entry Min To
6.0	Direct Entry, Min. Tc.
6.0	Direct Entry, Min. Tc. Subcatchment P-16: Entrance Drive
6.0	
-	Subcatchment P-16: Entrance Drive Hydrograph
0.13	Subcatchment P-16: Entrance Drive Hydrograph
0.13	Subcatchment P-16: Entrance Drive Hydrograph 0.12 cfs Type III 24-hr
0.13	Subcatchment P-16: Entrance Drive Hydrograph
0.13	Subcatchment P-16: Entrance Drive Hydrograph
0.13	Subcatchment P-16: Entrance Drive Hydrograph 0.12 cfs Type III 24-hr 1-INCH Rainfall=1.00" - Runoff Area=20,820 sf
0.13	Subcatchment P-16: Entrance Drive Hydrograph 0.12 cfs Type III 24-hr 1-INCH Rainfall=1.00" Runoff Area=20,820 sf Runoff Volume=439 cf
0.13 0.12 0.11 0.11 0.11 0.09 0.009	Subcatchment P-16: Entrance Drive Hydrograph 0.12 cfs Type III 24-hr 1-INCH Rainfall=1.00" Runoff Area=20,820 sf Runoff Volume=439 cf Runoff Depth=0.25"
0.13 0.12 0.11 0.11 0.11 0.09 0.009 0.009	Subcatchment P-16: Entrance Drive Hydrograph 0.12 cfs Type III 24-hr 1-INCH Rainfall=1.00" Runoff Area=20,820 sf Runoff Volume=439 cf
0.13 0.12 0.11 0.11 0.11 0.09 0.09 0.009	Subcatchment P-16: Entrance Drive Hydrograph 0.12 cfs Type III 24-hr 1-INCH Rainfall=1.00" Runoff Area=20,820 sf Runoff Volume=439 cf Runoff Depth=0.25"
0.13 0.12 0.11 0.11 0.11 0.09 0.09 0.00 0.05 0.06	Subcatchment P-16: Entrance Drive Hydrograph 0.12 cfs Type III 24-hr 1-INCH Rainfall=1.00" Runoff Area=20,820 sf Runoff Volume=439 cf Runoff Depth=0.25"
0.13 0.12 0.11 0.11 0.11 0.009 0.009 0.009 0.009 0.009	Subcatchment P-16: Entrance Drive Hydrograph 0.12 cfs Type III 24-hr 1-INCH Rainfall=1.00" Runoff Area=20,820 sf Runoff Volume=439 cf Runoff Depth=0.25"
0.13 0.12 0.11 0.11 0.11 0.19 0.09 0.09 0.00 0.05 0.04 0.05 0.04 0.03 0.02 0.02 0.04 0.03 0.02	Subcatchment P-16: Entrance Drive Hydrograph 0.12 cfs Type III 24-hr 1-INCH Rainfall=1.00" Runoff Area=20,820 sf Runoff Volume=439 cf Runoff Depth=0.25"
0.13 0.12 0.11 0.11 0.11 0.009 0.009 0.009 0.009 0.009	Subcatchment P-16: Entrance Drive Hydrograph 0.12 cfs Type III 24-hr 1-INCH Rainfall=1.00" Runoff Area=20,820 sf Runoff Volume=439 cf Runoff Depth=0.25"

2725-01 - Proposed HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 1-INCH Rainfall=1.00" Printed 7/16/2021 Page 16
Summary for Subcatchment P-17: Detention	on Pond-1
Runoff = 0.01 cfs @ 12.32 hrs, Volume= 82 cf, Depth= 0.04	3"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, Type III 24-hr 1-INCH Rainfall=1.00" $$	dt= 0.05 hrs
Area (sf) CN Description 4,872 91 Gravel roads, HSG D 6,865 73 Brush, Good, HSG D 11,737 80 Weighted Average	
11,737 100.00% Pervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Min. Tc	
0.008 0.007 0.007 (g) 0.006 0.004 0.	d-1 Type III 24-hr Rainfall=1.00" Area=11,737 sf Volume=82 cf ff Depth=0.08" Tc=6.0 min CN=80


2725-01 - Proposed HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 1-INCH Rainfall=1.00" Printed 7/16/2021 Page 18
Summary for Subcatchment P-2: Dir	ect Flow to Wetlands "F"
Runoff = 0.00 cfs @ 12.39 hrs, Volume= 47 cf,	Depth= 0.06"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.0 Type III 24-hr 1-INCH Rainfall=1.00"	0-30.00 hrs, dt= 0.05 hrs
Area (sf) CN Description	
1,678 80 >75% Grass cover, Good, HSG D 8,013 77 Woods, Good, HSG D	
9,691 78 Weighted Average 9,691 100.00% Pervious Area	
Tc Length Slope Velocity Capacity Description	
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry,	
Subcatchment P-2: Direct Flo Hydrograph	w to wetlands F
0.005 0.004 0.004 0.004 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.003 0.002 0.0000 0.00000000	Type III 24-hr INCH Rainfall=1.00" unoff Area=9,691 sf unoff Volume=47 cf Runoff Depth=0.06" Tc=6.0 min CN=78

ydroCA	D® 10.00-	-26 s/n 0	2881 © 202	0 HydroCAD	Software Solution	ns LLC		Page 1	9
			Summ	hary for S	ubcatchment	P-3: Flow Southv	vest Off-Site		
unoff	=	0.02 c	fs@ 12.4	0 hrs, Volu	me=	194 cf, Depth= 0.08	ı		
			thod, UH=S infall=1.00"		ed-CN, Time S	oan= 0.00-30.00 hrs, c	lt= 0.05 hrs		
A	rea (sf)		Description						_
	24,995 2,490		>75% Gras Woods. Go	s cover, Go	od, HSG D				
	500			ed pavemen	t, HSG D				_
	27,985 27,485		Weighted A	verage vious Area					
	500		1.79% Impe	ervious Area	I				
	500		100.00% U	nconnected					
			Malash	0	Description				
	Length		Velocity		Description				
Tc (min) 7.5	Length (feet) 50	Slope (ft/ft) 0.0100	(ft/sec)	Capacity (cfs)	Sheet Flow,				_
(min) 7.5	(feet) 50	(ft/ft) 0.0100	(ft/sec) 0.11		Sheet Flow, Grass: Short	n= 0.150 P2= 3.16"			_
(min)	(feet) 50 144	(ft/ft)	(ft/sec) 0.11	(cfs)	Sheet Flow, Grass: Short Shallow Conc Short Grass Pr	entrated Flow, asture Kv= 7.0 fps low Southwest Of	f-Site		_
(min) 7.5 3.4 10.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(feet) 50 144	(ft/ft) 0.0100 0.0100	(ft/sec) 0.11	Subcatc	Sheet Flow, Grass: Short Shallow Conc Short Grass P.	entrated Flow, Isture Kv= 7.0 fps Iow Southwest Of C1 INCH Runoff Runoff Runo Flo	Type III 24 Rainfall=1. Area=27,98 /olume=194 ff Depth=0. w Length=1 lope=0.010 Tc=10.9 i	00" 5 sf 4 cf 08" 94' 0 '/	_

2725-01 - Proposed HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC								The Sanctuary, Manchester-by-the-Sea, MA <i>Type III 24-hr 1-INCH Rainfall=1.00</i> ' Printed 7/16/2021 Page 20
Summary for Subcatchment P-4: Flow Southeas								t to Wetlands "A"
Tc of 4.6	rounds t	o minimu	ım of 5.0. L	Jse Tc = 5.0) mimutes for I	E-2.		
Runoff	=	0.05 cf	s@ 12.5	2 hrs, Volu	ne=	573 cf,	Depth= 0.0	6"
Type III 2		NCH Raii <u>CN E</u> 77 V 80 >	nfall=1.00" Description Voods, Go 75% Grass					
	17,759 17,126 633 633	78 V 9	Veighted A 9.46% Per 0.54% Impe					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
11.4 2.6		0.1000	0.07		Sheet Flow, Woods: Dens Shallow Con Forest w/Hea	centrate	I Flow,	00 P2= 3.16"
					FUIES(W/HEd	vy Litter	V= 2.3 102	


14.0 186 Total

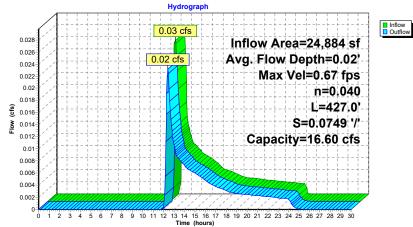
Subcatchment P-4: Flow Southeast to Wetlands "A"

repared by All ydroCAD® 10.00	en & Major Associates, Inc. Printed 7/16/2021 -26 s/n 02881 © 2020 HydroCAD Software Solutions LLC Page 21
	Summary for Subcatchment P-5: Entrance Drive
unoff =	0.20 cfs @ 12.09 hrs, Volume= 625 cf, Depth= 0.50"
	R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs INCH Rainfall=1.00"
Area (sf)	CN Description
11,745	98 Paved parking, HSG D
<u>3,134</u> 14,879	80 >75% Grass cover, Good, HSG D 94 Weighted Average
3,134 11,745	21.06% Pervious Area 78.94% Impervious Area
Tc Length	
(min) (feet)	(ft/ft) (ft/sec) (cfs)
6.0	Direct Entry, Min. Tc
	Subcatchment P-5: Entrance Drive
L22 	U.20 cfs 0.20 cfs Type III 24-hr 1-INCH Rainfall=1.00" Runoff Area=14,879 sf Runoff Volume=625 cf Runoff Depth=0.50" CN=94

725-01 - Proposed HydroCAD repared by Allen & Major Associates, Inc. ydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solu	The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 1-INCH Rainfall=1.00 Printed 7/16/202 utions LLC Page 22
Summary for Subcatchme	ent P-6: Landcaped Slope/Walls
unoff = 0.02 cfs @ 12.32 hrs, Volume=	128 cf, Depth= 0.08"
unoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time ype III 24-hr 1-INCH Rainfall=1.00"	: Span= 0.00-30.00 hrs, dt= 0.05 hrs
Area (sf) CN Adj Description	
17,512 80 >75% Grass cover, Good, HS	
965 98 Unconnected pavement, HSG	
18,477 81 80 Weighted Average, UI Adjuste 17.512 94.78% Pervious Area	ea
965 5.22% Impervious Area	
965 100.00% Unconnected	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
6.0 Direct Entry	y, Min. Tc
Hydrogra 0.017 0.016 0.015 0.014 0.013 0.012 0.011 0.013 0.012 0.011 0.013 0.013 0.013 0.013 0.014 0.015 0.014 0.015 0.014 0.015 0.015 0.015 0.014 0.015 0.015 0.014 0.015 0.014 0.015 0.014 0.015 0.014 0.015 0.014 0.015 0.017 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.005	Landcaped Slope/Walls aph Type III 24-hr 1-INCH Rainfall=1.00" Runoff Area=18,477 sf Runoff Volume=128 cf Runoff Depth=0.08" Tc=6.0 min

2725-01													Th					I-INCI	НRа	he-Sea a <i>infall=</i> d 7/16/.	1.00"
Prepareo HydroCAE							oftware	e Soluti	ons L	LC								P	intec		2021 je 24
			Sum	mary	for Su	ubcat	chme	ent P-8	8: Ci	ul-de-	Sac/0	Gara	age	Tur	n Ai	oui	nd				
Runoff	=	0.27	7 cfs @	12.1	0 hrs,	Volum	e=		843	cf, D	epth=	0.45	5"								
Runoff by Type III 2						eighteo	d-CN,	Time S	pan=	0.00-	30.00	hrs,	dt= ().05 I	hrs						
Ar	rea (sf)	CN	Desc	ription																	
	16,749	98			ing, HS																
	<u>5,702</u> 22,451	80 93			s cover		1, HSG	D D													
	5,702	75	25.40)% Per	rvious A	Area															
	16,749		/4.60)% Imp	perviou	s Area															
	Length			locity			Descrip	otion													
(min) 6.0	(feet)	(11	/ft) (fl	t/sec)	(cfs) E	Direct	Entry.	Min.	Tc.											
				Sul	bcatcl	nmen				ac/Ga	rage	Tu	rn A	rou	nd						
							Hyd	rograp	bh T		1	1 1		1	1 1	1	1	1 1	7		
0.2	.[/†-	+					27 cfs	+				+-+			+ - +	-			[Runo	ſf
0.2	-1.1-	+				- 0.2		<mark>-</mark>				+ - +	T١	ype	÷-i	1	24-	hr	1		
0.24	4	+								1-11	1Ct			· •	1 1	1		L L]		
0.2	1.十-	$\frac{1}{1} - \frac{1}{1}$				+		$\frac{1}{\frac{1}{1}} = -\frac{1}{\frac{1}{1}} = -\frac{1}{\frac{1}{1}}$	1 1	Rur		1 1			i i				-		
0.1 0.1	1.4-	+				+	-	+	+			+ - +			+ - +	z -1-		+	-		
-	1.1-	+				+	1-	+		Rur	i i	i i	i i	i	i i	i.	i	i i	-		
(cts) 0.10 0.14	-1/1-					+ 				R	un	of	f D)er	oth	1=(),4	5"	1		
œ 0.1:	2	+				+	K	+				+ - +		Τc	:=6	5.0	m	in			
0.	1	+				+	11	+	-		!	+ - +			 + - +	CI	1=	93-	_		
0.0	1.4-	+				+		+											-		
0.0	-1.4-	+													+ - +	-		<u> </u>	-		
0.0	1.4-	+				1-1-7				- +		+ - +			+ - +			+	1		
	<u>، المار</u>						; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; 		<u></u>	<u>////</u>		4		///			111		1		
	0 1	2 3	4 5	67	89	10 11		14 15 "ime (h		7 18 1	9 20	21 2	22 23	3 24	25 2	6 27	28	29 30			

The Construct Menchester by the Coo MA


Prepared by Alien & Major Associates, Inc. Prin HydroCAD® 10.00-26 sin 02881 © 2020 HydroCAD Software Solutions LLC Summary for Subcatchment P-9: North Courtyard/Green Roof	16/2021 Prepared by Alien & Major Associates, Inc. Page 25 HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC Summary for Reach SWALE: Swale
Runoff = 0.06 ds @ 12.11 hrs, Volume 25 df, Depth= 0.20 ⁴ Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 1-INCH Rainfall=1.00 ⁴ Area (sf) CN Description 15.328 86 Weighted Average 5.058 30.00% Unconnected 5.058 100.00% Unconnected 5.058 100.00% Unconnected 6.0 Direct Entry, Min.Tc. Subcatchment P-9: North Courtyard/Green Roof Hydrograph 0.06 cfs 0.06 cf	Lunoff Lu

The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 1-INCH Rainfall=1.00" Printed 7/16/2021 Page 26

for Reach SWALE: Swale Abutting Entry Driveway

Inflow Area	a =	24,884 sf,	3.17% Impervious	, Inflow Depth = 0	.10" for 1-INCH event
Inflow	=	0.03 cfs @ 1	2.27 hrs, Volume=	203 cf	
Outflow	=	0.02 cfs @ 1	2.42 hrs, Volume=	203 cf,	Atten= 13%, Lag= 9.1 min

ach SWALE: Swale Abutting Entry Driveway

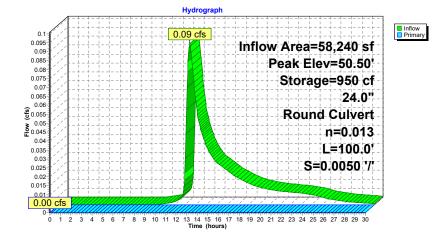
	The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Proposed HydroCAD	Type III 24-hr 1-INCH Rainfall=1.00"
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 27

Summary for Pond RG-1: Rain Garden-1 - Entrance

Inflow Area =	58,240 sf, 23.18% Impervious,	Inflow Depth > 0.20" for 1-INCH event
Inflow =	0.09 cfs @ 12.47 hrs, Volume=	950 cf
Outflow =	0.00 cfs @ 0.00 hrs, Volume=	0 cf, Atten= 100%, Lag= 0.0 min
Primary =	0.00 cfs @ 0.00 hrs. Volume=	0 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no outflow)

Volume	Invert	Ava	I.Storage	Storage Description	ו	
#1	49.00'		2,031 cf	Rain Garden (Irreg	jular) Listed below	(Recalc)
Elevation	Surf	.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
49.00		425	82.3	0	0	425
50.00		701	101.5	557	557	720
51.00		1,034	120.4	862	1,419	1,072
51.50		1,423	139.2	612	2,031	1,466

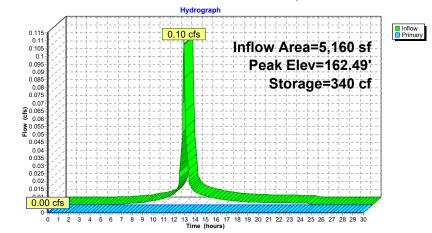

Device Routing Invert Outlet Devices

#1	Primary	51.00'	24.0" Round Culvert L= 100.0' CPP, projecting, no headwall, Ke= 0.900	
			Inlet / Outlet Invert= 51.00' / 50.50' S= 0.0050 '/' Cc= 0.900	
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf	

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=49.00' (Free Discharge) 1=Culvert (Controls 0.00 cfs)

	The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Proposed HydroCAD	Type III 24-hr 1-INCH Rainfall=1.00"
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 28

	Allen & Major).00-26 s/n 0288		s, Inc. ydroCAD Software So	lutions LLC		Printed 7/16/2021 Page 29
		Summ	ary for Pond RG	6-2: Rain Garder	n #2 - Driveway	
nflow Area =	5,160	sf,100.00%	Impervious, Inflow	Depth = 0.79" f	or 1-INCH event	
nflow =			s, Volume=	340 cf		
Dutflow =			s, Volume=		100%, Lag= 0.0 min	
Primary =	0.00 cfs @	⊉ 0.00 hr	s, Volume=	0 cf		
Pouting by St	or-Ind method	Time Snan-	= 0.00-30.00 hrs, dt=	0.05 hrs		
Coulling by Sil			rea= 830 sf Storag			
Peak Flev= 10						
Peak Elev= 16	0Z.49 @ 24.40	and outing	i da dod di ditilag			
			d: initial storage exc			
Plug-Flow det		ot calculated	d: initial storage exc			
Plug-Flow det Center-of-Mas	ention time= (ne ss det. time= (ne	ot calculated ot calculated	d: initial storage exc d: no outflow)	eeds outflow)		
Plug-Flow det Center-of-Mas /olume	ention time= (no ss det. time= (no Invert Avai	ot calculated ot calculated il.Storage	d: initial storage exc d: no outflow) Storage Descriptior	eeds outflow)		
Plug-Flow det Center-of-Mas /olume	ention time= (ne ss det. time= (ne	ot calculated ot calculated il.Storage	d: initial storage exc d: no outflow)	eeds outflow)	below (Recalc)	
Plug-Flow det Center-of-Mas <u>/olume</u> #1 1	ention time= (no ss det. time= (no <u>Invert Avai</u> 62.00'	ot calculated ot calculated il.Storage 3,504 cf	d: initial storage exc d: no outflow) <u>Storage Descriptior</u> Custom Stage Dat	eeds outflow) 1 a (Irregular) Listec	. ,	
Plug-Flow det Center-of-Mas <u>/olume</u> #1 1 Elevation	ention time= (no ss det. time= (no <u>Invert Avai</u> 62.00' Surf.Area	ot calculated ot calculated il.Storage 3,504 cf Perim.	d: initial storage exc d: no outflow) <u>Storage Descriptior</u> Custom Stage Dat Inc.Store	eeds outflow) 1 a (Irregular) Listec Cum.Store	Wet.Area	
Plug-Flow det Center-of-Mas /olume #1 1 Elevation (feet)	ention time= (no ss det. time= (no <u>Invert Avai</u> 62.00' Surf.Area (sq-ft)	ot calculated ot calculated il.Storage 3,504 cf Perim. (feet)	d: initial storage exc d: no outflow) <u>Storage Descriptior</u> Custom Stage Dat Inc.Store (cubic-feet)	eeds outflow) 1 a (Irregular) Listec Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
Plug-Flow det Center-of-Mas /olume #1 1 Elevation (feet) 162.00	ention time= (no ss det. time= (no Invert Avai 62.00' Surf.Area (sq-ft) 564	ot calculated ot calculated il.Storage 3,504 cf Perim. (feet) 214.6	d: initial storage exc d: no outflow) <u>Storage Description</u> Custom Stage Dat Inc.Store (cubic-feet) 0	eeds outflow) a (Irregular) Listed Cum.Store (cubic-feet) 0	Wet.Area (sq-ft) 564	
Plug-Flow det Center-of-Mas /olume #1 1 Elevation (feet) 162.00 164.00	ention time= (nr ss det. time= (nr <u>Invert Avai</u> 62.00' Surf.Area (sq-ft) 564 1,965	bt calculated bt calculated il.Storage 3,504 cf Perim. (feet) 214.6 252.4	d: initial storage exc d: no outflow) <u>Storage Description</u> Custom Stage Dat Inc.Store (cubic-feet) 0 2,388	eeds outflow) a (Irregular) Listed Cum.Store (cubic-feet) 0 2,388	Wet.Area (sq-ft) 564 2,044	
Plug-Flow det Center-of-Mas /olume #1 1 Elevation (feet) 162.00	ention time= (no ss det. time= (no Invert Avai 62.00' Surf.Area (sq-ft) 564	ot calculated ot calculated il.Storage 3,504 cf Perim. (feet) 214.6	d: initial storage exc d: no outflow) <u>Storage Description</u> Custom Stage Dat Inc.Store (cubic-feet) 0	eeds outflow) a (Irregular) Listed Cum.Store (cubic-feet) 0	Wet.Area (sq-ft) 564	
Plug-Flow det Center-of-Mas /olume #1 1 Elevation (feet) 162.00 164.00 164.50	ention time= (n ss det. time= (n <u>Invert Avai</u> 62.00' Surf.Area (sq-ft) 564 1,965 2,509	bt calculated bt calculated il.Storage 3,504 cf Perim. (feet) 214.6 252.4 276.8	d: initial storage exc d: no outflow) Storage Description Custom Stage Dat Inc.Store (cubic-feet) 0 2,388 1,116	eeds outflow) a (Irregular) Listed Cum.Store (cubic-feet) 0 2,388	Wet.Area (sq-ft) 564 2,044	
Plug-Flow det Center-of-Mas /olume #1 1 Elevation (feet) 162.00 164.00 164.50 Device Rout	ention time= (n ss det. time= (n <u>Invert Avai</u> 62.00' Surf.Area (sq-ft) 564 1,965 2,509 ting In	ot calculated ot calculated <u>a,504 cf</u> Perim. (feet) 214.6 252.4 276.8 vert Outle	d: initial storage exc d: no outflow) <u>Storage Description</u> Custom Stage Dat Inc.Store (cubic-feet) 0 2,388 1,116 et Devices	eeds outflow) a (Irregular) Listed Cum.Store (cubic-feet) 0 2,388 3,504	Wet.Area (sq-ft) 564 2,044 3,080	
Plug-Flow det Center-of-Mas /olume #1 1 Elevation (feet) 162.00 164.00 164.50	ention time= (n ss det. time= (n <u>Invert Avai</u> 62.00' Surf.Area (sq-ft) 564 1,965 2,509 ting In	at calculated to calculated il.Storage 3,504 cf Perim. (feet) 214.6 252.4 276.8 vert Outle .50° 10.0°	d: initial storage exc d: no outflow) <u>Storage Description</u> <u>Custom Stage Dat</u> <u>Inc.Store</u> (cubic-feet) 0 2,388 1,116 et Devices long x 5.0' breadtl	eeds outflow) a (Irregular) Listec Cum.Store (cubic-feet) 0 2,388 3,504 h Broad-Crested R	Wet.Area (sq-ft) 564 2,044 3,080 ectangular Weir	0 2 50 3 00 3 50 4 00
Plug-Flow det Center-of-Mas /olume #1 1 Elevation (feet) 162.00 164.00 164.50 Device Rout	ention time= (n ss det. time= (n <u>Invert Avai</u> 62.00' Surf.Area (sq-ft) 564 1,965 2,509 ting In	t calculated t calculated il.Storage 3,504 cf Perim. (feet) 214.6 252.4 276.8 vert Outle 5.50' 10.0' Head	d: initial storage exc d: no outflow) <u>Storage Descriptior</u> Custom Stage Dat Inc.Store (cubic-feet) 0 2,388 1,116 t Devices Iong x 5.0' breadtl ((feet) 0.20 0.40 C	eeds outflow) a (Irregular) Listec Cum.Store (cubic-feet) 0 2,388 3,504 h Broad-Crested R	Wet.Area (sq-ft) 564 2,044 3,080 ectangular Weir	0 2.50 3.00 3.50 4.00
Plug-Flow det Center-of-Mas /olume #1 1 Elevation (feet) 162.00 164.00 164.50 Device Rout	ention time= (n ss det. time= (n <u>Invert Avai</u> 62.00' Surf.Area (sq-ft) 564 1,965 2,509 ting In	t calculated t calculated 3,504 cf Perim. (feet) 214.6 252.4 276.8 vert Outle 5.50' 10.0' Head 4.50	d: initial storage exc d: no outflow) Storage Description Custom Stage Dat Inc.Store (cubic-feet) 0 2,388 1,116 et Devices long x 5.0' breadtil (feet) 0.20 0.40 0 5.00 5.50	eeds outflow) a (Irregular) Listec Cum.Store (cubic-feet) 0 2,388 3,504 b Broad-Crested R 1.60 0.80 1.00 1.2	Wet.Area (sq-ft) 564 2,044 3,080 ectangular Weir 0 1.40 1.60 1.80 2.00	0 2.50 3.00 3.50 4.00 2.65 2.67 2.66 2.68 2.70


 2725-01 - Proposed HydroCAD
 The Sanctuary, Manchester-by-the-Sea, MA

 2725-01 - Proposed HydroCAD
 Type III 24-hr 1-INCH Rainfall=1.00"

 Prepared by Allen & Major Associates, Inc.
 Printed 7/16/2021

 HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC
 Page 30

Pond RG-2: Rain Garden #2 - Driveway

	The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Proposed HydroCAD	Type III 24-hr 1-INCH Rainfall=1.00"
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 31

Summary for Pond SDP-1: Surface Detention Pond-1

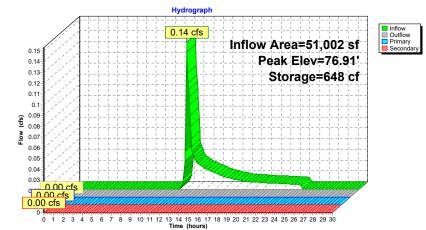
Inflow Area =	51,002 sf, 18.01% Impervious,	Inflow Depth = 0.15" for 1-INCH event
Inflow =	0.14 cfs @ 12.12 hrs, Volume=	648 cf
Outflow =	0.00 cfs @ 0.00 hrs, Volume=	0 cf, Atten= 100%, Lag= 0.0 min
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf
Secondary =	0.00 cfs @ 0.00 hrs. Volume=	0 cf

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 76.91' @ 24.40 hrs Surf.Area= 908 sf Storage= 648 cf


Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no outflow)

Volume	Invert		Storage	Storage Descriptio		Listed holey (Deer	
#1	76.00		8,088 cf	Surface Detention	i Pond (irregular)	Listed below (Reca	iic)
Elevatio	n S	urf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(fee	t)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
76.0	0	531	104.1	0	0	531	
78.0	0	1,488	192.6	1,939	1,939	2,642	
80.0	0	2,756	230.3	4,179	6,118	3,979	
80.5	0	5,256	368.3	1,970	8,088	10,554	
	D						
Device	Routing	Inv	ert Outle	et Devices			
#1	Secondary	79.5		long x 10.0' bread			
				d (feet) 0.20 0.40 (
				. (English) 2.49 2.5			
#2	Primary	78.0	00' 15.0	Round Culvert	L= 100.0' CPP, s	quare edge headwa	all, Ke= 0.500
			Inlet	/ Outlet Invert= 78.0	00' / 77.00' S= 0.0	0100 '/' Cc= 0.900	
			n= 0	.013 Corrugated PE	E, smooth interior,	Flow Area= 1.23 sf	

2=Culvert (Controls 0.00 cfs)

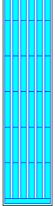

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=76.00' (Free Discharge) 1=Emergency OverFlow Weir (Controls 0.00 cfs)

The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 1-INCH Rainfall=1.00" 2725-01 - Proposed HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC

Printed 7/16/2021

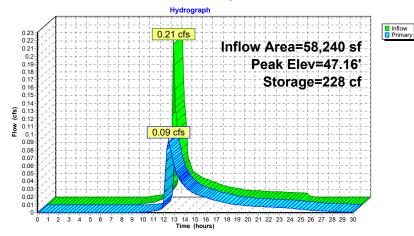
Page 32

2725-01 - Proposed HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	The Sanctuary, Manchester-by-the-Sea, MA 2725-01 - Proposed HydroCAD Type III 24-hr 1-INCH Rainfall=1.00" Printed 7/16/2021 Prepared by Allen & Major Associates, Inc. Page 33 HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC
Summary for Pond UDS-1: UDS-1 - Drive	y Entrance (36" CMP) Pond UDS-1: UDS-1 - Driveway Entrance (36"
Inflow Area = 58,240 sf, 23.18% Impervious, Inflow Depth = 0.20 Inflow = 0.21 cfs @ 12.10 hrs, Volume= 956 cf Outflow = 0.09 cfs @ 12.47 hrs, Volume= 950 cf, Ai Primary = 0.09 cfs @ 12.47 hrs, Volume= 950 cf	for 1-INCH eventChamber Model = CMP Round 36 (Round Corrugated Metal Pipe)= 56%, Lag= 22.3 minEffective Size= 36.0"W x 36.0"H => 7.07 sf x 20.00'L = 141.4 cfOverall Size= 36.0"W x 36.0"H x 20.00'L
Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 47.16' @ 12.47 hrs Surf.Area= 3,520 sf Storage= 228 cf	36.0° Wide + 18.0° Spacing = 54.0° C-C Row Spacing 6 Chambers/Row x 20.00' Long +3.00' Header x 2 = 126.00' Row Length
Plug-Flow detention time= 81.6 min calculated for 948 cf (99% of inflow) Center-of-Mass det. time= 78.3 min (952.9 - 874.6)	6 Rows x 36.0" Wide + 18.0" Spacing x 5 + 12.0" Side Stone x 2 = 27.50" 6.0" Base + 36.0" Chamber Height + 6.0" Cover = 4.00' Field Height
Volume Invert Avail.Storage Storage Description	36 Chambers x 141.4 cf + 25.50' Header x 7.07 sf x 2 = 5,449.9 cf Chamb
#1A 47.00' 3,452 cf 27.50'W x 128.00'L x 4.00'H Field 14,080 cf Overall - 5,450 cf Embe	d = 8,630 cf x 40.0% Voids 14,080.0 cf Field - 5,449.9 cf Chambers = 8,630.1 cf Stone x 40.0% Voids
#2A 47.50' 5,450 cf CMP Round 36 x 36 Inside #1 Effective Size= 36.0"W x 36.0"H = Overall Size= 36.0"W x 36.0"H x 2 36 Chambers in 6 Rows 25.50' Header x 7.07 sf x 2 = 360	0"L Overall Storage Efficiency = 63.2% Overall System Size = 128.00" x 27.50" x 4.00"
8,902 cf Total Available Storage	36 Chambers
Storage Group A created with Chamber Wizard	521.5 cy Field 319.6 cy Stone
Device Routing Invert Outlet Devices #1 Primary 47.00' 18.0" Round Culvert L= 100.0' CPF Inlet / Outlet Invert= 47.00' / 46.00' S= n= 0.012 Corrugated PP, smooth interi #2 #2 Device 1 51.00' 5.0' long x 0.5' breadth Broad-Creste Head (feet) 0.20 0.40 0.60 0.80 1.00 Coef. (English) 2.80 2.92 3.08 3.30 1 #3 Device 1 47.00' 8.0" Vert. 8" Orlfice C = 0.600 Primary OutFlow Max=0.09 cfs @ 12.47 hrs HW=47.16' (Free Discharg 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs) 3=8" Orlfice (Orlfice Controls 0.09 cfs @ 1.37 fps) 1.37 fps)	100 '/ Cc= 0.900 Flow Area= 1.77 sf ectangular Weir


The Sanctuary, Manchester-by-the-Sea, MA *Type III 24-hr 1-INCH Rainfall=1.00"* Printed 7/16/2021 Page 34

ance (36" CMP) - Chamber Wizard Field A

Row Length +12.0" End Stone x 2 = 128.00' Base Length x 2 = 27.50' Base Width Height


.9 cf Chamber Storage

40.0% Voids = 3,452.0 cf Stone Storage

The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 1-INCH Rainfall=1.00" Printed 7/16/2021 Page 35

Pond UDS-1: UDS-1 - Driveway Entrance (36" CMP)

	The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Proposed HydroCAD	Type III 24-hr 1-INCH Rainfall=1.00"
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 36

Summary for Pond UIS-1: UIS-1 - Fire Access Road/Lawn (96" CMP)

Inflow Area =	70,127 sf, 81.35% Impervious, Ir	nflow Depth = 0.63" for 1-INCH event
Inflow =	1.09 cfs @ 12.09 hrs, Volume=	3,653 cf
Outflow =	0.00 cfs @ 0.00 hrs, Volume=	0 cf, Atten= 100%, Lag= 0.0 min
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 102.08' @ 24.40 hrs Surf.Area= 7,020 sf Storage= 3,653 cf Flood Elev= 109.25' Surf.Area= 7,020 sf Storage= 42,647 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no outflow)

V	/olume	Invert	Avail.Storage	Storage Description
_	#1A	101.00'	12,163 cf	54.00'W x 130.00'L x 9.00'H Field A
				63,180 cf Overall - 32,773 cf Embedded = 30,407 cf x 40.0% Voids
	#2A	101.50'	32,773 cf	CMP Round 96 x 30 Inside #1
				Effective Size= 96.0"W x 96.0"H => 50.27 sf x 20.00'L = 1,005.3 cf
				Overall Size= 96.0"W x 96.0"H x 20.00'L
				30 Chambers in 5 Rows
_				52.00' Header x 50.27 sf x 1 = 2,613.8 cf Inside
			44,936 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	103.00'	12.0" Round Culvert L= 100.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 103.00' / 102.00' S= 0.0100 '/ Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	109.25'	4.0' long x 0.5' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 Coef. (English) 2.80 2.92 3.08 3.30 3.32
Prima	ry OutFlow Ma	x=0.00 cfs @	Ø 0 00 hrs. HW=101 00'. (Free Discharge)

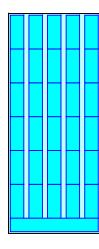
Primary OutHow Max=0.00 cfs @ 0.00 hrs HW=101.00" (Free Discharge) 1=Culvert (Controls 0.00 cfs) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 1-INCH Rainfall=1.00" Printed 7/16/2021 Page 37

Pond UIS-1: UIS-1 - Fire Access Road/Lawn (96" CMP) - Chamber Wizard Field A

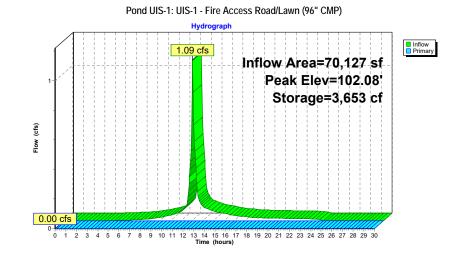
Chamber Model = CMP Round 96 (Round Corrugated Metal Pipe) Effective Size= 96.0"W x 96.0"H => 50.27 sf x 20.00'L = 1,005.3 cf Overall Size= 96.0"W x 96.0"H x 20.00'L

96.0" Wide + 36.0" Spacing = 132.0" C-C Row Spacing


6 Chambers/Row x 20.00' Long +8.00' Header x 1 = 128.00' Row Length +12.0" End Stone x 2 = 130.00' Base Length 5 Rows x 96.0" Wide + 36.0" Spacing x 4 + 12.0" Side Stone x 2 = 54.00' Base Width 6.0" Base + 96.0" Chamber Height + 6.0" Cover = 9.00' Field Height

30 Chambers x 1,005.3 cf + 52.00' Header x 50.27 sf = 32,773.1 cf Chamber Storage

63,180.0 cf Field - 32,773.1 cf Chambers = 30,406.9 cf Stone x 40.0% Voids = 12,162.8 cf Stone Storage


Chamber Storage + Stone Storage = 44,935.9 cf = 1.032 af Overall Storage Efficiency = 71.1% Overall System Size = 130.00' x 54.00' x 9.00'

30 Chambers 2,340.0 cy Field 1,126.2 cy Stone

2725-01 - Proposed HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC

The Sanctuary, Manchester-by-the-Sea, MA *Type III 24-hr 1-INCH Rainfall=1.00"* Printed 7/16/2021 Putions LLC Page 38

OOOOC

2725-01 - Proposed HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC			ciates, Inc.	The Sanctuary, Manchester-by-the-Sea, MA <i>Type III 24-hr 1-INCH Rainfall=1.00"</i> Printed 7/16/2021 Page 39	2725-01 - Prepared HydroCAD®
		Summary	for Pond UIS-2: UIS-2 - Main Build	ding Entrance (36" CMP)	
Inflow A Inflow Outflow Discard Primary	= 0.7 = 0.0 ed = 0.0	78 cfs @ 12)8 cfs @ 12)8 cfs @ 12	0.58% Impervious, Inflow Depth = 0.68" .09 hrs, Volume= 2,539 cf .89 hrs, Volume= 2,539 cf .89 hrs, Volume= 2,539 cf .00 hrs, Volume= 0 cf	for 1-INCH event n= 89%, Lag= 48.0 min	Chamber I Effective S Overall Siz 36.0" Wide
			Span= 0.00-30.00 hrs, dt= 0.05 hrs Surf.Area= 6,624 sf Storage= 972 cf		14 Chamb
			J. J		5 Rows x 3 6.0" Base -
			a calculated for 2,539 cf (100% of inflow) a (900.4 - 801.0)		0.0 Base
			. ,		70 Chamb
Volume #1A	Invert 117.00'		age Storage Description 1 cf 23.00'W x 288.00'L x 4.00'H Field A	A	26,496.0 c
#2A	117.50'	10,19	26,496 cf Overall - 10,193 cf Embed 3 cf CMP Round 36 x 70 Inside #1 Effective Size= 36.0"W x 36.0"H => Overall Size= 36.0"W x 36.0"H x 20.	7.07 sf x 20.00'L = 141.4 cf	Chamber S Overall Sto Overall Sy
			70 Chambers in 5 Rows 21.00' Header x 7.07 sf x 2 = 296.9	cf Inside	70 Chamb
Stora	age Group A cr		4 cf Total Available Storage hamber Wizard		981.3 cy F 603.8 cy S
Device	Routing	Invert	Outlet Devices		
#1 #2 #3	Primary Discarded Device 1	117.00'	15.0" Round Culvert L= 100.0' CPP, Inlet / Outlet Invert= 117.00' / 116.00' S= $n = 0.012$ Corrugated PP, smooth interior, 0.520 in/hr Exfiltration over Wetted area 4.0' long x 0.5' breadth Broad-Crested Head (feet) 0.20 0.40 0.60 0.80 1.00 Coef. (English) 2.80 2.92 3.08 3.30 3.3	0.0100 ⁷ Cc= 0.900 , Flow Area= 1.23 sf a Rectangular Weir	
Discard	led OutFlow 1 (filtration (Ext	Max=0.08 cfs filtration Con	@ 12.89 hrs HW=117.37' (Free Dischar rols 0.08 cfs)	rge)	
1=Ci	ulvert (Contro	ols 0.00 cfs)	2 0.00 hrs HW=117.00′ (Free Discharge) Iar Weir (Controls 0.00 cfs)		

The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 1-INCH Rainfall=1.00" - Proposed HydroCAD d by Allen & Major Associates, Inc. D® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC

Pond UIS-2: UIS-2 - Main Building Entrance (36" CMP) - Chamber Wizard Field A

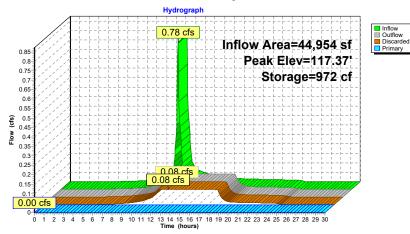
Printed 7/16/2021 Page 40

Model = CMP Round 36 (Round Corrugated Metal Pipe) Size= 36.0"W x 36.0"H => 7.07 sf x 20.00'L = 141.4 cf Size= 36.0"W x 36.0"H x 20.00'L

de + 18.0" Spacing = 54.0" C-C Row Spacing

bers/Row x 20.00' Long +3.00' Header x 2 = 286.00' Row Length +12.0" End Stone x 2 = 288.00' Base Length x 36.0" Wide + 18.0" Spacing x 4 + 12.0" Side Stone x 2 = 23.00' Base Width e + 36.0" Chamber Height + 6.0" Cover = 4.00' Field Height

bers x 141.4 cf + 21.00' Header x 7.07 sf x 2 = 10,192.9 cf Chamber Storage


cf Field - 10,192.9 cf Chambers = 16,303.1 cf Stone x 40.0% Voids = 6,521.2 cf Stone Storage

r Storage + Stone Storage = 16,714.1 cf = 0.384 af Storage Efficiency = 63.1% System Size = 288.00' x 23.00' x 4.00'

bers Field Stone

The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 1-INCH Rainfall=1.00" Printed 7/16/2021 Page 41

Pond UIS-2: UIS-2 - Main Building Entrance (36" CMP)

	The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Proposed HydroCAD	Type III 24-hr 1-INCH Rainfall=1.00"
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 42

Summary for Pond UIS-3: UIS-3 - Cul-de-Sac (36" CMP)

Inflow Area =	37,779 sf, 57.72% Impervious,	Inflow Depth = 0.35" for 1-INCH event
Inflow =	0.33 cfs @ 12.10 hrs, Volume=	1,095 cf
Outflow =	0.12 cfs @ 12.43 hrs, Volume=	1,095 cf, Atten= 64%, Lag= 20.0 min
Discarded =	0.12 cfs @ 12.43 hrs, Volume=	1,095 cf
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 107.10' @ 12.43 hrs Surf.Area= 4,930 sf Storage= 206 cf Flood Elev= 108.50' Surf.Area= 4,930 sf Storage= 4,321 cf

Plug-Flow detention time= 15.6 min calculated for 1,093 cf (100% of inflow) Center-of-Mass det. time= 15.6 min (868.3 - 852.7)

Vo	lume	Invert	Avail.Storage	Storage Description
	#1A	107.00'	4,775 cf	72.50'W x 68.00'L x 4.00'H Field A
				19,720 cf Overall - 7,783 cf Embedded = 11,937 cf x 40.0% Voids
	#2A	107.50'	7,783 cf	CMP Round 36 x 48 Inside #1
				Effective Size= 36.0"W x 36.0"H => 7.07 sf x 20.00'L = 141.4 cf
				Overall Size= 36.0"W x 36.0"H x 20.00'L
				48 Chambers in 16 Rows
_				70.50' Header x 7.07 sf x 2 = 996.7 cf Inside
			12,558 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	107.00'	12.0" Round Culvert L= 100.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 107.00' / 102.00' S= 0.0500 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	108.50	4.0" Vert. Orifice/Grate C= 0.600
#3	Discarded	107.00'	1.020 in/hr Exfiltration over Wetted area
Discard	led OutFlow	Max=0.12 cf	s @ 12.43 hrs HW=107.10' (Free Discharge)

-3=Exfiltration (Exfiltration Controls 0.12 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=107.00' (Free Discharge) 1=Culvert (Controls 0.00 cfs) 2=Orifice/Grate (Controls 0.00 cfs)

The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 1-INCH Rainfall=1.00" Printed 7/16/2021 Page 43

Pond UIS-3: UIS-3 - Cul-de-Sac (36" CMP) - Chamber Wizard Field A

Chamber Model = CMP Round 36 (Round Corrugated Metal Pipe) Effective Size= 36.0"W x 36.0"H => 7.07 sf x 20.00'L = 141.4 cf Overall Size= 36.0"W x 36.0"H x 20.00'L

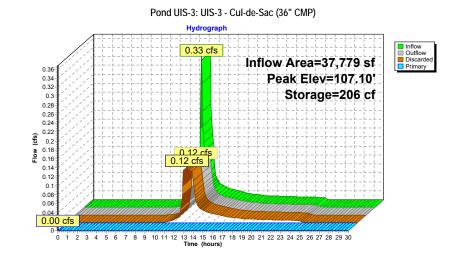
36.0" Wide + 18.0" Spacing = 54.0" C-C Row Spacing

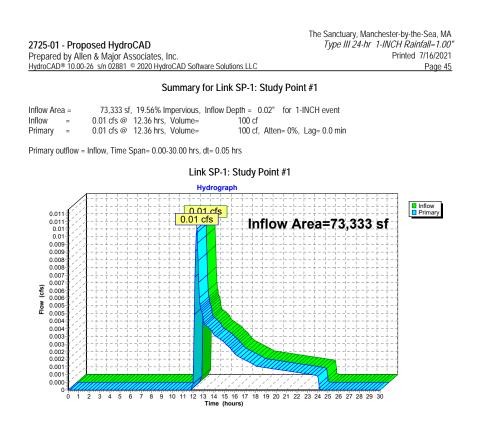
3 Chambers/Row x 20.00' Long +3.00' Header x 2 = 66.00' Row Length +12.0" End Stone x 2 = 68.00' Base Length 16 Rows x 36.0" Wide + 18.0" Spacing x 15 + 12.0" Side Stone x 2 = 72.50' Base Width 6.0" Base + 36.0" Chamber Height + 6.0" Cover = 4.00' Field Height

48 Chambers x 141.4 cf + 70.50' Header x 7.07 sf x 2 = 7,782.5 cf Chamber Storage

19,720.0 cf Field - 7,782.5 cf Chambers = 11,937.5 cf Stone x 40.0% Voids = 4,775.0 cf Stone Storage

Chamber Storage + Stone Storage = 12,557.5 cf = 0.288 af Overall Storage Efficiency = 63.7% Overall System Size = 68.00' x 72.50' x 4.00'

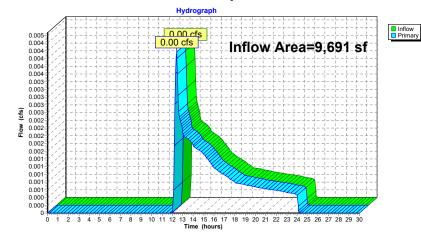

48 Chambers 730.4 cy Field 442.1 cy Stone

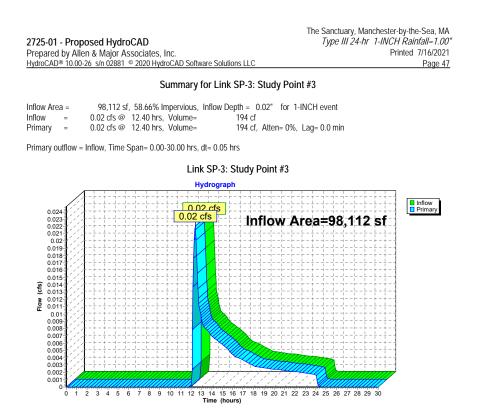


01010101010101010101010101010

2725-01 - Proposed HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC

The Sanctuary, Manchester-by-the-Sea, MA *Type III 24-hr 1-INCH Rainfall=1.00"* Printed 7/16/2021 LC Page 44

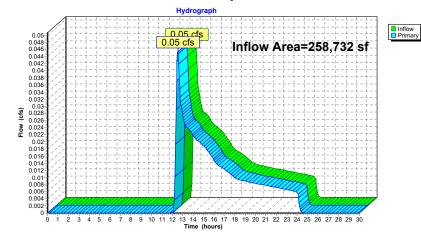

	The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Proposed HydroCAD	Type III 24-hr 1-INCH Rainfall=1.00"
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 46


Summary for Link SP-2: Study Point #2

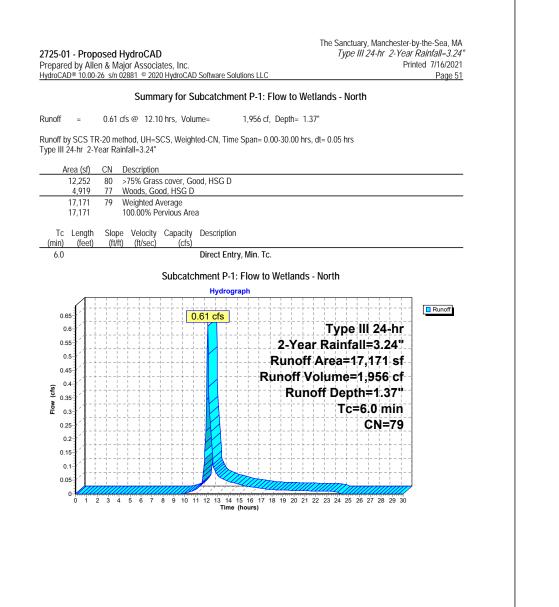
Inflow Area	a =	9,691 sf,	0.00% Impervious,	Inflow Depth = 0.06"	for 1-INCH event
Inflow	=	0.00 cfs @ 1	12.39 hrs, Volume=	47 cf	
Primary	=	0.00 cfs @ 1	12.39 hrs, Volume=	47 cf, Atte	n= 0%, Lag= 0.0 min

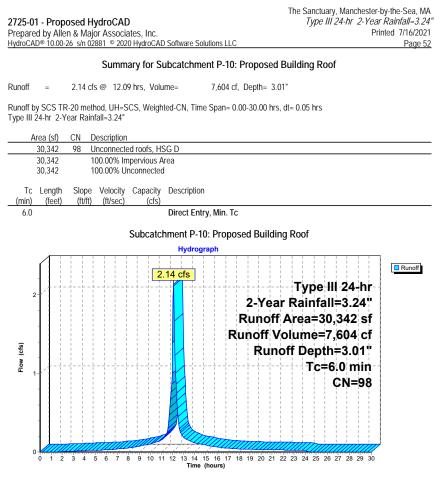
Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

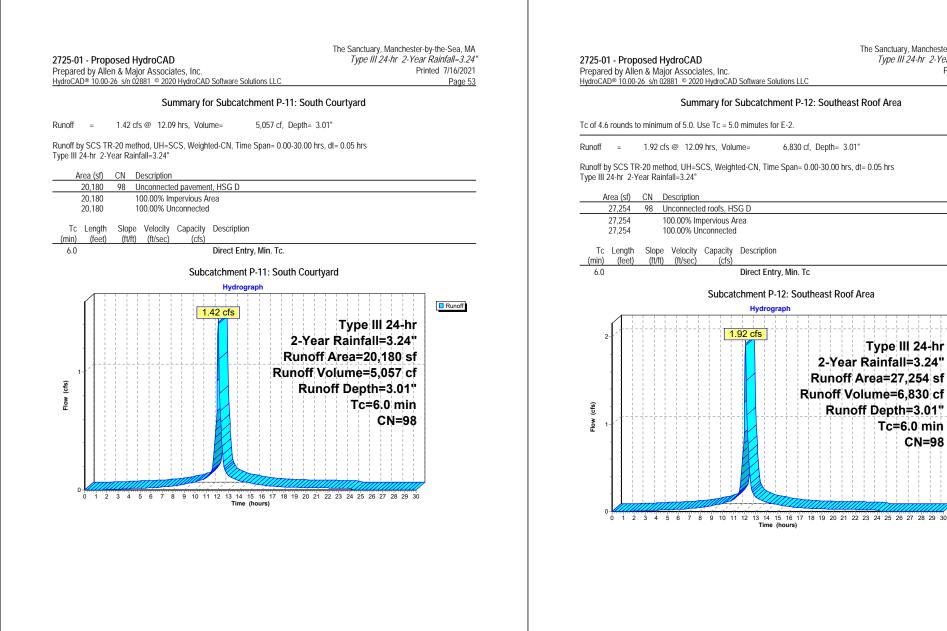
Link SP-2: Study Point #2


	The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Proposed HydroCAD	Type III 24-hr 1-INCH Rainfall=1.00"
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 48

Summary for Link SP-4: Study Point #4


Inflow Area =	258,732 sf	, 29.63% Impervious,	Inflow Depth = 0.03"	for 1-INCH event
Inflow =	0.05 cfs @	12.52 hrs, Volume=	573 cf	
Primary =	0.05 cfs @	12.52 hrs, Volume=	573 cf, Atte	n= 0%, Lag= 0.0 min


Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs


Link SP-4: Study Point #4

2725-01 - Proposed HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software	The Sanctuary, Manchester-by-the-Sea, MA <i>Type III 24-hr 2-Year Rainfall=3.24"</i> Printed 7/16/2021 Solutions LLC Page 49	2725-01 - Proposed HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions	The Sanctuary, Manchester-by-the-Sea, MA <i>Type III 24-hr 2-Year Rainfall=3.24"</i> Printed 7/16/2021 s LLC Page 50
Runoff by SCS TR-	30.00 hrs, dt=0.05 hrs, 601 points 20 method, UH=SCS, Weighted-CN method - Pond routing by Stor-Ind method	Subcatchment P-8: Cul-de-Sac/Garage Turn Around	Runoff Area=22,451 sf 74.60% Impervious Runoff Depth=2.48" Tc=6.0 min CN=93 Runoff=1.42 cfs 4,648 cf
Subcatchment P-1: Flow to Wetlands - North	Runoff Area=17,171 sf 0.00% Impervious Runoff Depth=1.37" Tc=6.0 min CN=79 Runoff=0.61 cfs 1.956 cf	Subcatchment P-9: North Courtyard/Green Roof	Runoff Area=15,328 sf 33.00% Impervious Runoff Depth=1.87" Tc=6.0 min CN=86 Runoff=0.76 cfs 2,389 cf
Subcatchment P-10: Proposed Building Roof	Runoff Area=30,342 sf 100.00% Impervious Runoff Depth=3.01* Tc=6.0 min CN=98 Runoff=2.14 cfs 7.604 cf	Reach SWALE: Swale Abutting Entry Driveway n=0.040	Avg. Flow Depth=0.15' Max Vel=2.60 fps Inflow=0.98 cfs 3,112 cf L=427.0' S=0.0749 /' Capacity=16.60 cfs Outflow=0.91 cfs 3,112 cf
Subcatchment P-11: South Courtyard	Runoff Area=20,180 sf 100.00% Impervious Runoff Depth=3.01" Tc=6.0 min CN=98 Runoff=1.42 cfs 5,057 cf	Pond RG-1: Rain Garden-1 - Entrance 24.0" Ro	Peak Elev=51.53' Storage=2,031 cf Inflow=1.29 cfs 8,509 cf und Culvert n=0.013 L=100.0' S=0.0050 '/ Outflow=1.22 cfs 7,032 cf
Subcatchment P-12: Southeast Roof Area	Runoff Area=27,254 sf 100.00% Impervious Runoff Depth=3.01" Tc=6.0 min CN=98 Runoff=1.92 cfs 6,830 cf	Pond RG-2: Rain Garden #2 - Driveway	Peak Elev=163.35' Storage=1,293 cf Inflow=0.36 cfs 1,293 cf Outflow=0.00 cfs 0 cf
Subcatchment P-13: Main Parking Area	Runoff Area=17,700 sf 76.07% Impervious Runoff Depth=2.58" Tc=6.0 min CN=94 Runoff=1.15 cfs 3.809 cf	Pond SDP-1: Surface Detention Pond-1 Primary=	Peak Elev=78.47' Storage=2,702 cf Inflow=2.24 cfs 7,131 cf 0.99 cfs 5,175 cf Secondary=0.00 cfs 0 cf Outflow=0.99 cfs 5,175 cf
Subcatchment P-14: WWTF/Driveway	Runoff Area=19,605 sf 33.29% Impervious Runoff Depth=1.87" Tc=6.0 min CN=86 Runoff=0.97 cfs 3.055 cf	Pond UDS-1: UDS-1 - Driveway Entrance (36" CMP)	Peak Elev=47.93' Storage=1,589 cf Inflow=2.55 cfs 8,520 cf Outflow=1.29 cfs 8,509 cf
Subcatchment P-15: South Lawn/Fire Access Road	Runoff Area=18,445 sf 0.00% Impervious Runoff Depth=1.43" Tc=6.0 min CN=80 Runoff=0.69 cfs 2.202 cf	Pond UIS-1: UIS-1 - Fire Access Road/Lawn (96" CMP)	Peak Elev=104.35' Storage=15,716 cf Inflow=4.53 cfs 15,716 cf Outflow=0.00 cfs 0 cf
Subcatchment P-16: Entrance Drive	Runoff Area=20,820 sf 44.13% Impervious Runoff Depth=2.03" Tc=6.0 min CN=88 Runoff=1.11 cfs 3.527 cf	Pond UIS-2: UIS-2 - Main Building Entrance (36" CMP) Discarde	Peak Elev=118.62' Storage=6,356 cf Inflow=3.07 cfs 10,640 cf ed=0.09 cfs 7,435 cf Primary=0.00 cfs 0 cf Outflow=0.09 cfs 7,435 cf
Subcatchment P-17: Detention Pond-1	Runoff Area=11,737 sf 0.00% Impervious Runoff Depth=1.43" Tc=6.0 min CN=80 Runoff=0.44 cfs 1,401 cf	Pond UIS-3: UIS-3 - Cul-de-Sac (36" CMP) Discarde	Peak Elev=108.23' Storage=3,317 cf Inflow=2.18 cfs 7,036 cf ed=0.12 cfs 7,036 cf Primary=0.00 cfs 0 cf Outflow=0.12 cfs 7,036 cf
Subcatchment P-18: Entry Driveway	Runoff Area=5,160 sf 100.00% Impervious Runoff Depth=3.01" Tc=6.0 min CN=98 Runoff=0.36 cfs 1,293 cf	Link SP-1: Study Point #1	Inflow=1.28 cfs 7,131 cf Primary=1.28 cfs 7,131 cf
Subcatchment P-2: Direct Flow to Wetlands "F"	Runoff Area=9,691 sf 0.00% Impervious Runoff Depth=1.30" Tc=6.0 min CN=78 Runoff=0.33 cfs 1.052 cf	Link SP-2: Study Point #2	Inflow=0.33 cfs 1,052 cf Primary=0.33 cfs 1,052 cf
Subcatchment P-3: Flow Southwest Off-Site	Runoff Area=27,985 sf 1.79% Impervious Runoff Depth=1.43" (Length=194' Slope=0.0100 '/ Tc=10.9 min CN=80 Runoff=0.90 cfs 3,341 cf	Link SP-3: Study Point #3	Inflow=0.90 cfs 3,341 cf Primary=0.90 cfs 3,341 cf
Subcatchment P-4: Flow Southeast to Wetlands "A"	Runoff Area=117,759 sf 0.54% Impervious Runoff Depth=1.30" Flow Length=186' Tc=14.0 min CN=78 Runoff=3.11 cfs 12,784 cf	Link SP-4: Study Point #4	Inflow=3.68 cfs 19,816 cf Primary=3.68 cfs 19,816 cf
Subcatchment P-5: Entrance Drive	Runoff Area=14,879 sf 78,94% Impervious Runoff Depth=2.58" Tc=6.0 min CN=94 Runoff=0.97 cfs 3,202 cf		f Runoff Volume = 69,470 cf Average Runoff Depth = 1.90" 23% Pervious = 291,317 sf 33.77% Impervious = 148,551 sf
Subcatchment P-6: Landcaped Slope/Walls	Runoff Area=18,477 sf 5.22% Impervious Runoff Depth=1.43" Tc=6.0 min UI Adjusted CN=80 Runoff=0.69 cfs 2,206 cf		
Subcatchment P-7: Landscaped Slope	Runoff Area=24,884 sf 3.17% Impervious Runoff Depth=1.50° Tc=6.0 min CN=81 Runoff=0.98 cfs 3,112 cf		

The Sanctuary, Manchester-by-the-Sea, MA

6,830 cf, Depth= 3.01"

Type III 24-hr 2-Year Rainfall=3.24"

Printed 7/16/2021

Runoff

Type III 24-hr

Tc=6.0 min CN=98

2-Year Rainfall=3.24"

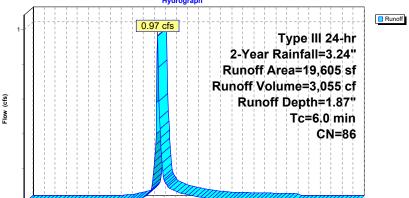
Runoff Area=27,254 sf

Runoff Depth=3.01"

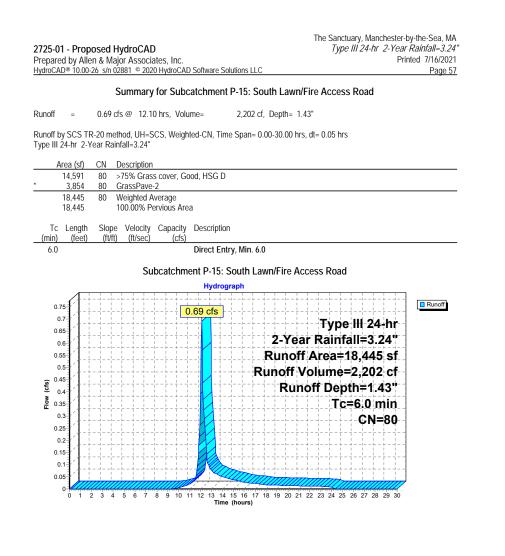
Runoff Volume=6.830 cf

Page 54

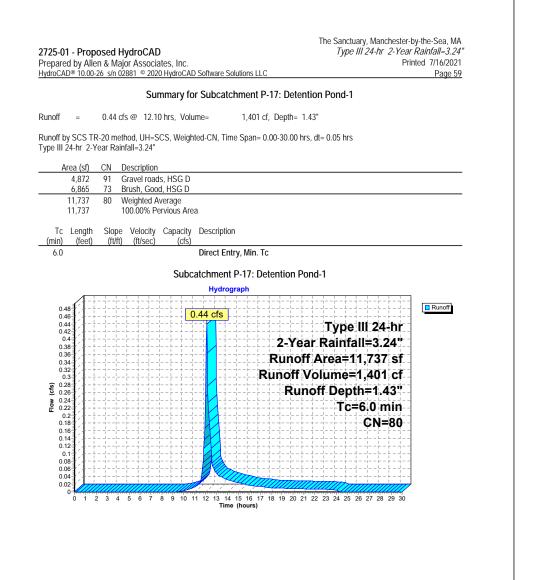
łydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC Page 55	HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC
Summary for Subcatchment P-13: Main Parking Area	Summary for Subcatchment P-1
Runoff = 1.15 cfs @ 12.09 hrs, Volume= 3,809 cf, Depth= 2.58"	Runoff = 0.97 cfs @ 12.09 hrs, Volume= 3,055 cf,
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.24"	Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00 Type III 24-hr 2-Year Rainfall=3.24"
Area (sf) CN Description	Area (sf) CN Description
13,464 98 Unconnected pavement, HSG D 4,236 80 >75% Grass cover, Good, HSG D 17,700 94 Weighted Average	6,526 98 Paved parking, HSG D 9,225 80 >75% Grass cover, Good, HSG D * 3,854 80 GrassPave-2
4,236 23,93% Pervious Area	19,605 86 Weighted Average
13,464 76.07% Impervious Area 13,464 100.00% Unconnected	13,079 66.71% Pervious Area 6,526 33.29% Impervious Area
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
6.0 Direct Entry, Min. 6.0	6.0 Direct Entry, Min. 6.0
Subcatchment P-13: Main Parking Area	Subcatchment P-14: WW
Hydrograph	Hydrograph
(f) (g) ME (g) (g) (g) (g) (g) (g) (g) (g)	(SU) Mai Difference of the second sec
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours)	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Time (hours)

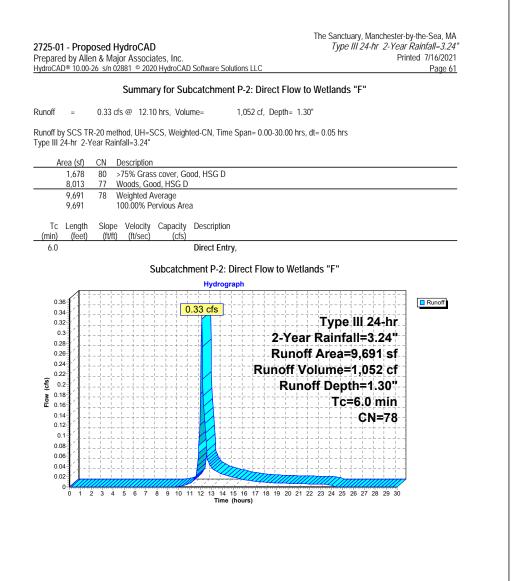

The Sanctuary, Manchester-by-the-Sea, MA *Type III 24-hr 2-Year Rainfall=3.24"* Printed 7/16/2021 Page 56

P-14: WWTF/Driveway


Depth= 1.87"

0.00-30.00 hrs, dt= 0.05 hrs


<i>F</i>	vrea (st)	CN	Description						
	6,526	98	Paved park	ing, HSG D					
	9,225	80	>75% Grass	s cover, Go	od, HSG D				
*	3,854	80	GrassPave	2					
	19,605	86	Weighted A	verage					
	13,079		66.71% Per	vious Area					
	6,526		33.29% Imp	ervious Ar	ea				
Tc	Length	Slop	e Velocity	Capacity	Description				
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)					
6.0					Direct Entry, I	Min. 6.0			
				Subo	atchment P-	14: WWTF/[Driveway		
							,		


18 19 20 21 22 23 24 25 26 27 28 29 30

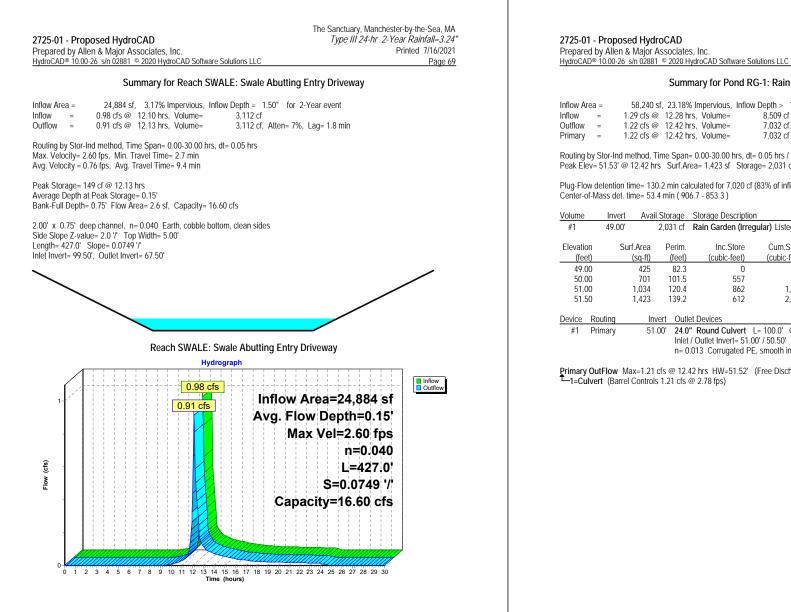
Prepared by Aller	Dised HydroCAD The Sanctuary, Manchester-by-the-Sea, M/ n & Major Associates, Inc. Type III 24-hr 2-Year Rainfall=3.24 Printed 7/16/202 Printed 7/16/202 26 s/n 02881 © 2020 HydroCAD Software Solutions LLC Page 50
	Summary for Subcatchment P-16: Entrance Drive
Runoff =	1.11 cfs @ 12.09 hrs, Volume= 3,527 cf, Depth= 2.03"
Runoff by SCS TR Type III 24-hr 2-Ye	-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs
Area (sf)	CN Description
9,187	98 Unconnected pavement, HSG D
11,633 20.820	80 >75% Grass cover, Good, HSG D 88 Weighted Average
11,633	55.87% Pervious Area
9,187 9,187	44.13% Impervious Area 100.00% Unconnected
Tc Length (min) (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)
6.0	Direct Entry, Min. Tc.
Flow (cfs)	Hydrograph 1.11 cfs Type III 24-hr 2-Year Rainfall=3.24" Runoff Area=20,820 sf Runoff Volume=3,527 cf Runoff Depth=2.03" Tc=6.0 min CN=88

HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	<i>Type III 24-hr 2-Year Rainfall=3.2</i> Printed 7/16/202 Page 6
Summary for Subcatchment P-18: Entry	· ·
	-)1"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, Type III 24-hr 2-Year Rainfall=3.24*	, dt= 0.05 hrs
Area (sf) CN Description	
5,160 98 Unconnected pavement, HSG D	
5,160 100.00% Impervious Area 5,160 100.00% Unconnected	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
6.0 Direct Entry, Min. Tc.	
0.3 0.28 0.26 0.24 Runoff V	Type III 24-hr r Rainfall=3.24" ff Area=5,160 sf 'olume=1,293 cf off Depth=3.01" Tc=6.0 min CN=98

Prepare	d by Alie	en & Maj	ydroCAD or Associa 1881 © 2021	ates, Inc.	Software Solut	ions LLC	The Sanctuary, Manchester- <i>Type III 24-hr 2-Yeal</i> Pri	
			Summ	ary for S	ubcatchmei	nt P-3: Flow South	west Off-Site	
Runoff	=	0.90 cf	s@ 12.10	6 hrs, Volu	me=	3,341 cf, Depth= 1.43	3"	
			nod, UH=S fall=3.24"	CS, Weigh	ted-CN, Time	Span= 0.00-30.00 hrs,	dt= 0.05 hrs	
	rea (sf)		Description					
	24,995 2,490			s cover, Go od, HSG D	od, HSG D			
	500			ed pavemer	nt, HSG D			
	27,985		Veighted A					
	27,485 500			vious Area ervious Area	a			
	500			nconnected				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
7.5	50	0.0100	0.11		Sheet Flow,	n= 0.150 P2= 3.16"		
3.4	144	0.0100	0.70		Shallow Cor	centrated Flow,		
10.9	104	Total			Short Grass	Pasture Kv= 7.0 fps		
10.9	194	TUIdI						
				Subcato	hment P-3:	Flow Southwest O	ff-Site	
	A+-			-+	Hydrogra	<mark>ph</mark> -+	+	
Flow (cfs)	-			0	.90 cfs	Runoff Runoff V Runo Flo	Type III 24-hr r Rainfall=3.24" Area=27,985 sf olume=3,341 cf off Depth=1.43" ow Length=194' Slope=0.0100 '/ Tc=10.9 min CN=80	Runoff

0 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours)

Summary for Subcatchment P-4: Flow Southeast to Wetlands "A" 6 rounds to minimum of 5.0. Use Tc = 5.0 mimutes for E-2. = 3.11 cfs @ 12.20 hrs, Volume= 12,784 cf, Depth= 1.30" by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs 24-hr 2-Year Rainfall=3.24" <u>vrea (sf) CN Description</u> 92,430 77 Woods, Good, HSG D 24,696 80 >75% Grass cover, Good, HSG D 24,696 80 >75% Grass cover, Good, HSG D 117,759 78 Weighted Average 117,126 99.46% Pervious Area 633 0.54% Impervious Area 633 100.00% Unconnected Length Slope Velocity Capacity Description (feet) (ft/ft) (ft/sec) (cfs) 50 0.1000 0.07 Sheet Flow, Woods: Dense underbrush n= 0.800 P2= 3.16" 1366 0.1200 0.87 Shallow Concentrated Flow, Forest w/Heavy Litter Kv= 2.5 fps 186 Total Subcatchment P-4: Flow Southeast to Wetlands "A" Hydrograph
= 3.11 cfs @ 12.20 hrs, Volume= 12,784 cf, Depth= 1.30" vy SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs 24-hr 2-Year Rainfall=3.24" vrea (sf) CN 92,430 77 92,430 77 92,430 77 98 Unconnected pavement, HSG D 117,759 78 99.46% Pervious Area 633 0.54% Impervious Area 633 0.54% Impervious Area 633 100.00% Unconnected Length Slope Velocity 100 0.07 Sheet Flow, Woods: Dense underbrush n= 0.800 P2= 3.16" 50 0.1200 0.87 Shallow Concentrated Flow, Forest w/Heavy Litter 186 Total
y SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs 24-hr 2-Year Rainfall=3.24" rea (st) CN Description 92,430 77 Woods, Good, HSG D 24,696 80 >75% Grass cover, Good, HSG D 633 98 Unconnected pavement, HSG D 117,759 78 Weighted Average 117,126 99.46% Pervious Area 633 0.54% Impervious Area 633 100.00% Unconnected Length Slope Velocity Capacity Description (feet) (ft/ft) (ft/sec) (cfs) 50 0.1000 0.07 Sheet Flow, Woods: Dense underbrush n= 0.800 P2= 3.16" Shallow Concentrated Flow, Forest w/Heavy Litter Kv= 2.5 fps 186 Total Subcatchment P-4: Flow Southeast to Wetlands "A"
24-hr 2-Year Rainfall=3.24" vrea (sf) CN Description 92.430 77 Woods, Good, HSG D 24,696 80 >75% Grass cover, Good, HSG D 633 98 Unconnected pavement, HSG D 117,759 78 Weighted Average 117,7126 99.46% Pervious Area 633 0.54% Impervious Area 633 100.00% Unconnected Length Slope Velocity Slope Velocity Capacity Vescore (ft/ft) (ft/sec) (ft/ft) (ft/sec) (cfs) 50 0.1000 0.07 Sheet Flow, Woods: Dense underbrush n= 0.800 P2= 3.16" 136 0.1200 0.87 Shallow Concentrated Flow, Forest w/Heavy Litter Kv= 2.5 fps 186 Total Subcatchment P-4: Flow Southeast to Wetlands "A"
92,430 77 Woods, Good, HSG D 24,696 80 >75% Grass cover, Good, HSG D 633 98 Unconnected pavement, HSG D 117,759 78 Weighted Average 97,712 99.46% Pervious Area 633 0.54% Impervious Area 633 100.00% Unconnected Length Slope Velocity Slope Velocity Capacity Description (ft/ft) (ft/sec) (feet) (ft/ft) (ft/sec) 50 0.1000 0.07 Sheet Flow, Woods: Dense underbrush n= 0.800 136 0.1200 0.87 Shallow Concentrated Flow, Forest w/Heavy Litter Kv= 2.5 fps 186 186 Total Subcatchment P-4: Flow Southeast to Wetlands "A"
24,696 80 >75% Grass cover, Good, HSG D 117,759 78 Weighted Average 117,759 78 Weighted Average 117,759 78 Weighted Average 117,750 99.46% Pervious Area 633 633 0.54% Impervious Area 633 100.00% Unconnected Length Slope Velocity Capacity Description (feet) (ft/ft) (ft/sec) (cfs) 50 0.1000 0.07 Sheet Flow, Woods: Dense underbrush n= 0.800 P2= 3.16" 136 0.1200 0.87 Shallow Concentrated Flow, Forest w/Heavy Litter Kv= 2.5 fps 186 Total Subcatchment P-4: Flow Southeast to Wetlands "A"
117,759 78 Weighted Average 117,126 99.46% Pervious Area 633 0.54% Impervious Area 633 100.00% Unconnected Length Slope Velocity Capacity Description (ft/ft) (ft/ft) (ft/sec) 50 0.1000 0.007 Sheet Flow, Woods: Dense underbrush n= 0.800 136 0.1200 0.87 Shallow Concentrated Flow, Forest w/Heavy Litter Kv= 2.5 fps 186 Total
117,126 99.46% Pervious Area 633 0.54% Impervious Area 633 100.00% Unconnected Length Slope Velocity Capacity Description (feet) (ft/ft) (ft/sec) (cfs) 50 0.1000 0.07 Sheet Flow, Woods: Dense underbrush n= 0.800 P2= 3.16" 136 0.1200 0.87 Shallow Concentrated Flow, Forest w/Heavy Litter Kv= 2.5 fps 186 Total Subcatchment P-4: Flow Southeast to Wetlands "A"
633 100.00% Unconnected Length (feet) Slope Velocity Capacity Description (t/l/f) (ft/sec) (cfs) 50 0.1000 0.07 50 0.1200 0.87 51 0.1200 0.87 51 Total Subcatchment P-4: Flow Southeast to Wetlands "A"
(feet) (ft/ft) (ft/sec) (cfs) 50 0.1000 0.07 Sheet Flow, Woods: Dense underbrush n= 0.800 P2= 3.16" 136 0.1200 0.87 Shallow Concentrated Flow, Forest w/Heavy Litter Kv= 2.5 fps 186 Total Subcatchment P-4: Flow Southeast to Wetlands "A"
136 0.1200 0.87 Woods: Dense underbrush n = 0.800 P2= 3.16" 136 0.1200 0.87 Shallow Concentrated Flow, Forest w/Heavy Litter Kv= 2.5 fps 186 Total Subcatchment P-4: Flow Southeast to Wetlands "A"
136 0.1200 0.87 Shallow Concentrated Flow, Forest w/Heavy Litter 186 Total Subcatchment P-4: Flow Southeast to Wetlands "A"
186 Total Subcatchment P-4: Flow Southeast to Wetlands "A"
3.11 cfs
2-Year Raintail=3.24 Runoff Area=117,759 sf
Runoff Volume=12,784 cf
Runoff Depth=1.30
Flow Length=186'
Tc=14.0 min
1- CN=78


lydroCAD®	10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 6
	Summary for Subcatchment P-5: Entrance Drive	
Runoff	= 0.97 cfs @ 12.09 hrs, Volume= 3,202 cf, Depth= 2.58"	
Runoff by S	CS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs r 2-Year Rainfall=3.24"	
Area		
11,	745 98 Paved parking, HSG D	
	134 80 >75% Grass cover, Good, HSG D 879 94 Weighted Average	
3,	134 21.06% Pervious Area	
	745 78.94% Impervious Area	
Tc Le (min)	ength Slope Velocity Capacity Description (feet) (ft/ft) (ft/sec) (cfs)	
6.0	Direct Entry, Min. Tc	
	Subcatchment P-5: Entrance Drive	
	Hydrograph	
Flow (cfs)	0.97 cfs Type III 24 2-Year Rainfall=3. Runoff Area=14,87 Runoff Volume=3,20 Runoff Depth=2. Tc=6.0 CN	24" 9 sf 2 cf 58"
0-4	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 26 Time (hours)	3 29 30
	Time (nouis)	

25-01 - Proposed Hy pared by Allen & Major roCAD® 10.00-26 s/n 028	
	Summary for Subcatchment P-6: Landcaped Slope/Walls
off = 0.69 cfs	@ 12.10 hrs, Volume= 2,206 cf, Depth= 1.43*
off by SCS TR-20 metho e III 24-hr 2-Year Rainfa	pd, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs all=3.24"
Area (sf) CN A	dj Description
17,512 80	>75% Grass cover, Good, HSG D
965 98	Unconnected pavement, HSG D
18,477 81 8 17,512	0 Weighted Average, UI Adjusted 94.78% Pervious Area
965	5.22% Impervious Area
965	100.00% Unconnected
Tc Length Slope nin) (feet) (ft/ft)	Velocity Capacity Description (ft/sec) (cfs)
6.0	Direct Entry, Min. Tc
	Subcatchment P-6: Landcaped Slope/Walls
0.75	
0.7	Type III 24-hr
0.65	2-Year Rainfall≑3.24"
0.6	Runoff Area=18,477 sf
0.5	
0.45	Runoff Volume=2,206 cf
	Runoff Depth≑1.43"
0.35	Tc≑6.0 min
0.3	UI Adjusted CN=80
0.25	
0.2	
0.15	
0.05	

2725-01 - Proposed HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	The Sanctuary, Manchester-by-the-Sea, MA <i>Type III 24-hr 2-Year Rainfall=3.24</i> Printed 7/16/2021 Page 66
Summary for Subcatchment P-7: Landsca	ped Slope
Runoff = 0.98 cfs @ 12.10 hrs, Volume= 3,112 cf, Depth= 1.50 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, Type III 24-hr 2-Year Rainfall=3.24*	
Area (sf) CN Description 788 98 Paved parking, HSG D 24,096 80 >75% Grass cover, Good, HSG D 24,884 81 Weighted Average 24,096 96.83% Pervious Area 788 3.17% Impervious Area	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Min. Tc.	
Runoff Runoff V	Type III 24-hr Rainfall=3.24" Area=24,884 sf olume=3,112 cf off Depth=1.50" Tc=6.0 min CN=81

CAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solu Summary for Subcatchment P	vutions LLC Page 67 P-8: Cul-de-Sac/Garage Turn Around
f = 1.42 cfs @ 12.09 hrs, Volume=	4,648 cf, Depth= 2.48"
f by SCS TR-20 method, UH=SCS, Weighted-CN, Time	Span= 0.00-30.00 hrs, dt= 0.05 hrs
II 24-hr 2-Year Rainfall=3.24" Area (sf) CN Description	
16,749 98 Paved parking, HSG D	
5,702 80 >75% Grass cover, Good, HSG D 22,451 93 Weighted Average	
5,702 25.40% Pervious Area	
16,749 74.60% Impervious Area	
c Length Slope Velocity Capacity Description	
h) (feet) (ft/ft) (ft/sec) (cfs)	
0 Direct Entry	y, Min. TC.
Hydrogr 1.42 cfs	Type III 24-hr 2-Year Rainfall=3.24" Runoff Area=22,451 sf Runoff Volume=4,648 cf Runoff Depth=2.48"

2725-01 - Proposed HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	The Sanctuary, Manchester-by-the-Sea, MA <i>Type III 24-hr 2-Year Rainfall=3.24</i> " Printed 7/16/2021 Page 68
Summary for Subcatchment P-9: North Courtya	rd/Green Roof
Runoff = 0.76 cfs @ 12.09 hrs, Volume= 2,389 cf, Depth= 1.87	
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, Type III 24-hr 2-Year Rainfall=3.24"	dt= 0.05 hrs
Area (sf) CN Description	
5,058 98 Unconnected roofs, HSG D	
10,270 80 >75% Grass cover, Good, HSG D 15,328 86 Weighted Average	
10,270 67.00% Pervious Area	
5,058 33.00% Impervious Area 5,058 100.00% Unconnected	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
6.0 Direct Entry, Min. Tc.	
0.65 0.55 0.55 0.55	Type III 24-hr Rainfall=3.24" Area=15,328 sf blume=2,389 cf ff Depth=1.87"
a 0.4 0.35	Tc=6.0 min
0.3	CN=86
0.15	
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2	2 23 24 25 26 27 28 29 30
Time (hours)	

The Sanctuary, Manchester-by-th	e-Sea, MA
Type III 24-hr 2-Year Rai	nfall=3.24"
Printed	7/16/2021
	Page 70

Summary for Pond RG-1: Rain Garden-1 - Entrance

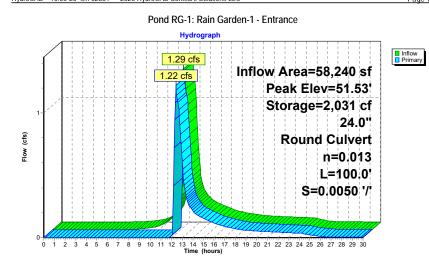
Inflow Area	a =	58,240 sf,	23.18% Impervious,	Inflow Depth > 1.	75" for 2-Year event
Inflow	=	1.29 cfs @ 1	12.28 hrs, Volume=	8,509 cf	
Outflow	=	1.22 cfs @ 1	12.42 hrs, Volume=	7,032 cf,	Atten= 5%, Lag= 7.8 min
Primary	=	1.22 cfs @ 1	12.42 hrs, Volume=	7,032 cf	-

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 51.53' @ 12.42 hrs Surf.Area= 1,423 sf Storage= 2,031 cf

Plug-Flow detention time= 130.2 min calculated for 7,020 cf (83% of inflow) Center-of-Mass det. time= 53.4 min (906.7 - 853.3)

#1	49.00'	2,031 cf	Rain Garden (Irre	gular) Listed below	(Recalc)
Elevation	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(feet)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)
49.00	425	82.3	0	0	425
50.00	701	101.5	557	557	720
51.00	1,034	120.4	862	1,419	1,072
51.50	1,423	139.2	612	2,031	1,466

51.00' 24.0" Round Culvert L= 100.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 51.00' / 50.50' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf


Primary OutFlow Max=1.21 cfs @ 12.42 hrs HW=51.52' (Free Discharge) □=Culvert (Barrel Controls 1.21 cfs @ 2.78 fps)

 2725-01 - Proposed HydroCAD
 7

 Prepared by Allen & Major Associates, Inc.
 7

 HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC
 2

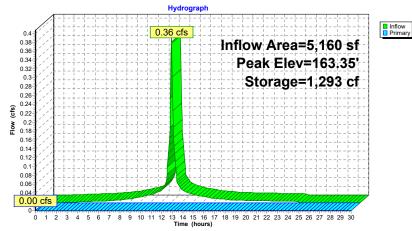
The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 2-Year Rainfall=3.24" Printed 7/16/2021 Page 71

	The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Proposed HydroCAD	Type III 24-hr 2-Year Rainfall=3.24"
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 72
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	I

Summary for Pond RG-2: Rain Garden #2 - Driveway

Inflow Area =	=	5,160 sf,	,100.00% Impervious,	Inflow Depth = 3.01" for 2-Year event	
Inflow =		0.36 cfs @	12.09 hrs, Volume=	1,293 cf	
Outflow =		0.00 cfs @	0.00 hrs, Volume=	0 cf, Atten= 100%, Lag= 0.0	min
Primary =		0.00 cfs @	0.00 hrs, Volume=	0 cf	

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 163.35' @ 24.40 hrs Surf.Area= 1,417 sf Storage= 1,293 cf


Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no outflow)

Volume	Invert	Avail	.Storage	Storage Description			
#1	162.00'		3,504 cf	Custom Stage Data	(Irregular) Liste	ed below (Recalc)	
Elevatior (feet		urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
162.0	0	564	214.6	0	0	564	
164.00	0	1,965	252.4	2,388	2,388	2,044	
164.50	0	2,509	276.8	1,116	3,504	3,080	
Device	Routing	Inv	vert Outle	et Devices			
#1	Primary	163.	Head 4.50 Coef	5.00 5.50	60 0.80 1.00 1	.20 1.40 1.60 1.80	2.00 2.50 3.00 3.50 4.00 .65 2.65 2.67 2.66 2.68 2.7

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=162.00' (Free Discharge) 1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 2-Year Rainfal=3.24" Printed 7/16/2021 Page 73

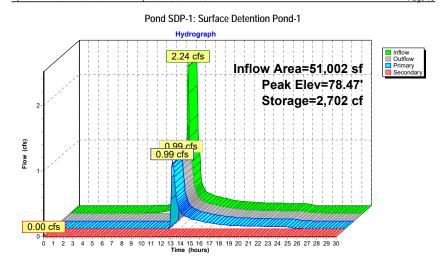
Pond RG-2: Rain Garden #2 - Driveway

	The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Proposed HydroCAD	Type III 24-hr 2-Year Rainfall=3.24
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 74

Summary for Pond SDP-1: Surface Detention Pond-1

Inflow Area =	51,002 sf, 18.01% Impervious,	Inflow Depth = 1.68" for 2-Year event
Inflow =	2.24 cfs @ 12.09 hrs, Volume=	7,131 cf
Outflow =	0.99 cfs @ 12.32 hrs, Volume=	5,175 cf, Atten= 56%, Lag= 13.3 min
Primary =	0.99 cfs @ 12.32 hrs, Volume=	5,175 cf
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf

Plug-Flow detention time= 172.4 min calculated for 5,167 cf (72% of inflow) Center-of-Mass det. time= 80.4 min (908.9 - 828.5)


Volume	Invert	Avail.S	Storage	Storage Description				
#1	76.00'	8	8,088 cf	Surface Detention F	ond (Irregular)	Listed below (Recalc)		
Elevatio (fee		ırf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
76.0		531	104.1	0	0	531		
78.0 80.0		1,488 2,756	192.6 230.3	1,939 4,179	1,939 6,118	2,642 3,979		
80.	50	5,256	368.3	1,970	8,088	10,554		
Device	Routing	Inve	rt Outl	et Devices				
#1	Secondary	79.5	Hea	long x 10.0' breadtl d (feet) 0.20 0.40 0.4 C (English) 2.49 2.56	50 0.80 1.00 1.	20 1.40 1.60		
#2	Primary	78.0	Inlet	15.0" Round Culvert L= 100.0" CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 78.00' / 77.00' S= 0.0100 '/ Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf				

Primary OutFlow Max=0.99 cfs @ 12.32 hrs HW=78.47' (Free Discharge) 2=Culvert (Inlet Controls 0.99 cfs @ 2.33 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=76.00' (Free Discharge) 1=Emergency OverFlow Weir (Controls 0.00 cfs)
 2725-01 - Proposed HydroCAD
 Type III.

 Prepared by Allen & Major Associates, Inc.
 HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC

The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 2-Year Rainfall=3.24" Printed 7/16/2021 Page 75

	The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Proposed HydroCAD	Type III 24-hr 2-Year Rainfall=3.24"
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 76

Summary for Pond UDS-1: UDS-1 - Driveway Entrance (36" CMP)

Inflow Area =	58,240 sf, 23.18% Impervious,	Inflow Depth = 1.76" for 2-Year event
Inflow =	2.55 cfs @ 12.10 hrs, Volume=	8,520 cf
Outflow =	1.29 cfs @ 12.28 hrs, Volume=	8,509 cf, Atten= 49%, Lag= 11.0 min
Primary =	1.29 cfs @ 12.28 hrs, Volume=	8,509 cf

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 47.93' @ 12.29 hrs Surf.Area= 3,520 sf Storage= 1,589 cf

Plug-Flow detention time= 31.7 min calculated for 8,509 cf (100% of inflow) Center-of-Mass det. time= 30.8 min (853.3 - 822.4)

Volume	Invert	Avail.Storage	Storage Description
#1A	47.00'	3,452 cf	27.50'W x 128.00'L x 4.00'H Field A
			14,080 cf Overall - 5,450 cf Embedded = 8,630 cf x 40.0% Voids
#2A	47.50'	5,450 cf	CMP Round 36 x 36 Inside #1
			Effective Size= 36.0"W x 36.0"H => 7.07 sf x 20.00'L = 141.4 cf
			Overall Size= 36.0"W x 36.0"H x 20.00'L
			36 Chambers in 6 Rows
			25.50' Header x 7.07 sf x 2 = 360.5 cf Inside
		8,902 cf	Total Available Storage

Storage Group A created with Chamber Wizard

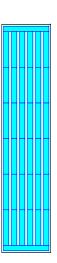
Device	Routing	Invert	Outlet Devices
#1	Primary	47.00'	18.0" Round Culvert L= 100.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 47.00' / 46.00' S= 0.0100 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 1.77 sf
#2	Device 1	51.00'	5.0' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32
#3	Device 1	47.00'	8.0" Vert. 8" Orifice C= 0.600
1=Ci 1−2=	Primary OutFlow Max=1.29 cfs @ 12.28 hrs HW=47.92' (Free Discharge) 1=Culvert (Passes 1.29 cfs of 2.96 cfs potential flow) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs) 3=8" Orifice (Orifice Controls 1.29 cfs @ 3.70 fps)		

The Sanctuary, Manchester-by-the-Sea, MA *Type III 24-hr 2-Year Rainfall=3.24"* Printed 7/16/2021 Page 77

Pond UDS-1: UDS-1 - Driveway Entrance (36" CMP) - Chamber Wizard Field A

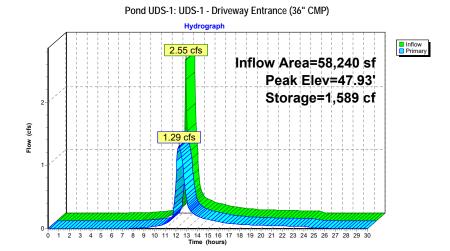
Chamber Model = CMP Round 36 (Round Corrugated Metal Pipe) Effective Size= 36.0"W x 36.0"H => 7.07 sf x 20.00'L = 141.4 cf Overall Size= 36.0"W x 36.0"H x 20.00'L

36.0" Wide + 18.0" Spacing = 54.0" C-C Row Spacing


6 Chambers/Row x 20.00' Long +3.00' Header x 2 = 126.00' Row Length +12.0" End Stone x 2 = 128.00' Base Length 6 Rows x 36.0" Wide + 18.0" Spacing x 5 + 12.0" Side Stone x 2 = 27.50' Base Width 6.0" Base + 36.0" Chamber Height + 6.0" Cover = 4.00' Field Height

36 Chambers x 141.4 cf + 25.50' Header x 7.07 sf x 2 = 5,449.9 cf Chamber Storage

14,080.0 cf Field - 5,449.9 cf Chambers = 8,630.1 cf Stone x 40.0% Voids = 3,452.0 cf Stone Storage


Chamber Storage + Stone Storage = 8,901.9 cf = 0.204 af Overall Storage Efficiency = 63.2% Overall System Size = 128.00' x 27.50' x 4.00'

36 Chambers 521.5 cy Field 319.6 cy Stone

2725-01 - Proposed HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC

The Sanctuary, Manchester-by-the-Sea, MA *Type III 24-hr 2-Year Rainfall=3.24"* Printed 7/16/2021 9 Software Solutions LLC Page 78

00000

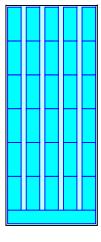
The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 2-Year Rainfall=3.24" 2725-01 - Pl osed HydroCAD Type III 24-hr 2-Year Rainfall=3.24" Prepared by on & Major Associates, Inc. Printed 7/16/2021 Prepared by 26 s/n 02881 © 2020 HydroCAD Software Solutions LLC Page 79 HydroCAD® 10
Summary for Pond UIS-1: UIS-1 - Fire Access Road/Lawn (96" CMP)
70,127 sf, 81.35% Impervious, Inflow Depth = 2.69" for 2-Year event Chamber More 4.53 cfs 12.09 hrs, Volume= 15,716 cf Effective Size 0.00 cfs 0.00 hrs, Volume= 0 cf, Atten= 100%, Lag= 0.0 min Overall Size= 0 cf 0.00 cfs 0.00 hrs, Volume= 0 cf 0 cf Overall Size=
Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs 96.0° Wide + 3 5' @ 24.40 hrs Surf.Area= 7,020 sf 5' Surf.Area= 7,020 sf Storage= 15,716 cf 5' Strice 6 Chambers/F 5 Rows x 96.0° 5 Rows x 96.0° 0 ntime= (not calculated: initial storage exceeds outflow) 6.0° Base + 90
et. time= (not calculated: much storage storage storage) 30 Chambers
ert Avail.Storage Storage Description
00' 12,163 cf 54.00'W x 130.00'L x 9.00'H Field A 63,180.0 cf Field A 63,180 cf Overall - 32,773 cf Embedded = 30,407 cf x 40.0% Voids
50' 32,773 cf CMP Round 96 x 30 Inside #1 Chamber Stor Effective Size= 96.0"W x 96.0"H => 50.27 sf x 20.00'L = 1,005.3 cf Overall Storag Overall Storag Overall Size= 96.0"W x 96.0"H x 20.00'L 30 Chambers in 5 Rows Overall Size
52.00' Header x 50.27 sf x 1 = 2,613.8 cf Inside 30 Chambers
44,936 cf Total Available Storage 2,340.0 cy Fie A created with Chamber Wizard 1,126.2 cy Sto
Invert Outlet Devices
103.00' 12.0" Round Culvert L= 100.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 103.00' / 102.00' S= 0.0100 '/ Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
109.25' 4.0' long x 0.5' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 Coef. (English) 2.80 2.92 3.08 3.30 3.32
Max=0.00 cfs @ 0.00 hrs HW=101.00' (Free Discharge) ontrols 0.00 cfs) rested Rectangular Weir (Controls 0.00 cfs)

posed HydroCAD Allen & Major Associates, Inc. 00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC

The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 2-Year Rainfall=3.24" Printed 7/16/2021 Page 80

Pond UIS-1: UIS-1 - Fire Access Road/Lawn (96" CMP) - Chamber Wizard Field A

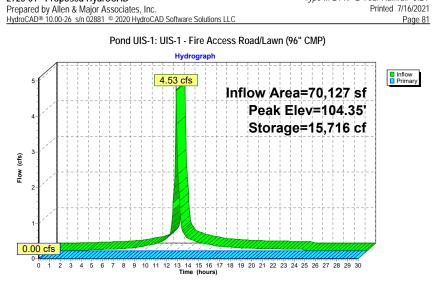
el = CMP Round 96 (Round Corrugated Metal Pipe) 96.0"W x 96.0"H => 50.27 sf x 20.00'L = 1,005.3 cf 96.0"W x 96.0"H x 20.00'L


6.0" Spacing = 132.0" C-C Row Spacing

ow x 20.00' Long +8.00' Header x 1 = 128.00' Row Length +12.0" End Stone x 2 = 130.00' Base Length Wide + 36.0" Spacing x 4 + 12.0" Side Stone x 2 = 54.00' Base Width .0" Chamber Height + 6.0" Cover = 9.00' Field Height

(1,005.3 cf + 52.00' Header x 50.27 sf = 32,773.1 cf Chamber Storage

ld - 32,773.1 cf Chambers = 30,406.9 cf Stone x 40.0% Voids = 12,162.8 cf Stone Storage


age + Stone Storage = 44,935.9 cf = 1.032 af e Efficiency = 71.1% n Size = 130.00' x 54.00' x 9.00'

2725-01 - Proposed HydroCAD

The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 2-Year Rainfall=3.24"

	The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Proposed HydroCAD	Type III 24-hr 2-Year Rainfall=3.24"
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 82

Summary for Pond UIS-2: UIS-2 - Main Building Entrance (36" CMP)

Inflow Area =	44,954 sf, 90.58% Impervious,	Inflow Depth = 2.84" for 2-Year event
Inflow =	3.07 cfs @ 12.09 hrs, Volume=	10,640 cf
Outflow =	0.09 cfs @ 15.94 hrs, Volume=	7,435 cf, Atten= 97%, Lag= 231.4 min
Discarded =	0.09 cfs @ 15.94 hrs, Volume=	7,435 cf
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf

Plug-Flow detention time= 429.8 min calculated for 7,435 cf (70% of inflow) Center-of-Mass det. time= 336.3 min (1,103.3 - 767.1)

Volume	Invert	Avail.Storage	Storage Description
#1A	117.00'	6,521 cf	23.00'W x 288.00'L x 4.00'H Field A
			26,496 cf Overall - 10,193 cf Embedded = 16,303 cf x 40.0% Voids
#2A	117.50'	10,193 cf	CMP Round 36 x 70 Inside #1
			Effective Size= 36.0"W x 36.0"H => 7.07 sf x 20.00'L = 141.4 cf
			Overall Size= 36.0"W x 36.0"H x 20.00'L
			70 Chambers in 5 Rows
			21.00' Header x 7.07 sf x 2 = 296.9 cf Inside
		16,714 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	117.00'	15.0" Round Culvert L= 100.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 117.00' / 116.00' S= 0.0100 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 1.23 sf
#2 #3	Discarded Device 1		0.520 in/hr Exfiltration over Wetted area 4.0' long x 0.5' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 Coef. (English) 2.80 2.92 3.08 3.30 3.32

Discarded OutFlow Max=0.09 cfs @ 15.94 hrs HW=118.62' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.09 cfs)

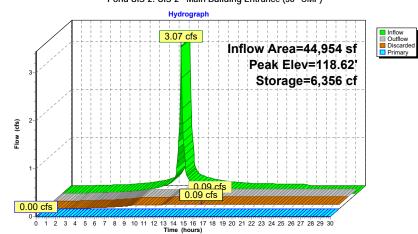
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=117.00' (Free Discharge) -1=Culvert (Controls 0.00 cfs)
-3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

The Sanctuary, Manchester-by-the-Sea, MA *Type III 24-hr 2-Year Rainfall=3.24*" Printed 7/16/2021 Page 83

Pond UIS-2: UIS-2 - Main Building Entrance (36" CMP) - Chamber Wizard Field A

Chamber Model = CMP Round 36 (Round Corrugated Metal Pipe) Effective Size= 36.0"W x 36.0"H => 7.07 sf x 20.00'L = 141.4 cf Overall Size= 36.0"W x 36.0"H x 20.00'L

36.0" Wide + 18.0" Spacing = 54.0" C-C Row Spacing


14 Chambers/Row x 20.00' Long +3.00' Header x 2 = 286.00' Row Length +12.0" End Stone x 2 = 288.00' Base Length 5 Rows x 36.0" Wide + 18.0" Spacing x 4 + 12.0" Side Stone x 2 = 23.00' Base Width 6.0" Base + 36.0" Chamber Height + 6.0" Cover = 4.00' Field Height

70 Chambers x 141.4 cf + 21.00' Header x 7.07 sf x 2 = 10,192.9 cf Chamber Storage

26,496.0 cf Field - 10,192.9 cf Chambers = 16,303.1 cf Stone x 40.0% Voids = 6,521.2 cf Stone Storage

Chamber Storage + Stone Storage = 16,714.1 cf = 0.384 af Overall Storage Efficiency = 63.1% Overall System Size = 288.00' x 23.00' x 4.00'

70 Chambers 981.3 cy Field 603.8 cy Stone 2725-01 - Proposed HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC

Pond UIS-2: UIS-2 - Main Building Entrance (36" CMP)

The Sanctuary, Manchester-by-the-Sea, MA

Type III 24-hr 2-Year Rainfall=3.24"

Printed 7/16/2021

Page 84

The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 2-Year Rainfall=3.24" Printed 7/16/2021 Page 85

Summary for Pond UIS-3: UIS-3 - Cul-de-Sac (36" CMP)

Inflow Area =	37,779 sf, 57.72% Impervious,	Inflow Depth = 2.23" for 2-Year event
Inflow =	2.18 cfs @ 12.09 hrs, Volume=	7,036 cf
Outflow =	0.12 cfs @ 14.11 hrs, Volume=	7,036 cf, Atten= 94%, Lag= 121.4 min
Discarded =	0.12 cfs @ 14.11 hrs, Volume=	7,036 cf
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 108.23' @ 14.11 hrs Surf.Area= 4,930 sf Storage= 3,317 cf Flood Elev= 108.50' Surf.Area= 4,930 sf Storage= 4,321 cf

Plug-Flow detention time= 250.5 min calculated for 7,036 cf (100% of inflow) Center-of-Mass det. time= 250.3 min (1,052.6 - 802.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	107.00'	4,775 cf	72.50'W x 68.00'L x 4.00'H Field A
			19,720 cf Overall - 7,783 cf Embedded = 11,937 cf x 40.0% Voids
#2A	107.50'	7,783 cf	CMP Round 36 x 48 Inside #1
			Effective Size= 36.0"W x 36.0"H => 7.07 sf x 20.00'L = 141.4 cf
			Overall Size= 36.0"W x 36.0"H x 20.00'L
			48 Chambers in 16 Rows
			70.50' Header x 7.07 sf x 2 = 996.7 cf Inside
		12,558 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	107.00'	12.0" Round Culvert L= 100.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 107.00' / 102.00' S= 0.0500 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	108.50'	4.0" Vert. Orifice/Grate C= 0.600
#3	Discarded	107.00'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.12 cfs @ 14.11 hrs HW=108.23' (Free Discharge) 3=Exfiltration (Exfiltration Controls 0.12 cfs)

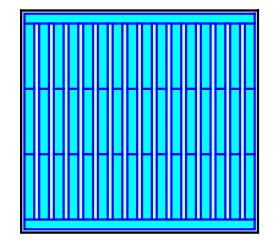
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=107.00' (Free Discharge) ¹=Culvert (Controls 0.00 cfs) ←2=Orifice/Grate (Controls 0.00 cfs)

2725-01 - Proposed HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 2-Year Rainfall=3.24" Printed 7/16/2021 Page 86

Pond UIS-3: UIS-3 - Cul-de-Sac (36" CMP) - Chamber Wizard Field A

Chamber Model = CMP Round 36 (Round Corrugated Metal Pipe) Effective Size= 36.0"W x 36.0"H => 7.07 sf x 20.00'L = 141.4 cf Overall Size= 36.0"W x 36.0"H x 20.00'L

36.0" Wide + 18.0" Spacing = 54.0" C-C Row Spacing

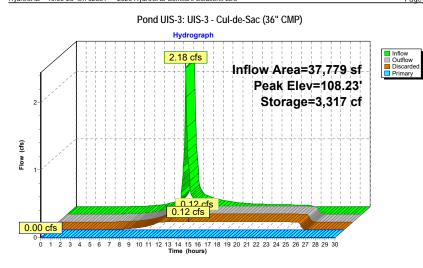

3 Chambers/Row x 20.00' Long +3.00' Header x 2 = 66.00' Row Length +12.0" End Stone x 2 = 68.00' Base Length 16 Rows x 36.0" Wide + 18.0" Spacing x 15 + 12.0" Side Stone x 2 = 72.50' Base Width 6.0" Base + 36.0" Chamber Height + 6.0" Cover = 4.00' Field Height

48 Chambers x 141.4 cf + 70.50' Header x 7.07 sf x 2 = 7,782.5 cf Chamber Storage

19,720.0 cf Field - 7,782.5 cf Chambers = 11,937.5 cf Stone x 40.0% Voids = 4,775.0 cf Stone Storage

Chamber Storage + Stone Storage = 12,557.5 cf = 0.288 af Overall Storage Efficiency = 63.7% Overall System Size = 68.00' x 72.50' x 4.00'

48 Chambers 730.4 cv Field 442.1 cy Stone

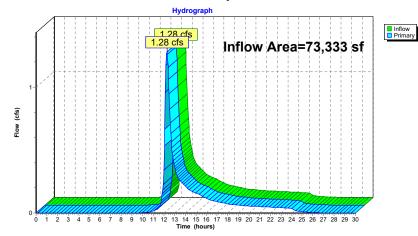


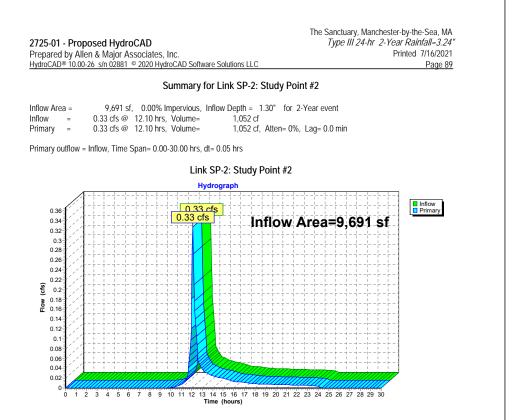
0101010101010101010101010101010

 2725-01 - Proposed HydroCAD
 Type

 Prepared by Allen & Major Associates, Inc.
 HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC

The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 2-Year Rainfall=3.24" Printed 7/16/2021 Page 87

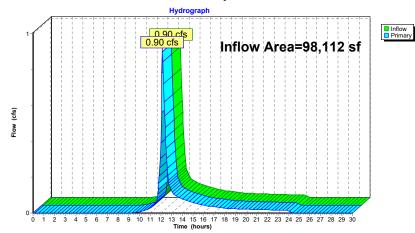

	The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Proposed HydroCAD	Type III 24-hr 2-Year Rainfall=3.24"
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 88


Summary for Link SP-1: Study Point #1

Inflow Area =	73,333 sf, 19.56% Impervious,	Inflow Depth > 1.17" for 2-Year event
Inflow =	1.28 cfs @ 12.28 hrs, Volume=	7,131 cf
Primary =	1.28 cfs @ 12.28 hrs, Volume=	7,131 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Link SP-1: Study Point #1


	The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Proposed HydroCAD	Type III 24-hr 2-Year Rainfall=3.24"
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 90

Summary for Link SP-3: Study Point #3

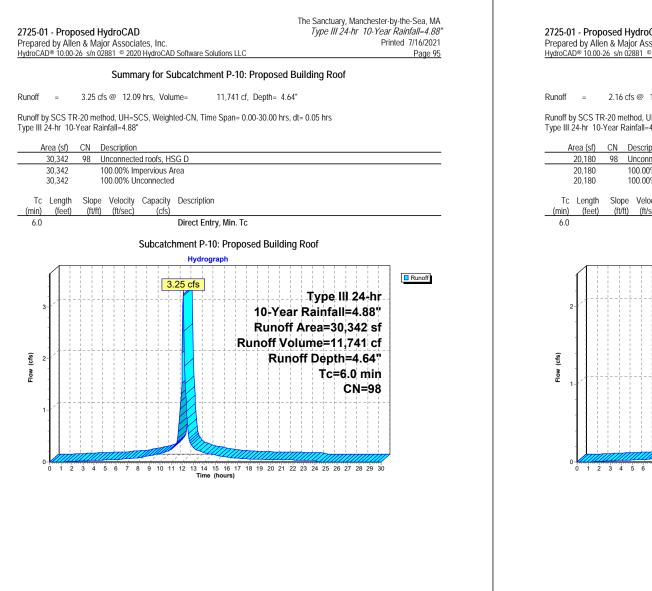
Inflow Area =	98,112 sf, 58.66% Impervious,	Inflow Depth = 0.41" for 2-Year event	
Inflow =	0.90 cfs @ 12.16 hrs, Volume=	3,341 cf	
Primary =	0.90 cfs @ 12.16 hrs, Volume=	3,341 cf, Atten= 0%, Lag= 0.0 min	

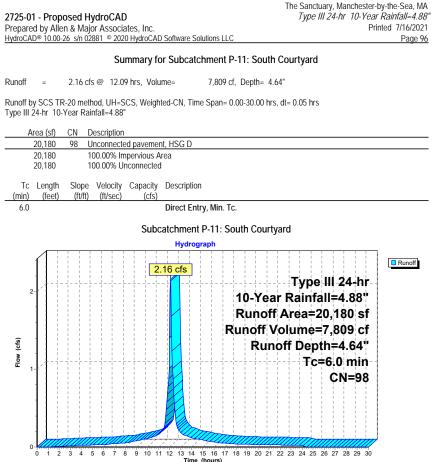
Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Link SP-3: Study Point #3

2725-01 - Proposed HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	The Sanctuary, Manchester-by-the-Sea, MA <i>Type III 24-hr 2-Year Rainfall=3.24</i> " Printed 7/16/2021 Page 91
Summary for Link SP-4: Study Poi	nt #4
Inflow Area = 258,732 sf, 29.63% Impervious, Inflow Depth > 0.92" for 2 Inflow = 3.68 cfs @ 12.26 hrs, Volume= 19,816 cf Primary = 3.68 cfs @ 12.26 hrs, Volume= 19,816 cf, Atten= 0%	
Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs	
Link SP-4: Study Point #4	
Hydrograph	*
4 3.68 cfs Inflow A	rea=258,732 sf
3	
(g) 2- 2-	
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Time (hours)	23 24 25 26 27 28 29 30

2725-01 - Proposed HydroCAD	The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 10-Year Rainfall=4.88"
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 92


Time span=0.00-30.00 hrs, dt=0.05 hrs, 601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind method - Pond routing by Stor-Ind method

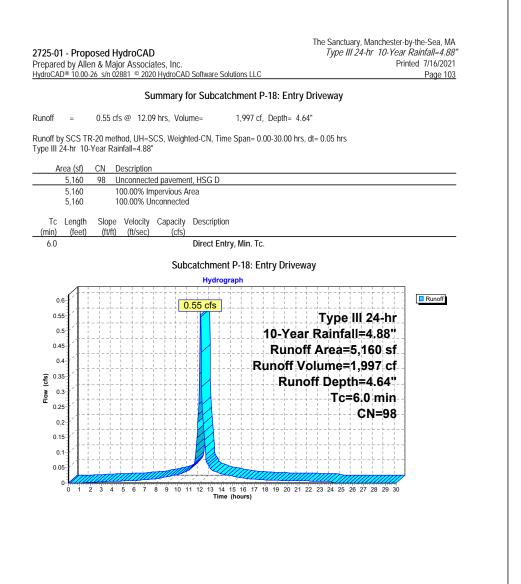

Subcatchment P-1: Flow to Wetlands - North	Runoff Area=17,171 sf 0.00% Impervious Runoff Depth=2.70" Tc=6.0 min CN=79 Runoff=1.22 cfs 3,862 cf
Subcatchment P-10: Proposed Building Roof	Runoff Area=30,342 sf 100.00% Impervious Runoff Depth=4.64" Tc=6.0 min CN=98 Runoff=3.25 cfs 11,741 cf
Subcatchment P-11: South Courtyard	Runoff Area=20,180 sf 100.00% Impervious Runoff Depth=4.64" Tc=6.0 min CN=98 Runoff=2.16 cfs 7,809 cf
Subcatchment P-12: Southeast Roof Area	Runoff Area=27,254 sf 100.00% Impervious Runoff Depth=4.64" Tc=6.0 min CN=98 Runoff=2.92 cfs 10,546 cf
Subcatchment P-13: Main Parking Area	Runoff Area=17,700 sf 76.07% Impervious Runoff Depth=4.19" Tc=6.0 min CN=94 Runoff=1.82 cfs 6,180 cf
Subcatchment P-14: WWTF/Driveway	Runoff Area=19,605 sf 33.29% Impervious Runoff Depth=3.36" Tc=6.0 min CN=86 Runoff=1.71 cfs 5,482 cf
Subcatchment P-15: South Lawn/Fire Access Road	Runoff Area=18,445 sf 0.00% Impervious Runoff Depth=2.79" Tc=6.0 min CN=80 Runoff=1.36 cfs 4,286 cf
Subcatchment P-16: Entrance Drive	Runoff Area=20,820 sf 44.13% Impervious Runoff Depth=3.56" Tc=6.0 min CN=88 Runoff=1.91 cfs 6,168 cf
Subcatchment P-17: Detention Pond-1	Runoff Area=11,737 sf 0.00% Impervious Runoff Depth=2.79" Tc=6.0 min CN=80 Runoff=0.86 cfs 2,727 cf
Subcatchment P-18: Entry Driveway	Runoff Area=5,160 sf 100.00% Impervious Runoff Depth=4.64" Tc=6.0 min CN=98 Runoff=0.55 cfs 1,997 cf
Subcatchment P-2: Direct Flow to Wetlands "F"	Runoff Area=9,691 sf 0.00% Impervious Runoff Depth=2.61" Tc=6.0 min CN=78 Runoff=0.67 cfs 2,108 cf
Subcatchment P-3: Flow Southwest Off-Site Flow Length=1	Runoff Area=27,985 sf 1.79% Impervious Runoff Depth=2.79" 194' Slope=0.0100 '/' Tc=10.9 min CN=80 Runoff=1.77 cfs 6,503 cf
Subcatchment P-4: Flow Southeast to Wetlands "A"	Runoff Area=117,759 sf 0.54% Impervious Runoff Depth=2.61" Flow Length=186' Tc=14.0 min CN=78 Runoff=6.38 cfs 25,614 cf
Subcatchment P-5: Entrance Drive	Runoff Area=14,879 sf 78.94% Impervious Runoff Depth=4.19" Tc=6.0 min CN=94 Runoff=1.53 cfs 5,195 cf
Subcatchment P-6: Landcaped Slope/Walls	Runoff Area=18,477 sf 5.22% Impervious Runoff Depth=2.79" Tc=6.0 min UI Adjusted CN=80 Runoff=1.36 cfs 4,293 cf
Subcatchment P-7: Landscaped Slope	Runoff Area=24,884 sf 3.17% Impervious Runoff Depth=2.88" Tc=6.0 min CN=81 Runoff=1.89 cfs 5,971 cf

The Sanctuary, Manchester-by-the-Sea, MA <i>Type III 24-hr 10-Year Rainfall=4.88</i> " Printed 7/16/2021 ftware Solutions LLC Page 93
und Runoff Area=22,451 sf 74.60% Impervious Runoff Depth=4.08" Tc=6.0 min CN=93 Runoff=2.27 cfs 7,634 cf
Runoff Area=15,328 sf 33.00% Impervious Runoff Depth=3.36" Tc=6.0 min CN=86 Runoff=1.34 cfs 4,286 cf
$ \begin{array}{llllllllllllllllllllllllllllllllllll$
Peak Elev=51.68' Storage=2,031 cf Inflow=1.88 cfs 15,447 cf 24.0" Round Culvert n=0.013 L=100.0' S=0.0050 '/' Outflow=1.99 cfs 14,386 cf
Peak Elev=163.51' Storage=1,529 cf Inflow=0.55 cfs 1,997 cf Outflow=0.03 cfs 482 cf
Peak Elev=78.92' Storage=3,538 cf Inflow=4.12 cfs 13,181 cf Primary=3.14 cfs 11,225 cf Secondary=0.00 cfs 0 cf Outflow=3.14 cfs 11,225 cf
MP) Peak Elev=48.59' Storage=3,300 cf Inflow=4.65 cfs 15,459 cf Outflow=1.88 cfs 15,457 cf
CMP) Peak Elev=105.93' Storage=25,031 cf Inflow=7.11 cfs 25,031 cf Outflow=0.00 cfs 0 cf
CMP) Peak Elev=119.55' Storage=11,197 cf Inflow=4.73 cfs 16,726 cf Discarded=0.10 cfs 8,419 cf Primary=0.00 cfs 0 cf Outflow=0.10 cfs 8,419 cf
Peak Elev=108.85' Storage=5,679 cf Inflow=3.60 cfs 11,919 cf Discarded=0.13 cfs 9,743 cf Primary=0.18 cfs 1,948 cf Outflow=0.31 cfs 11,691 cf
Inflow=4.12 cfs 15,568 cf Primary=4.12 cfs 15,568 cf
Inflow=0.67 cfs 2,108 cf Primary=0.67 cfs 2,108 cf
Inflow=1.77 cfs 6,503 cf Primary=1.77 cfs 6,503 cf
Inflow=8.29 cfs 41,948 cf Primary=8.29 cfs 41,948 cf

Total Runoff Area = 439,868 sf Runoff Volume = 122,399 cf Average Runoff Depth = 3.34" 66.23% Pervious = 291,317 sf 33.77% Impervious = 148,551 sf

Prepared	l by Alie	Dsed HydroCAD n & Major Associates, Inc. 26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 10-Year Rainfall=4.88' Printed 7/16/2021 Page 94
		Summary for Subcatchment P-1: Flow to We	etlands - North
Runoff	=	1.22 cfs @ 12.09 hrs, Volume= 3,862 cf, Depth= 2.	70"
		-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs Year Rainfall=4.88"	s, dt= 0.05 hrs
	ea (sf)	CN Description	
	2,252 4,919	 80 >75% Grass cover, Good, HSG D 77 Woods, Good, HSG D 	
	7,171	79 Weighted Average 100.00% Pervious Area	
(min)	Length (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)	
6.0		Direct Entry, Min. Tc.	
		Subcatchment P-1: Flow to Wetlands	- North
		Hydrograph	
			Type III 24-hr r Rainfall=4.88"
rlow (cfs)		Runoff V	Area=17,171 sf /olume=3,862 cf off Depth=2.70"
- L O			Tc≠6.0 min CN=79
0-		3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Time (hours)	

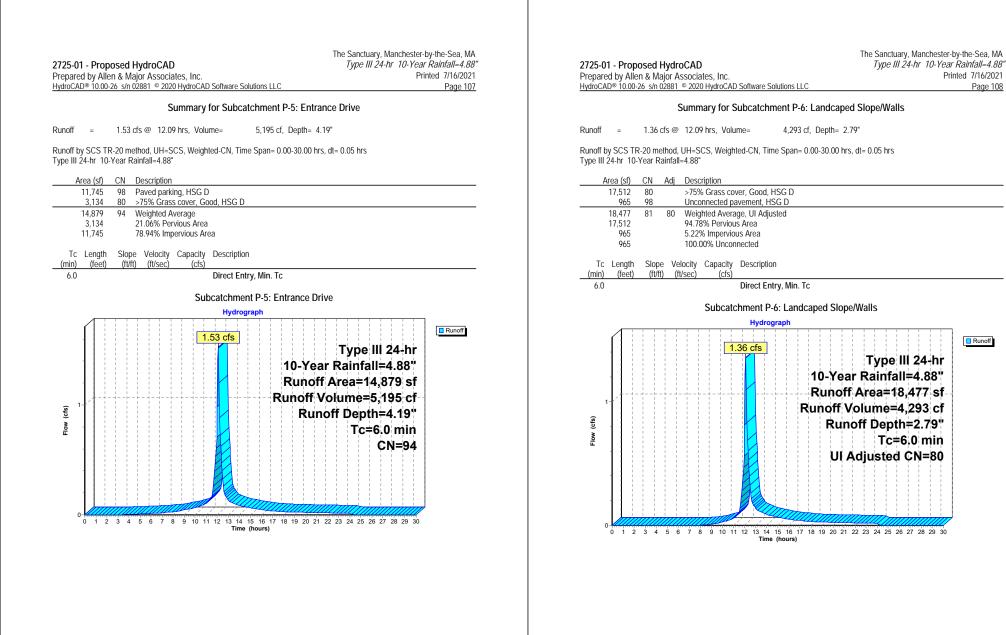
Prepared by A	Poposed HydroCAD Type III 24-hr 10-Year Rainfall=4.88" Ilen & Major Associates, Inc. Printed 7/16/2021 10-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC Page 97	2725 Prep Hydro
	Summary for Subcatchment P-12: Southeast Roof Area	
Tc of 4.6 round	s to minimum of 5.0. Use Tc = 5.0 mimutes for E-2.	Rund
Runoff =	2.92 cfs @ 12.09 hrs, Volume= 10,546 cf, Depth= 4.64"	Runo Type
Runoff by SCS	TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs	.)po
51	0-Year Rainfall=4.88"	
Area (sf) 27,254		
27,254	100.00% Impervious Area	
27,254	100.00% Unconnected	
Tc Lengt (min) (fee		
6.0	Direct Entry, Min. Tc	(m
	Subcatchment P-12: Southeast Roof Area	
	Subcatchment P-12: Southeast Root Area Hydrograph	
Flow (cfs)	2.92 cfs Type III 24-hr 10-Year Rainfall=4.88" Runoff Area=27,254 sf Runoff Volume=10,546 cf Runoff Depth=4.64" Tc=6.0 min CN=98	Flow (cfs)
	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours)	

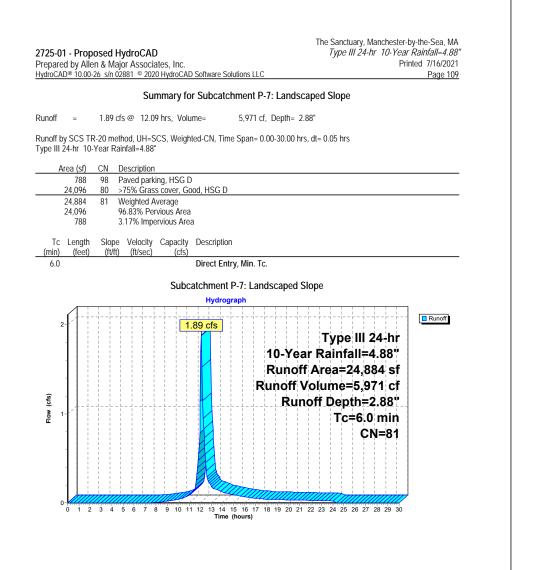

Prepared by Alle	Dosed HydroCAD en & Major Associates, Inc. -26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 10-Year Rainfall=4.88' Printed 7/16/2021 Page 98
	Summary for Subcatchment P-13: Main Pa	irking Area
Runoff =	1.82 cfs @ 12.09 hrs, Volume= 6,180 cf, Depth= 4.1	9"
	R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, -Year Rainfall=4.88"	dt= 0.05 hrs
Area (sf)	CN Description	
13,464	98 Unconnected pavement, HSG D	
4,236	80 >75% Grass cover, Good, HSG D 94 Weighted Average	
4,236	23.93% Pervious Area	
13,464	76.07% Impervious Area	
13,464	100.00% Unconnected	
Tc Length (min) (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)	
6.0	Direct Entry, Min. 6.0	
2	Runoff Runoff V Runo	Type III 24-hr r Rainfall=4.88" Area=17,700 sf olume=6,180 cf off Depth=4.19" Tc=6.0 min CN=94

	tchment P-14: WWTF/Driveway
f = 1.71 cfs @ 12.09 hrs, Volume=	5,482 cf, Depth= 3.36"
f by SCS TR-20 method, UH=SCS, Weighted-CN, Ti	me Span= 0.00-30.00 hrs, dt= 0.05 hrs
III 24-hr 10-Year Rainfall=4.88"	
Area (sf) CN Description	
6,526 98 Paved parking, HSG D 9,225 80 >75% Grass cover, Good, HSG E)
3,854 80 GrassPave-2 19,605 86 Weighted Average	
13,079 66.71% Pervious Area	
6,526 33.29% Impervious Area	
c Length Slope Velocity Capacity Description) (feet) (ft/ft) (ft/sec) (cfs)	on
	ntry, Min. 6.0
Subcatchmer	nt P-14: WWTF/Driveway
Hydro	ograph
1.71 cfs	
	Type III 24-hr
	10-Year Rainfall=4.88"
	Runoff Area=19,605 sf
	Runoff Volume=5,482 cf
1-	Runoff Depth=3.36"
	Tc=6.0 min
	CN=86

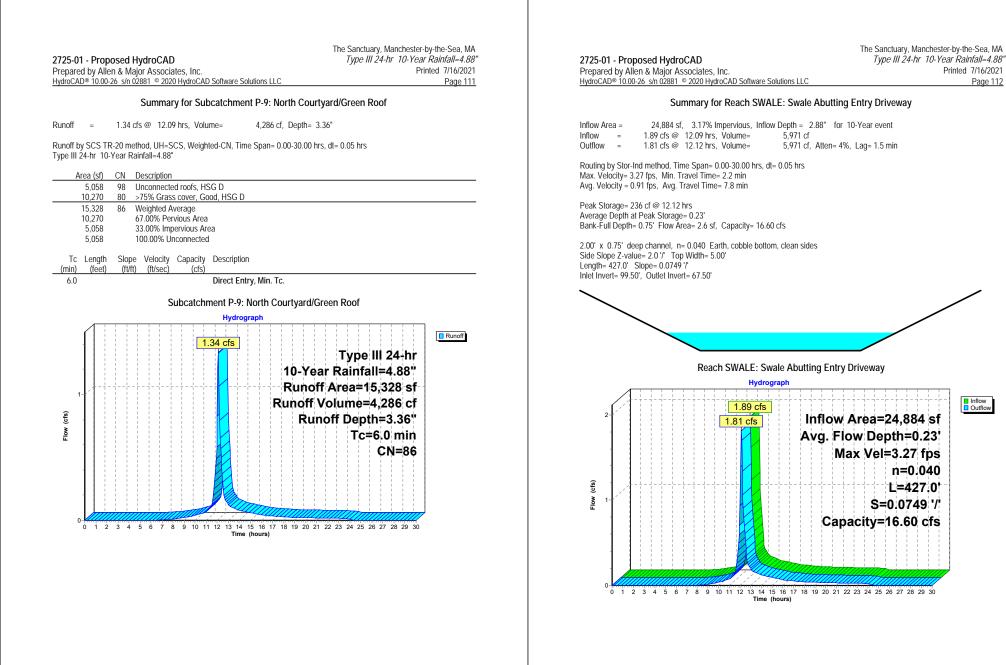
Prepared by Aller	Dised HydroCAD n & Major Associates, Inc. % s/n 02881 © 2020 HydroCAD Software Solutions LLC	The Sanctuary, Manchester-by-the-Sea, MA <i>Type III 24-hr 10-Year Rainfall=4.88"</i> Printed 7/16/2021 Page 100
	Summary for Subcatchment P-15: South Lawn/F	ire Access Road
Runoff =	1.36 cfs @ 12.09 hrs, Volume= 4,286 cf, Depth= 2.7	9"
	-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, /ear Rainfall=4.88"	dt= 0.05 hrs
Area (sf)	CN Description	
14,591 * 3,854	 80 >75% Grass cover, Good, HSG D 80 GrassPave-2 	
18,445 18,445	80 Weighted Average 100.00% Pervious Area	
Tc Length	Slope Velocity Capacity Description	
(min) (feet) 6.0	(ft/ft) (ft/sec) (cfs) Direct Entry, Min. 6.0	
	Runoff Runoff V	Type III 24-hr Rainfall=4.88" Area=18,445 sf olume=4,286 cf off Depth=2.79" Tc=6.0 min CN=80

	Summary for Subcatchment P-16: Entrance Drive	
noff	= 1.91 cfs @ 12.09 hrs, Volume= 6,168 cf, Depth= 3.56"	
noff by e III 24	CS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs hr 10-Year Rainfall=4.88"	
	(sf) CN Description	
	 98 Unconnected pavement, HSG D 80 >75% Grass cover, Good, HSG D 	
	820 88 Weighted Average	
	633 55.87% Pervious Area 187 44.13% Impervious Area	
	187 100.00% Unconnected	
Тс		
<u>min)</u> 6.0	(feet) (ft/ft) (ft/sec) (cfs) Direct Entry, Min. Tc.	
0.0	Direct Entry, with. TC.	
	Subcatchment P-16: Entrance Drive	
	Hydrograph	
-1- -1-	1.91 cfs Type III 24-hr 10-Year Rainfall=4.88" Runoff Area=20,820 sf Runoff Volume=6,168 cf Runoff Depth=3.56"	
Moi 1-	Tc=6.0 min CN=88	


Summary for Subcatchment P-17: Detention Pond-1 Runoff = 0.86 ds @ 12.09 hrs, Volume 2,727 d, Depth= 2.79' Runoff by SCS TR-20 method, UH-SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.88' <u>Area (sf) CN Description</u> <u>4.685 73 Brush, Good, HSG D</u> <u>11,737 80 Weighted Average</u> <u>11,737 100.00% Pervious Area</u> <u>Tc Length Stope Velocity Capacity Description</u> <u>Cimin (fue) (fut) (fusec) (cfs)</u> <u>6.0 Direct Entry, Min. Tc</u> <u>Subcatchment P-17: Detention Pond-1</u> <u>10-Year Rainfall=4.88''</u> <u>10-Year Rainfall=4.88''</u> <u>10-Yiar Rainfall=4.88''</u> <u>10-Yiar Rainfall=4.88''</u> <u>10-Yiar Rainfall=4.88''</u> <u>10-Yiar Rainfall=4.88''</u> <u>10-Yiar Rainfall=4.88''</u> <u>10-Yiar Rainfall=4.88''</u> <u>10-Yiar Rainfall=4.88'</u>	2725-01 - Proposed HydroCAD Prepared by Allen & Major Associates, Inc HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC								The			ter-by-the-Sea, M <i>Cear Rainfall=4.8a</i> Printed 7/16/202 Page 10	<i>8"</i> 1
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.88" <u>Area (sf) CN Description</u> <u>4.872 91 Gravel roads, HSG D</u> <u>6.865 73 Brush, Good, HSG D</u> <u>11,737 80 Weighted Average</u> <u>11,737 100.00% Pervious Area</u> <u>Tc Length Slope Velocity Capacity Description</u> <u>(min) (feet) (//th) (ft/sec) (cfs)</u> <u>6.0 Direct Entry, Min. Tc</u> <u>Subcatchment P-17: Detention Pond-1</u> <u>Hydrograph</u> <u>0.86 cfs</u> <u>10-Year Rainfall=4.88"</u> <u>Runoff Area=11,737 sf</u> <u>Gag</u> <u>0.65</u> <u>0.65</u> <u>0.65</u> <u>0.65</u> <u>0.65</u> <u>0.65</u> <u>0.65</u> <u>0.65</u> <u>0.86 cfs</u> <u>10-Year Rainfall=4.88"</u> <u>Runoff Volume=2,727 cf</u> <u>Runoff Depth=2.79"</u> <u>0.65</u> <u>0.65</u> <u>0.65</u> <u>0.65</u> <u>0.65</u> <u>0.65</u> <u>0.65</u> <u>0.65</u> <u>0.65</u> <u>0.65</u> <u>0.65</u> <u>0.75</u> <u>0.65</u> <u>0.65</u> <u>0.75</u> <u>0.65</u> <u>0.65</u> <u>0.75</u> <u>0.75</u> <u>0.60</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u> <u>0.75</u>				Sum	nmary fo	r Subcatc	hment P-	17: Deten	ntion P	ond-1			
Type III 24-hr 10-Year Rainfall=4.88" Area (sf) CN Description 4,872 91 Gravel roads, HSG D 6,665 73 Brush, Good, HSG D 11,737 80 Weighted Average 11,737 100.00% Pervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (1/H) (ft/sec) (cfs) 6.0 Direct Entry, Min. Tc Subcatchment P-17: Detention Pond-1 Hydrograph 0.86 cfs 0.7 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	Runoff	=	0.86 cfs	s@ 12.09	hrs, Volu	me=	2,727 cf	Depth= 2.	.79"				
4,872 91 Gravel roads, HSG D 6,865 73 Brush, Good, HSG D 11,737 80 Weighted Average 11,737 100.00% Pervious Area Tc Length Slope 6.0 Direct Entry, Min. Tc Subcatchment P-17: Detention Pond-1 Hydrograph © 0.86 cfs 0.96 0.86 cfs 0.96 0.86 cfs 0.77 0.00% Pervious Area Tc Length Bubcatchment P-17: Detention Pond-1 Hydrograph © 0.86 cfs Type III-24+hr 0.86 cfs Runoff Bunoff Type III-24+hr 0.86 cfs Runoff Area=11;737 sf CN=80 0.86 cfs CN=80 O Type III-24+hr Type III-24+hr CN=80 O O					CS, Weight	ted-CN, Tim	e Span= 0.	00-30.00 hrs	rs, dt= C).05 hrs			
6,865 7.3 Brush, Good, HSG D 11,737 80 Weighted Average 11,737 100.00% Pervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (turb) (turb) Cfs Direct Entry, Min. Tc 6.0 Direct Entry, Min. Tc Subcatchment P-17: Detention Pond-1 Hydrograph Image: Comparison of the state of the sta		Area (sf)	CN D	escription									_
11,737 80 Weighted Average 100.00% Pervious Area Tc Length Slope Velocity Capacity Description (min) (teet) (tVt) (tVsec) (cfs) 6.0 Direct Entry, Min. Tc Subcatchment P-17: Detention Pond-1 Hydrograph 0.95 0.96 0.95 0.96 0.86 cfs Type III 24+hr 10-Year Rainfall=4.88" Type III 24+hr Runoff 0.95 0.66 Runoff Area=11,737 sf Runoff Colume=2,727 cf 0.95 0.4 0.4 CN=80 CN=80 0.36 0.4 0.4 CN=80 CN=80 0.36 0.4 CN=80 CN=80 CN=80 0.1 12 3 4 5 6 7 8 9 11 14 15 12 24 25 27 28 29 20													
Tc Length Slope Velocity Capacity Description 6.0 Direct Entry, Min. Tc Subcatchment P-17: Detention Pond-1 Inter the second s		11,737	80 V	Veighted Av	erage								-
(min) (teet) (t/t) (t/tsec) (cfs) 6.0 Direct Entry, Min. Tc Subcatchment P-17: Detention Pond-1 Hydrograph 0.86 cfs 0.86 cfs 0.86 cfs 0.86 cfs 0.86 cfs 0.86 cfs 0.75 0.7		11,737	1	00.00% Per	vious Area	а							
Subcatchment P-17: Detention Pond-1 Hydrograph						Description	ı						
Hydrograph	6.0					Direct Ent	ry, Min. Tc						-
Hydrograph					Subca	atchment	P-17: Def	ention Po	ond-1				
0.9 0.86 cfs Type III 24-hr 10-Year Rainfall=4.88" 0.7 0.66 0.67 0.55													
OBS Type III 24-hr 0.8 10-Year Rainfall=4.88" 0.7 Runoff Area=11,737 sf 0.6 Runoff Volume=2,727 cf 0.6 Runoff Depth=2.79" 0.6 CN=80 0.3 CN=80 0.4 CN=80 0.5 CN=80	0.	95-										Runoff	
0.83 0.75 0.75 0.75 0.65 0.55		- 1 - 1 - I				.86 cfs							
0.75 0.7 0.7 0.75 0.7 0.85 0.65 0.6 Runoff Area=11,737 sf 0.65 0.6 Runoff Volume=2,727 cf 0.6 0.4 Tc=6.0 min 0.3 0.3 CN=880 0.3 0.5 CN=880 0.4 0.4 CN=880 0.4 0.4 CN=80 0.3 0.5 CN=80 0.4 0.4 CN=80 0.3 0.5 CN=80 0.4 0.4 CN=80 0.5 0.4 CN=80 0.4 0.4 CN=80 0.5 0.4 0.4 0.5 0.4 0.4 0.5 0.4 0.4 0.5 0.4 0.4 0.5 0.4 0.4 0.5 0.4 0.4 0.5 0.4 <													
0.65 0.65 0.65 Runoff Volume=2,727 cf (§ 0.55) 0.65 Runoff Depth=2.79" 0.45 0.45 CN=80								10-Yea	ar Ra	ainfal	l=4.88'		
0.6 Runoff Volume=2,727 cf 0.55 Runoff Depth=2.79" 0.4 Tc=6.0 min 0.3 CN=80 0.3 CN=80 0.4 CN=80 0.5 CN=80 0.4 CN=80 0.5 CN=80 0.4 CN=80 0.5 CN=80		1.1.1						Runof	fAr	ea=11	,737 s	F	
(g) 0.55 (g) 0.55 (g) 0.55 (g) 0.45 (g) 0		- 1 - 1 - I			· - - <u> - - <u> - - - <u> - - - <u> </u></u></u></u>		R	unoff \	Volu	me=2	2.727 c	F	
0.4 0.35 0.3 0.25 0.2 0.15 0.1	(s) 0.	· • • • • • •											
0.4 0.35 0.3 0.25 0.2 0.15 0.1) (≥ ($-\frac{1}{1}-\frac{1}{1}-\frac{1}{1}$								
0.3 0.25 0.2 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	E (- 1 .1 - I		ir			1			1 C=(
0.25 0.2 0.15 0.16 0.19 0.1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	0.	35									CN=80)	
0.2 0.15 0.15 0.10 0.1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30		1.1			· - + - + - + -								
0.15 0.1 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1					·								
		1 2 1											
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30													
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	0.				mint		ųЩ		11/1				
			234	5678	3 9 10 1			8 19 20 21	1 22 23	24 25 26	3 27 28 29 3	7 30	



2725-01 - Proposed HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 10-Year Rainfall=4.88' Printed 7/16/2021 Page 104
Summary for Subcatchment P-2: Direct Flow to	o Wetlands "F"
Runoff = 0.67 cfs @ 12.09 hrs, Volume= 2,108 cf, Depth= 2.6 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs,	
Type III 24-hr 10-Year Rainfall=4.88"	
Area (sf) CN Description 1,678 80 >75% Grass cover, Good, HSG D 8,013 77 Woods, Good, HSG D	
9,691 78 Weighted Average 9,691 100.00% Pervious Area	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
6.0 Direct Entry,	
Subcatchment P-2: Direct Flow to Wetla	inds "F"
Hydrograph	
0.7	Runoff
0.65	Type III 24-hr
	r Rainfall=4.88"
0.55 0.5	f Area=9,691 sf
0.45 Runoff V	olume=2,108 cf
ق 0.4 م 0.35	off Depth=2.61"
	Tc=6.0 min
	CN=78
	· - · - · - · - · - · - · - · - · - · -
0.15	
0.1	
0.05	
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 3 Time (hours)	22 23 24 25 26 27 28 29 30


/droCA			or Associa 1881 © 202	Software Solutions LLC Pa	6/2021 ge 105	
			Summ	ary for Su	ubcatchment P-3: Flow Southwest Off-Site	
unoff	=	1.77 cf	s@ 12.1	5 hrs, Volur	ne= 6,503 cf, Depth= 2.79"	
					ed-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs	
			nfall=4.88"			
A	Area (sf) 24.995		Description	s cover, Go		
	24,995 2,490			od, HSG D	JU, HSG D	
	500			ed pavemen	t, HSG D	
	27,985 27,485		Veighted A 8.21% Per	verage vious Area		
	500	1	.79% Impe	rvious Area		
	500	1	00.00% Ui	nconnected		
	Length				Description	
(min) 7.5	(feet) 50	(ft/ft) 0.0100	(ft/sec) 0.11	(cfs)	Sheet Flow,	
					Grass: Short n= 0.150 P2= 3.16"	
3.4	144	0.0100	0.70		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps	
10.9	194	Total				
10.9	194	Total		Cubasta		
10.9	194	Total		Subcatch	nment P-3: Flow Southwest Off-Site	
Flow (cfs)	194	Total			nment P-3: Flow Southwest Off-Site	noff
				1	Type III 24-hr 10-Year Rainfall=4.88" Runoff Area=27,985 sf Runoff Volume=6,503 cf Runoff Depth=2.79" Flow Length=194' Slope=0.0100 '/' Tc=10.9 min	noff

Prepare	d by Alle	en & Maj	IydroCAD jor Associa 2881 © 2020	ates, Inc.) Software Solutio	ns LLC		nchester-by-the-Sea, MA 10-Year Rainfall=4.88 Printed 7/16/2021 Page 106
		S	ummary	for Subca	atchment P-4	: Flow Southea	st to Wetlands "A"	
Tc of 4.6	o rounds t	o minimu	ım of 5.0. L	Jse Tc = 5.0	0 mimutes for E-	2.		
Runoff	=	6.38 cf	fs@ 12.20	0 hrs, Volu	me= 25	,614 cf, Depth= 2.	.61"	
			hod, UH=S infall=4.88"		ted-CN, Time Sp	oan= 0.00-30.00 hr:	s, dt= 0.05 hrs	
A	rea (sf)	CN [Description					
	92,430		Noods, Goo					
	24,696 633			s cover, Go ed pavemer	ood, HSG D nt. HSG D			
	17,759	78 N	Weighted A	verage				
1	17,126		99.46% Per					
	633 633			ervious Area				
	Length		Velocity		Description			
(min) 11.4	(feet) 50	(ft/ft) 0.1000		(cfs)	Sheet Flow.			
11.4	50	0.1000	0.07			underbrush n= 0.	.800 P2= 3.16"	
2.6	136	0.1200	0.87			entrated Flow,		
14.0	186	Total			Forest W/Heav	y Litter Kv= 2.5 fp	S	
14.0	100	TOTAL						
			Sub	ocatchme		Southeast to W	etlands "A"	
					Hydrograp) '''''		
7				6	.38 cfs	10-Ye	Type III 2 ar Rainfall=4	
]+			· - +			Area=117.75	
5			, , , , , , , , , , , , , , , , ,				olume=25,61	
(s 4	:/-+·			- +	-+	+ - +		
Flow (cfs)			, , , , , , , , , , , , , , , , ,				noff Depth=2	
õ	┋╱╢╌┼╵	!		· - +			low Length=	
ш з	1						Tc=14.0	- i i I
ш 3			[]]]]]	- +			CN	=78
ш ₃								
- 3								
- 3								
2								

	nchester-by-the-Sea, MA <i>10-Year Rainfall=4.88</i> Printed 7/16/2021 Page 110
Summary for Subcatchment P-8: Cul-de-Sac/Garage Turn Around	l
Runoff = 2.27 cfs @ 12.09 hrs, Volume= 7,634 cf, Depth= 4.08"	
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=4.88"	
Area (sf) CN Description	
16,749 98 Paved parking, HSG D 5,702 80 >75% Grass cover, Good, HSG D	
22,451 93 Weighted Average	
5,702 25.40% Pervious Area 16,749 74.60% Impervious Area	
16,749 74.00% Impervious Area	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Min. Tc.	
Subcatchment P-8: Cul-de-Sac/Garage Turn Around	
2.27 cfs Type III 2	
2- 10-Year Rainfall=4	
Runoff Area=22,45	
Runoff Volume=7,63	
ਿੱਛ ਛੋ	
CN	I=93
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2 Time (hours)	8 29 30

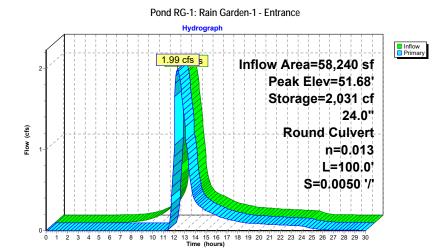
	The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Proposed HydroCAD	Type III 24-hr 10-Year Rainfall=4.88"
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 113

Summary for Pond RG-1: Rain Garden-1 - Entrance

Inflow Area =	58,240 sf, 23.18% Impervious,	Inflow Depth > 3.18" for 10-Year event
Inflow =	1.88 cfs @ 12.35 hrs, Volume=	15,447 cf
Outflow =	1.99 cfs @ 12.35 hrs, Volume=	14,386 cf, Atten= 0%, Lag= 0.0 min
Primary =	1.99 cfs @ 12.35 hrs, Volume=	14,386 cf

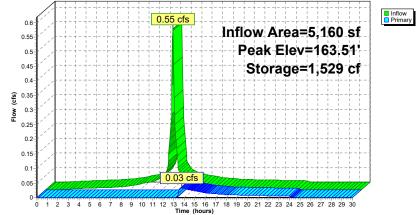
Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 51.68' @ 12.35 hrs Surf.Area= 1,423 sf Storage= 2,031 cf

Plug-Flow detention time= 71.2 min calculated for 14,386 cf (93% of inflow) Center-of-Mass det. time= 32.9 min (868.9 - 836.0)


Volume #1	Invert Ava 49.00'	ill.Storage 2,031 cf	Storage Description Rain Garden (Irreg		(Recalc)
Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
49.00	425	82.3	0	0	425
50.00	701	101.5	557	557	720
51.00	1,034	120.4	862	1,419	1,072
51.50	1,423	139.2	612	2,031	1,466

801100	riouting	invort	544.67 561665
#1	Primary	51.00'	24.0" Round Culvert L= 100.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 51.00' / 50.50' S= 0.0050 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=1.99 cfs @ 12.35 hrs HW=51.68' (Free Discharge) 1=Culvert (Barrel Controls 1.99 cfs @ 3.14 fps)
 2725-01 - Proposed HydroCAD
 The Sanctuary, Manchester-by-the-Sea, MA

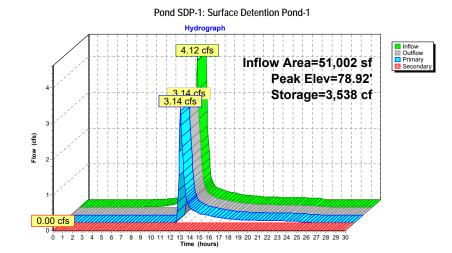

 Prepared by Allen & Major Associates, Inc.
 Printed 7/16/2021

 HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC
 Page 114

	Allen & Major A 0.00-26 s/n 02881		Inc. IroCAD Software So	lutions LLC		Printed 7/16/2021 Page 115
		Summa	ry for Pond RG	i-2: Rain Garder	n #2 - Driveway	
Inflow Area =				Depth = 4.64" f	or 10-Year event	
Inflow =		2 12.09 hrs		1,997 cf		
Outflow =		 13.75 hrs, 13.75 hrs, 		482 cf, Atten= 482 cf	94%, Lag= 100.1 min	
Primary =	0.03 US @	13.731115	, volume=	402 U		
Routing by Ste	or-Ind method. T	ime Span= (0.00-30.00 hrs, dt=	0.05 hrs		
			ea= 1,543 sf Stora			
			lated for 481 cf (2	4% of inflow)		
	ention time= 505 ss det. time= 275			4% of inflow)		
Center-of-Mas	ss det. time= 275	5.4 min (1,0:	23.9 - 748.4)	,		
Center-of-Mas Volume	ss det. time= 275 Invert Avail	5.4 min (1,03 .Storage S	23.9 - 748.4) Storage Description)	holow (Docolo)	
Center-of-Mas Volume	ss det. time= 275	5.4 min (1,03 .Storage S	23.9 - 748.4) Storage Description	,	i below (Recalc)	
Center-of-Mas Volume	ss det. time= 275 Invert Avail	5.4 min (1,03 .Storage S	23.9 - 748.4) Storage Description)	l below (Recalc) Wet.Area	
Center-of-Mas <u>Volume</u> #1 1	ss det. time= 275 Invert Avail 62.00'	5.4 min (1,0) . <u>Storage S</u> 3,504 cf C	23.9 - 748.4) Storage Descriptior Custom Stage Dat	a (Irregular) Listed	. ,	
Center-of-Mas Volume #1 1 Elevation	ss det. time= 275 Invert Avail 62.00' Surf.Area	5.4 min (1,0) . <u>Storage S</u> 3,504 cf C Perim.	23.9 - 748.4) Storage Descriptior Custom Stage Dat Inc.Store	1 a (Irregular) Listed Cum.Store	Wet.Area	
Center-of-Mas Volume #1 1 Elevation (feet)	ss det. time= 275 Invert Avail 62.00' Surf.Area (sq-ft)	5.4 min (1,0) . <u>Storage S</u> 3,504 cf C Perim. (feet)	23.9 - 748.4) Storage Description Custom Stage Dat Inc.Store (cubic-feet)	a (Irregular) Listed Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
Center-of-Mas Volume #1 1 Elevation (feet) 162.00	ss det. time= 275 <u>Invert Avail</u> 62.00' <u>Surf.Area</u> (sq-ft) 564	5.4 min (1,0) <u>.Storage S</u> 3,504 cf C Perim. <u>(feet)</u> 214.6	23.9 - 748.4) Storage Description Custom Stage Dat Inc.Store (cubic-feet) 0	a (Irregular) Listed Cum.Store (cubic-feet) 0	Wet.Area (sq-ft) 564	
Center-of-Mas <u>Volume</u> #1 1 <u>Elevation</u> <u>(feet)</u> 162.00 164.00 164.50	ss det. time= 275 <u>Invert</u> Avail 62.00' Surf.Area (sq-ft) 564 1,965 2,509	5.4 min (1,0) <u>Storage S</u> 3,504 cf C Perim. (feet) 214.6 252.4 276.8	23.9 - 748.4) Storage Description Custom Stage Dat Inc.Store (cubic-feet) 0 2,388 1,116	a (Irregular) Listed Cum.Store (cubic-feet) 0 2,388	Wet.Area (sq-ft) 564 2,044	
Center-of-Mas <u>Volume</u> #1 1 Elevation <u>(feet)</u> 162.00 164.00	ss det. time= 275 <u>Invert</u> Avail 62.00' Surf.Area (sq-ft) 564 1,965 2,509	5.4 min (1,0) . <u>Storage S</u> 3,504 cf C Perim. (feet) 214.6 252.4	23.9 - 748.4) Storage Description Custom Stage Dat Inc.Store (cubic-feet) 0 2,388 1,116	a (Irregular) Listed Cum.Store (cubic-feet) 0 2,388	Wet.Area (sq-ft) 564 2,044	
Center-of-Mas <u>Volume</u> #1 1 <u>Elevation</u> <u>(feet)</u> 162.00 164.00 164.50	ss det. time= 275 Invert Avail 62.00' Surf.Area (sq-ft) 564 1,965 2,509 ing Inv	5.4 min (1,0) . <u>Storage S</u> 3,504 cf C Perim. (feet) 214.6 252.4 276.8 vert Outlet 50' 10.0' k	23.9 - 748.4) Storage Descriptior Custom Stage Dat Inc.Store (cubic-feet) 0 2,388 1,116 Devices ong x 5.0' breadti	a (Irregular) Listed Cum.Store (cubic-feet) 0 2,388 3,504	Wet.Area (sq-ft) 564 2,044 3,080 Rectangular Weir	
Center-of-Mas <u>Volume</u> #1 1 <u>Elevation</u> <u>(feet)</u> 162.00 164.00 164.50 <u>Device</u> Rout	ss det. time= 275 Invert Avail 62.00' Surf.Area (sq-ft) 564 1,965 2,509 ing Inv	5.4 min (1,0) <u>.Storage S</u> 3,504 cf C Perim. (feet) 214.6 252.4 276.8 rert Outlet 50' 10.0' la Head (23.9 - 748.4) Storage Description Custom Stage Dat Inc.Store (cubic-feet) 0 2,388 1,116 Devices ong x 5.0' breadth (feet) 0.20 0.40 0	a (Irregular) Listed Cum.Store (cubic-feet) 0 2,388 3,504	Wet.Area (sq-ft) 564 2,044 3,080 Rectangular Weir	0 2.50 3.00 3.50 4.00
Center-of-Mas <u>Volume</u> #1 1 <u>Elevation</u> <u>(feet)</u> 162.00 164.00 164.50 <u>Device</u> Rout	ss det. time= 275 Invert Avail 62.00' Surf.Area (sq-ft) 564 1,965 2,509 ing Inv	5.4 min (1,0: <u>.Storage S</u> 3,504 cf C Perim. (feet) 214.6 252.4 276.8 rert Outlet 50' 10.0' ld Head (4.50' 5	23.9 - 748.4) Storage Description Custom Stage Dat Inc.Store (cubic-feet) 0 2,388 1,116 Devices pog x 5.0' breadtt feet) 0.20 0.40 0 .00 5.50	a (Irregular) Listed Cum.Store (cubic-feet) 0 2,388 3,504 n Broad-Crested R .60 0.80 1.00 1.2	Wet.Area (sq-ft) 564 2,044 3,080 Rectangular Weir 0 1.40 1.60 1.80 2.00	
Center-of-Mas <u>Volume</u> #1 1 <u>Elevation</u> <u>(feet)</u> 162.00 164.00 164.50 <u>Device</u> Rout	ss det. time= 275 Invert Avail 62.00' Surf.Area (sq-ft) 564 1,965 2,509 ing Inv	5.4 min (1,0: <u>Storage</u> <u>S</u> 3,504 cf <u>C</u> Perim. <u>(feet)</u> 214.6 252.4 276.8 <u>vert</u> <u>Outlet</u> 50' 10.0' k Head (4,50 S Coef. (23.9 - 748.4) Storage Description Custom Stage Dat Inc.Store (cubic-feet) 0 2,388 1,116 Devices pog x 5.0' breadtt feet) 0.20 0.40 0 .00 5.50	a (Irregular) Listed Cum.Store (cubic-feet) 0 2,388 3,504 n Broad-Crested R .60 0.80 1.00 1.2	Wet.Area (sq-ft) 564 2,044 3,080 Rectangular Weir 0 1.40 1.60 1.80 2.00	0 2.50 3.00 3.50 4.00 2.65 2.67 2.66 2.68 2.70

	The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Proposed HydroCAD	Type III 24-hr 10-Year Rainfall=4.88"
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 117

Summary for Pond SDP-1: Surface Detention Pond-1


Inflow Area =	51,002 sf, 18.01% Impervious,	Inflow Depth = 3.10" for 10-Year event
Inflow =	4.12 cfs @ 12.09 hrs, Volume=	13,181 cf
Outflow =	3.14 cfs @ 12.17 hrs, Volume=	11,225 cf, Atten= 24%, Lag= 4.5 min
Primary =	3.14 cfs @ 12.17 hrs, Volume=	11,225 cf
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf

Plug-Flow detention time= 114.3 min calculated for 11,225 cf (85% of inflow) Center-of-Mass det. time= 50.5 min (862.0 - 811.6)

Volume	Inver	t Avail.S	Storage	Storage Description			
#1	76.00	' 8	8,088 cf	Surface Detention	Pond (Irregular)	Listed below (Recalc)	
Elevatio		urf.Area	Perim.	Inc.Store	Cum.Store (cubic-feet)	Wet.Area	
(fee 76.0	1	(sq-ft) 531	(feet) 104.1	(cubic-feet) 0	(cubic-ieet)	<u>(sq-ft)</u> 531	
78.0		1.488	104.1	1.939	1.939	2.642	
80.0		2,756	230.3	4,179	6,118	3,979	
80.5		5.256	368.3	1,970	8.088	10.554	
Device	Routing	Inve	ert Outle	et Devices			
#1	Secondary	79.5		long x 10.0' breadt d (feet) 0.20 0.40 0.			
#2	Primary	78.0	Coel 0' 15.0 Inlet	. (English) 2.49 2.56	2.70 2.69 2.68 = 100.0' CPP, s '/77.00' S= 0.0	3 2.69 2.67 2.64 quare edge headwall, 1100 '/' Cc= 0.900	Ke= 0.500
	OutFlow I		fs @ 12.1	17 hrs HW=78.91' (1		Flow Area= 1.23 sf	

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=76.00' (Free Discharge) 1=Emergency OverFlow Weir (Controls 0.00 cfs) 2725-01 - Proposed HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC

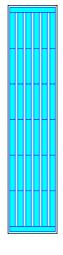
The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 10-Year Rainfall=4.88" Printed 7/16/2021 Page 118

2725-01 - Proposed HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	The Sanctuary, Manchester-by-the-Sea, MA <i>Type III 24-hr 10-Year Rainfall=4.88"</i> Printed 7/16/2021 <u>Page 119</u>	2725-01 - Proposed Hy Prepared by Allen & Majo HydroCAD® 10.00-26 s/n 028
Summary for Pond UDS-1: UDS-1 - Drivew	ay Entrance (36" CMP)	Pond UE
Inflow Area = 58,240 sf, 23.18% Impervious, Inflow Depth = 3.19" Inflow = 4.65 cfs @ 12.10 hrs, Volume= 15,459 cf Outflow = 1.88 cfs @ 12.35 hrs, Volume= 15,447 cf, Atter Primary = 1.88 cfs @ 12.35 hrs, Volume= 15,447 cf	Chamber Model = CMP Rot Effective Size= 36.0"W x 36 Overall Size= 36.0"W x 36. 36.0" Wide + 18.0" Spacing	
Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 48.59 @ 12.35 hrs Surf.Area= 3,520 sf Storage= 3,300 cf Plug-Flow detention time= 29.1 min calculated for 15,447 cf (100% of inflow) Center-of-Mass det. time= 28.6 min (836.0 - 807.4)		6 Chambers/Row x 20.00' L 6 Rows x 36.0" Wide + 18.0 6.0" Base + 36.0" Chamber
Volume Invert Avail.Storage Storage Description		36 Chambers x 141.4 cf + 2
#1A 47.00' 3,452 cf 27.50'W x 128.00'L x 4.00'H Field A 14,080 cf Overall - 5,450 cf Embedd		14,080.0 cf Field - 5,449.9 c
#2A 47.50' 5,450 cf CMP Round 36 x 36 Inside #1 Effective Size= 36.0"W x 36.0"H ⇒ ⁻ Overall Size= 36.0"W x 36.0"H ⇒ ⁻ 36 Chambers in 6 Rows 25.50' Header x 7.07 sf x 2 = 360.5	00'L	Chamber Storage + Stone S Overall Storage Efficiency = Overall System Size = 128.0
8,902 cf Total Available Storage		36 Chambers
Storage Group A created with Chamber Wizard		521.5 cy Field 319.6 cy Stone
Device Routing Invert Outlet Devices		
#1 Primary 47.00' 18.0" Round Culvert L= 100.0' CPP, p Inlet / Outlet Invert= 47.00' / 46.00' S= 0.1 n= 0.012 Corrugated PP, smooth interior, #2 Device 1 51.00' 5.0' long x 0.5' breadth Broad-Crested F Head (feet) 0.20 0.40 0.60 0.80 1.00 Coef, (English) 2.80 2.92 3.08 3.30 3.3	0100 // Čc= 0.900 Flow Area= 1.77 sf Rectangular Weir	
Primary OutFlow Max=1.88 cfs @ 12.35 hrs HW=48.59' (Free Discharge) =Culvert (Passes 1.88 cfs of 6.14 cfs potential flow) -2-Broad-Crested Rectangular Weir (Controls 0.00 cfs) -3=8" Orifice (Orifice Controls 1.88 cfs @ 5.39 fps)		

The Sanctuary, Manchester-by-the-Sea, MA *Type III 24-hr 10-Year Rainfall=4.88*" Printed 7/16/2021 Page 120

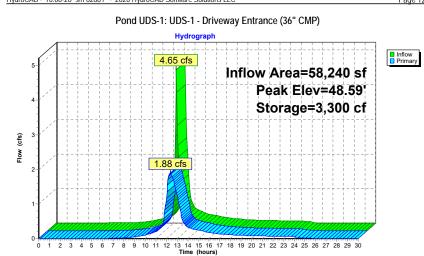
Pond UDS-1: UDS-1 - Driveway Entrance (36" CMP) - Chamber Wizard Field A

Chamber Model = CMP Round 36 (Round Corrugated Metal Pipe) Effective Size= 36.0"W x 36.0"H => 7.07 sf x 20.00'L = 141.4 cf Overall Size= 36.0"W x 36.0"H x 20.00'L


36.0" Wide + 18.0" Spacing = 54.0" C-C Row Spacing

6 Chambers/Row x 20.00' Long +3.00' Header x 2 = 126.00' Row Length +12.0" End Stone x 2 = 128.00' Base Length 6 Rows x 36.0" Wide + 18.0" Spacing x 5 + 12.0" Side Stone x 2 = 27.50' Base Width 6.0" Base + 36.0" Chamber Height + 6.0" Cover = 4.00' Field Height

36 Chambers x 141.4 cf + 25.50' Header x 7.07 sf x 2 = 5,449.9 cf Chamber Storage


14,080.0 cf Field - 5,449.9 cf Chambers = 8,630.1 cf Stone x 40.0% Voids = 3,452.0 cf Stone Storage

Chamber Storage + Stone Storage = 8,901.9 cf = 0.204 af Overall Storage Efficiency = 63.2% Overall System Size = 128.00' x 27.50' x 4.00'

00000

The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 10-Year Rainfall=4.88" Printed 7/16/2021 Page 121

2725-01 - Proposed HydroCAD	The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 10-Year Rainfall=4.88"
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 122

Summary for Pond UIS-1: UIS-1 - Fire Access Road/Lawn (96" CMP)

Inflow Area =	70,127 sf, 81.35% Impervious,	Inflow Depth = 4.28" for 10-Year event
Inflow =	7.11 cfs @ 12.09 hrs, Volume=	25,031 cf
Outflow =	0.00 cfs @ 0.00 hrs, Volume=	0 cf, Atten= 100%, Lag= 0.0 min
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 105.93' @ 24.40 hrs Surf.Area= 7,020 sf Storage= 25,031 cf Flood Elev= 109.25' Surf.Area= 7,020 sf Storage= 42,647 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no outflow)

١	/olume	Invert	Avail.Storage	Storage Description
_	#1A	101.00'	12,163 cf	54.00'W x 130.00'L x 9.00'H Field A
				63,180 cf Overall - 32,773 cf Embedded = 30,407 cf x 40.0% Voids
	#2A	101.50'	32,773 cf	CMP Round 96 x 30 Inside #1
				Effective Size= 96.0"W x 96.0"H => 50.27 sf x 20.00'L = 1,005.3 cf
				Overall Size= 96.0"W x 96.0"H x 20.00'L
				30 Chambers in 5 Rows
-				52.00' Header x 50.27 sf x 1 = 2,613.8 cf Inside
			44,936 cf	Total Available Storage

Storage Group A created with Chamber Wizard

[Device	Routing	Invert	Outlet Devices
-	#1	Primary	103.00'	12.0" Round Culvert L= 100.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 103.00' / 102.00' S= 0.0100 /' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
	#2	Device 1	109.25'	4.0' long x 0.5' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 Coef. (English) 2.80 2.92 3.08 3.30 3.32
1	Primary	OutFlow Max=	=0.00 cfs @	Ø 0 00 hrs HW=101 00' (Free Discharge)

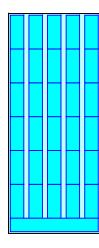
1=Culvert (Controls 0.00 cfs) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 10-Year Rainfall=4.88" Printed 7/16/2021 Page 123

Pond UIS-1: UIS-1 - Fire Access Road/Lawn (96" CMP) - Chamber Wizard Field A

Chamber Model = CMP Round 96 (Round Corrugated Metal Pipe) Effective Size= 96.0"W x 96.0"H => 50.27 sf x 20.00'L = 1,005.3 cf Overall Size= 96.0"W x 96.0"H x 20.00'L

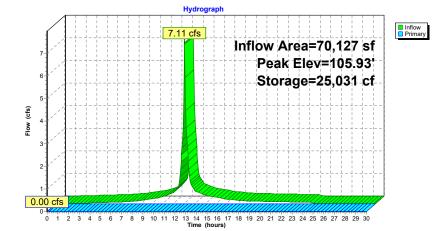
96.0" Wide + 36.0" Spacing = 132.0" C-C Row Spacing


6 Chambers/Row x 20.00' Long +8.00' Header x 1 = 128.00' Row Length +12.0" End Stone x 2 = 130.00' Base Length 5 Rows x 96.0" Wide + 36.0" Spacing x 4 + 12.0" Side Stone x 2 = 54.00' Base Width 6.0" Base + 96.0" Chamber Height + 6.0" Cover = 9.00' Field Height

30 Chambers x 1,005.3 cf + 52.00' Header x 50.27 sf = 32,773.1 cf Chamber Storage

63,180.0 cf Field - 32,773.1 cf Chambers = 30,406.9 cf Stone x 40.0% Voids = 12,162.8 cf Stone Storage

Chamber Storage + Stone Storage = 44,935.9 cf = 1.032 af Overall Storage Efficiency = 71.1% Overall System Size = 130.00' x 54.00' x 9.00'


30 Chambers 2,340.0 cy Field 1,126.2 cy Stone

2725-01 - Proposed HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC

The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 10-Year Rainfall=4.88" Printed 7/16/2021 Page 124

Prepare)1 - Propose ed by Allen & AD® 10.00-26 s	Major Asso		The Sanctuary, Manchester-by-the-Sea, MA <i>Type III 24-hr 10-Year Rainfall=4.88</i> " Printed 7/16/2021 Page 125	272 Pre Hyd
		Summary	y for Pond UIS-2: UIS-2 - Main Buil	ding Entrance (36" CMP)	
Peak El Plug-Flo	= 4.7 = 0.1 ed = 0.1 = 0.0 by Stor-Ind me lev= 119.55' @	73 cfs @ 12 10 cfs @ 17 10 cfs @ 17 00 cfs @ 17 00 cfs @ 0 ethod, Time 17.37 hrs ne= 432.8 m	0.58% Impervious, Inflow Depth = 4.46" .09 hrs, Volume= 16,726 cf .37 hrs, Volume= 8,419 cf, Atte .37 hrs, Volume= 8,419 cf .00 hrs, Volume= 0 cf Span= 0.00-30.00 hrs, dt= 0.05 hrs Surf.Area= 6,624 sf Storage= 11,197 cf in calculated for 8,405 cf (50% of inflow) in (1,067.5 - 757.9)	for 10-Year event en= 98%, Lag= 317.1 min	Ch Effr Ov 36. 14 5 R 6.0 70
Volume	Invert	Avail.Stor	age Storage Description		70
#1A #2A	117.00'	6,52	11 cf 23.00'W x 288.00'L x 4.00'H Field <i>i</i> 26,496 cf Overall - 10,193 cf Ember 13 cf CMP Round 36 x 70 Inside #1		26, Cha
"2N	117.50	10,17	Effective Size= 36.0"W x 36.0"H => Overall Size= 36.0"W x 36.0"H => 70 Chambers in 5 Rows 21.00' Header x 7.07 sf x 2 = 296.5	.00'L	Ove Ove
		16,71	4 cf Total Available Storage		70 981
Stora <u>Device</u> #1 #2 #3	5 1	Invert	Context Devices 15.0" Round Culvert L= 100.0' CPP, Inlet / Outlet Invert= 117.00' / 116.00' S n= 0.012 Corrugated PP, smooth interior 0.520 in/hr Exfiltration over Wetted are 4.0' long x 0.5' breadth Broad-Crested Head (feet) 0.20 0.40 0.60 0.80 1.00 Coef. (English) 2.80 2.92 3.08 3.30 3.	$0.6100 \tilde{T}$ Cc= 0.900 , Flow Area= 1.23 sf a Rectangular Weir	603
Primary	<pre>cfiltration (Exi y OutFlow Ma ulvert (Control</pre>	filtration Con x=0.00 cfs @ ols 0.00 cfs)	s @ 17.37 hrs HW=119.55' (Free Discha trols 0.10 cfs) ₽ 0.00 hrs HW=117.00' (Free Discharge Ilar Weir (Controls 0.00 cfs)		

The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 10-Year Rainfall=4.88" Printed 7/16/2021 Page 126

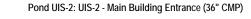
Pond UIS-2: UIS-2 - Main Building Entrance (36" CMP) - Chamber Wizard Field A

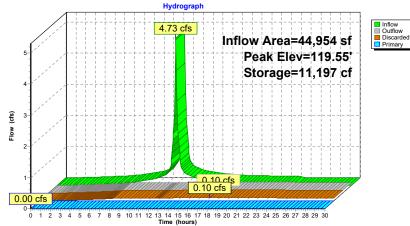
Chamber Model = CMP Round 36 (Round Corrugated Metal Pipe) Effective Size= 36.0"W x 36.0"H => 7.07 sf x 20.00'L = 141.4 cf Overall Size= 36.0"W x 36.0"H x 20.00'L

36.0" Wide + 18.0" Spacing = 54.0" C-C Row Spacing

14 Chambers/Row x 20.00' Long +3.00' Header x 2 = 286.00' Row Length +12.0" End Stone x 2 = 288.00' Base Length 5 Rows x 36.0" Wide + 18.0" Spacing x 4 + 12.0" Side Stone x 2 = 23.00' Base Width 6.0" Base + 36.0" Chamber Height + 6.0" Cover = 4.00' Field Height

70 Chambers x 141.4 cf + 21.00' Header x 7.07 sf x 2 = 10,192.9 cf Chamber Storage


26,496.0 cf Field - 10,192.9 cf Chambers = 16,303.1 cf Stone x 40.0% Voids = 6,521.2 cf Stone Storage


Chamber Storage + Stone Storage = 16,714.1 cf = 0.384 af Overall Storage Efficiency = 63.1% Overall System Size = 288.00' x 23.00' x 4.00'

70 Chambers 981.3 cy Field 603.8 cy Stone

010101

The Sanctuary, Manchester-by-the-Sea, MA *Type III 24-hr 10-Year Rainfal=4.88*" Printed 7/16/2021 Page 127

	The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Proposed HydroCAD	Type III 24-hr 10-Year Rainfall=4.88"
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 128

Summary for Pond UIS-3: UIS-3 - Cul-de-Sac (36" CMP)

Inflow Area =	37,779 sf, 57.72% Impervious,	Inflow Depth = 3.79" for 10-Year event
Inflow =	3.60 cfs @ 12.09 hrs, Volume=	11,919 cf
Outflow =	0.31 cfs @ 13.06 hrs, Volume=	11,691 cf, Atten= 91%, Lag= 58.1 min
Discarded =	0.13 cfs @ 13.06 hrs, Volume=	9,743 cf
Primary =	0.18 cfs @ 13.06 hrs, Volume=	1,948 cf

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 108.85' @ 13.06 hrs Surf.Area= 4,930 sf Storage= 5,679 cf Flood Elev= 108.50' Surf.Area= 4,930 sf Storage= 4,321 cf

Plug-Flow detention time= 314.4 min calculated for 11,671 cf (98% of inflow) Center-of-Mass det. time= 302.7 min (1,091.2 - 788.5)

Volume	Invert	Avail.Storage	Storage Description
#1A	107.00'	4,775 cf	72.50'W x 68.00'L x 4.00'H Field A
			19,720 cf Overall - 7,783 cf Embedded = 11,937 cf x 40.0% Voids
#2A	107.50'	7,783 cf	CMP Round 36 x 48 Inside #1
			Effective Size= 36.0"W x 36.0"H => 7.07 sf x 20.00'L = 141.4 cf
			Overall Size= 36.0"W x 36.0"H x 20.00'L
			48 Chambers in 16 Rows
			70.50' Header x 7.07 sf x 2 = 996.7 cf Inside
		12,558 cf	Total Available Storage

Storage Group A created with Chamber Wizard

De	evice	Routing	Invert	Outlet Devices
	#1	Primary	107.00'	12.0" Round Culvert L= 100.0' CPP, projecting, no headwall, Ke= 0.900
				Inlet / Outlet Invert= 107.00' / 102.00' S= 0.0500 '/' Cc= 0.900
				n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
	#2	Device 1	108.50'	4.0" Vert. Orifice/Grate C= 0.600
	#3	Discarded	107.00'	1.020 in/hr Exfiltration over Wetted area
Di	coord	ad OutFlow	May_0 13 cf	s @ 13.06 brs HW_108.85' (Free Discharge)

Discarded OutFlow Max=0.13 cfs @ 13.06 hrs HW=108.85' (Free Discharge) -3=Exfiltration (Exfiltration Controls 0.13 cfs)

Primary OutFlow Max=0.18 cfs @ 13.06 hrs HW=108.85' (Free Discharge) 1=Culvert (Passes 0.18 cfs of 3.47 cfs potential flow) 2=Orifice/Grate (Orifice Controls 0.18 cfs @ 2.05 fps)

The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 10-Year Rainfall=4.88" Printed 7/16/2021 Page 129

Pond UIS-3: UIS-3 - Cul-de-Sac (36" CMP) - Chamber Wizard Field A

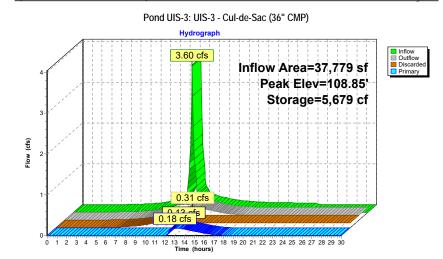
Chamber Model = CMP Round 36 (Round Corrugated Metal Pipe) Effective Size= 36.0"W x 36.0"H => 7.07 sf x 20.00'L = 141.4 cf Overall Size= 36.0"W x 36.0"H x 20.00'L

36.0" Wide + 18.0" Spacing = 54.0" C-C Row Spacing

3 Chambers/Row x 20.00' Long +3.00' Header x 2 = 66.00' Row Length +12.0" End Stone x 2 = 68.00' Base Length 16 Rows x 36.0" Wide + 18.0" Spacing x 15 + 12.0" Side Stone x 2 = 72.50' Base Width 6.0" Base + 36.0" Chamber Height + 6.0" Cover = 4.00' Field Height

48 Chambers x 141.4 cf + 70.50' Header x 7.07 sf x 2 = 7,782.5 cf Chamber Storage

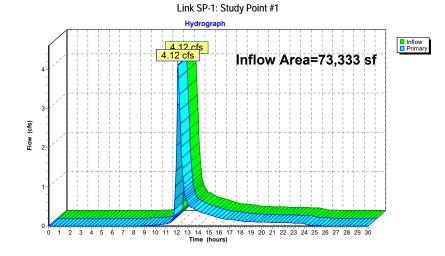
19,720.0 cf Field - 7,782.5 cf Chambers = 11,937.5 cf Stone x 40.0% Voids = 4,775.0 cf Stone Storage


Chamber Storage + Stone Storage = 12,557.5 cf = 0.288 af Overall Storage Efficiency = 63.7% Overall System Size = 68.00' x 72.50' x 4.00'

48 Chambers 730.4 cy Field 442.1 cy Stone

01010101010101010101010101010

2725-01 - Proposed HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 10-Year Rainfall=4.88" Printed 7/16/2021 Page 130

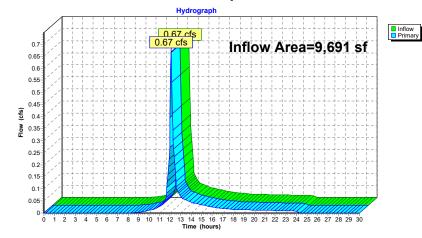


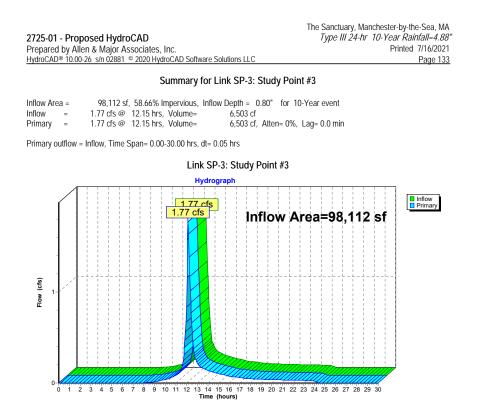
	The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Proposed HydroCAD	Type III 24-hr 10-Year Rainfall=4.88"
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 131

Summary for Link SP-1: Study Point #1

Inflow Are	a =	73,333 sf, 19.56% Impervious, Inflow Depth > 2.55" for 10-Year event	
Inflow	=	4.12 cfs @ 12.14 hrs, Volume= 15,568 cf	
Primary	=	4.12 cfs @ 12.14 hrs, Volume= 15,568 cf, Atten= 0%, Lag= 0.0 min	l.

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

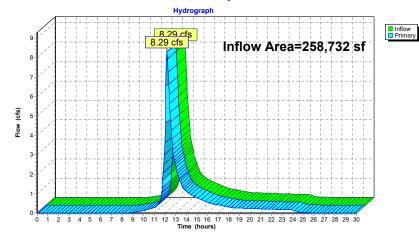

	The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Proposed HydroCAD	Type III 24-hr 10-Year Rainfall=4.88"
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 132


Summary for Link SP-2: Study Point #2

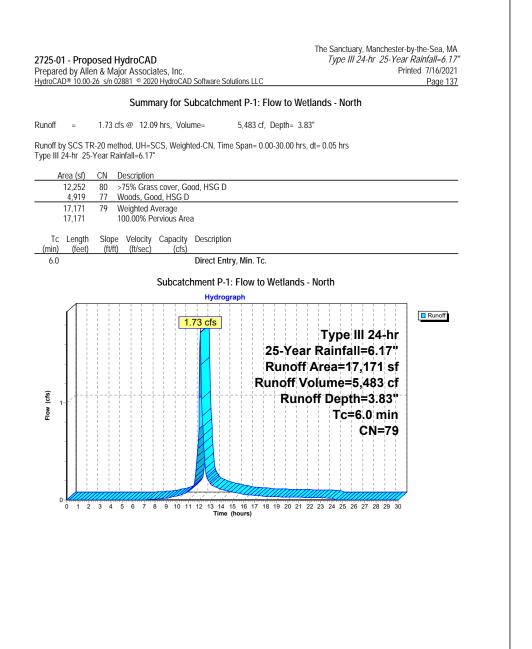
Inflow Area =	9,691 sf,	0.00% Impervious,	Inflow Depth = 2.61"	for 10-Year event
Inflow =	0.67 cfs @ 1	12.09 hrs, Volume=	2,108 cf	
Primary =	0.67 cfs @ 1	12.09 hrs, Volume=	2,108 cf, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

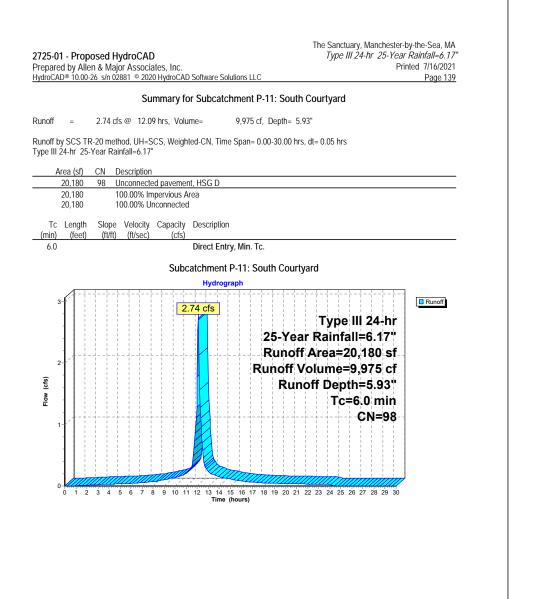
Link SP-2: Study Point #2


	The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Proposed HydroCAD	Type III 24-hr 10-Year Rainfall=4.88"
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 134

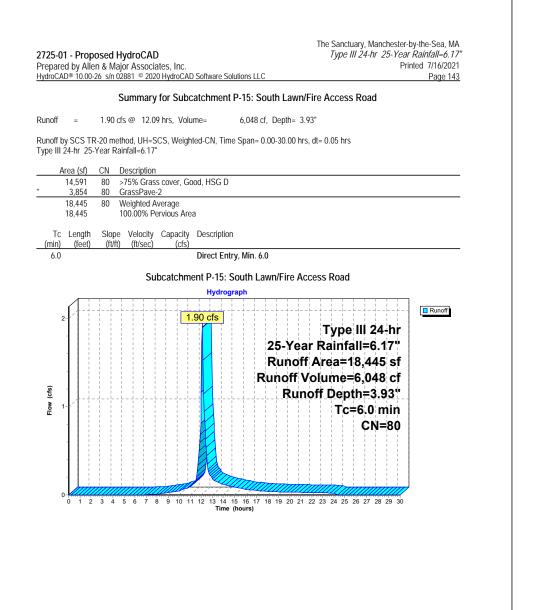
Summary for Link SP-4: Study Point #4

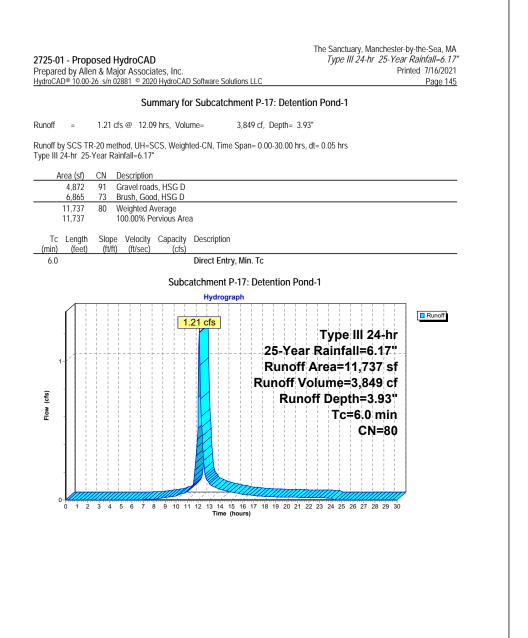

Inflow Area	a =	258,732 sf, 29.63% Impervious, Inflow Depth > 1.95" for 10-Year event
Inflow	=	8.29 cfs @ 12.20 hrs, Volume= 41,948 cf
Primary	=	8.29 cfs @ 12.20 hrs, Volume= 41,948 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

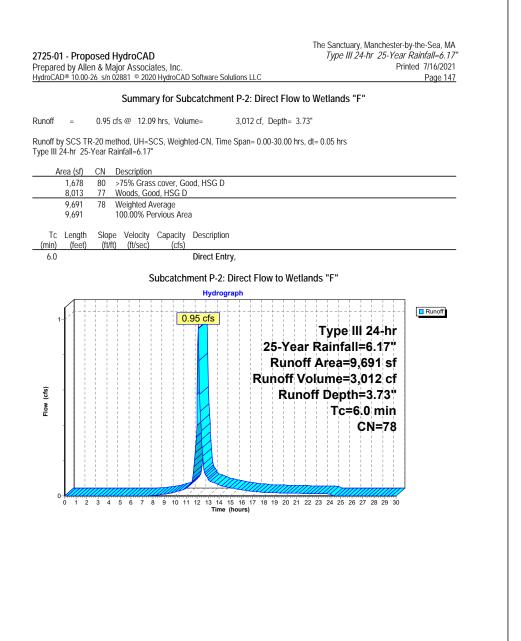

Link SP-4: Study Point #4

2725-01 - Proposed HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software S	The Sanctuary, Manchester-by-the-Sea, MA <i>Type III 24-hr 25-Year Rainfall=6.17"</i> Printed 7/16/2021 Fiolutions LLC Page 135	2725-01 - Proposed HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions	The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 25-Year Rainfall=6.17" Printed 7/16/2021 LLC Page 136
Runoff by SCS TR-20).00 hrs, dt=0.05 hrs, 601 points) method, UH=SCS, Weighted-CN ethod - Pond routing by Stor-Ind method	Subcatchment P-8: Cul-de-Sac/Garage Turn Around	Runoff Area=22,451 sf 74.60% Impervious Runoff Depth=5.35" Tc=6.0 min CN=93 Runoff=2.93 cfs 10,010 cf
Subcatchment P-1: Flow to Wetlands - North	Runoff Area=17,171 sf 0.00% Impervious Runoff Depth=3.83" Tc=6.0 min CN=79 Runoff=1.73 cfs 5.483 cf	Subcatchment P-9: North Courtyard/Green Roof	Runoff Area=15,328 sf 33.00% Impervious Runoff Depth=4.57" Tc=6.0 min CN=86 Runoff=1.80 cfs 5,839 cf
Subcatchment P-10: Proposed Building Roof	Runoff Area=30,342 sf 100.00% Impervious Runoff Depth=5.93* Tc=6.0 min CN=98 Runoff=4.11 cfs 14,998 cf	Reach SWALE: Swale Abutting Entry Driveway n=0.040	Avg. Flow Depth=0.27' Max Vel=3.65 fps Inflow=2.63 cfs 8,376 cf L=427.0' S=0.0749 '/ Capacity=16.60 cfs Outflow=2.54 cfs 8,376 cf
Subcatchment P-11: South Courtyard	Runoff Area=20,180 sf 100.00% Impervious Runoff Depth=5.93* Tc=6.0 min CN=98 Runoff=2.74 cfs 9,975 cf	Pond RG-1: Rain Garden-1 - Entrance 24.0" Rour	Peak Elev=51.76' Storage=2,031 cf Inflow=2.28 cfs 21,198 cf nd Culvert n=0.013 L=100.0' S=0.0050 '/' Outflow=2.43 cfs 20,580 cf
Subcatchment P-12: Southeast Roof Area	Runoff Area=27,254 sf 100.00% Impervious Runoff Depth=5.93" Tc=6.0 min CN=98 Runoff=3.69 cfs 13.472 cf	Pond RG-2: Rain Garden #2 - Driveway	Peak Elev=163.54' Storage=1,582 cf Inflow=0.70 cfs 2,551 cf Outflow=0.21 cfs 1,036 cf
Subcatchment P-13: Main Parking Area	Runoff Area=17,700 sf 76.07% Impervious Runoff Depth=5.47" Tc=6.0 min CN=94 Runoff=2.33 cfs 8.061 cf	Pond SDP-1: Surface Detention Pond-1 Primary=4.3	Peak Elev=79.15' Storage=4,026 cf Inflow=5.64 cfs 18,207 cf 1 cfs 16,251 cf Secondary=0.00 cfs 0 cf Outflow=4.31 cfs 16,251 cf
Subcatchment P-14: WWTF/Driveway	Runoff Area=19,605 sf 33.29% Impervious Runoff Depth=4.57" Tc=6.0 min CN=86 Runoff=2.30 cfs 7.468 cf	Pond UDS-1: UDS-1 - Driveway Entrance (36" CMP)	Peak Elev=49.17' Storage=4,915 cf Inflow=6.36 cfs 21,211 cf Outflow=2.28 cfs 21,198 cf
Subcatchment P-15: South Lawn/Fire Access Road	Runoff Area=18,445 sf 0.00% Impervious Runoff Depth=3.93" Tc=6.0 min CN=80 Runoff=1.90 cfs 6.048 cf	Pond UIS-1: UIS-1 - Fire Access Road/Lawn (96" CMP)	Peak Elev=107.21' Storage=32,442 cf Inflow=9.15 cfs 32,441 cf Outflow=0.00 cfs 0 cf
Subcatchment P-16: Entrance Drive	Runoff Area=20,820 sf 44.13% Impervious Runoff Depth=4.79* Tc=6.0 min CN=88 Runoff=2.53 cfs 8,310 cf	Pond UIS-2: UIS-2 - Main Building Entrance (36" CMP) Discarder	Peak Elev=120.44' Storage=15,193 cf Inflow=6.03 cfs 21,533 cf d=0.11 cfs 9,138 cf Primary=0.00 cfs 0 cf Outflow=0.11 cfs 9,138 cf
Subcatchment P-17: Detention Pond-1	Runoff Area=11,737 sf 0.00% Impervious Runoff Depth=3.93° Tc=6.0 min CN=80 Runoff=1.21 cfs 3.849 cf	Pond UIS-3: UIS-3 - Cul-de-Sac (36" CMP) Discarded=0.13	Peak Elev=109.32' Storage=7,555 cf Inflow=4.73 cfs 15,849 cf cfs 10,221 cf Primary=0.34 cfs 4,869 cf Outflow=0.47 cfs 15,089 cf
Subcatchment P-18: Entry Driveway	Runoff Area=5,160 sf 100.00% Impervious Runoff Depth=5.93* Tc=6.0 min CN=98 Runoff=0.70 cfs 2,551 cf	Link SP-1: Study Point #1	Inflow=5.72 cfs 22,769 cf Primary=5.72 cfs 22,769 cf
Subcatchment P-2: Direct Flow to Wetlands "F"	Runoff Area=9,691 sf 0.00% Impervious Runoff Depth=3.73" Tc=6.0 min CN=78 Runoff=0.95 cfs 3,012 cf	Link SP-2: Study Point #2	Inflow=0.95 cfs 3,012 cf Primary=0.95 cfs 3,012 cf
Subcatchment P-3: Flow Southwest Off-Site	Runoff Area=27,985 sf 1.79% Impervious Runoff Depth=3.93" ength=194' Slope=0.0100 '/' Tc=10.9 min CN=80 Runoff=2.49 cfs 9.177 cf	Link SP-3: Study Point #3	Inflow=2.49 cfs 9,177 cf Primary=2.49 cfs 9,177 cf
Subcatchment P-4: Flow Southeast to Wetlands "A"	Runoff Area=117,759 sf 0.54% Impervious Runoff Depth=3.73" Flow Length=186' Tc=14.0 min CN=78 Runoff=9.11 cfs 36,598 cf	Link SP-4: Study Point #4	Inflow=11.63 cfs 62,047 cf Primary=11.63 cfs 62,047 cf
Subcatchment P-5: Entrance Drive	Runoff Area=14,879 sf 78.94% Impervious Runoff Depth=5.47" Tc=6.0 min CN=94 Runoff=1.96 cfs 6,776 cf		Runoff Volume = 166,062 cf Average Runoff Depth = 4.53" 23% Pervious = 291,317 sf 33.77% Impervious = 148,551 sf
Subcatchment P-6: Landcaped Slope/Walls	Runoff Area=18,477 sf 5.22% Impervious Runoff Depth=3.93" Tc=6.0 min UI Adjusted CN=80 Runoff=1.91 cfs 6,059 cf		
Subcatchment P-7: Landscaped Slope	Runoff Area=24,884 sf 3.17% Impervious Runoff Depth=4.04" Tc=6.0 min CN=81 Runoff=2.63 cfs 8,376 cf		


Prepare	d by Alle	osed Hyd en & Major 26 s/n 028	Associa	ites, Inc.) Software So	olutions	LLC			The				Year I	y-the-Sea, MA <i>Rainfall=6.17*</i> ted 7/16/2021 Page 138
					ubcatchm			Propo	osed	Build	ling l	Roof			
Runoff	=	4.11 cfs	@ 12.09	9 hrs, Volu	ıme=	14,99	98 cf,	Depth	n= 5.	93"					
		R-20 metho Year Rainf		CS, Weigh	ited-CN, Tim	e Spar	n= 0.	00-30.0	00 hrs	s, dt= 0	.05 hr	S			
A	rea (sf)	CN De	scription												
	30,342			d roofs, H											
	30,342 30,342			pervious A connected											
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descriptior	ı									
6.0					Direct Ent	ry, Mir	n. Tc								
4 33 (52) MOL H 2 1					hment P-1 Hydrog			25 Ru Inol	Ye nof	ar R f Ar olur	Γyp ain ea= ne= De∣	fall =30, =14, pth c=6	24- =6.17 342 998 =5.93 .0 mi CN=9	7" sf cf 3" in	Runoff
0	0 1 2	3 4 5	6 7 8	9 10 1	1 12 13 14 Time	15 16 (hours)		8 19 2	0 21	22 23	24 25	5 26 2	27 28 29	30	


2725-01 - Proposed HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	The Sanctuary, Manchester-by-the-Sea, MA <i>Type III 24-hr 25-Year Rainfall=6.17"</i> Printed 7/16/2021 Page 140
Summary for Subcatchment P-12: South	least Roof Area
Tc of 4.6 rounds to minimum of 5.0. Use Tc = 5.0 mimutes for E-2.	
Runoff = 3.69 cfs @ 12.09 hrs, Volume= 13,472 cf, Depth=	5.93"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 Type III 24-hr 25-Year Rainfall=6.17"	hrs, dt= 0.05 hrs
Area (sf) CN Description	
27,254 98 Unconnected roofs, HSG D 27,254 100.00% Impervious Area	
27,254 100.00% Unconnected	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
6.0 Direct Entry, Min. Tc	
Subcatchment P-12: Southeast Re Hydrograph	oof Area
³ Runoff	Type III 24-hr ear Rainfall=6.17" off Area=27,254 sf Volume=13,472 cf unoff Depth=5.93"
(f) MOL 2	Tc=6.0 min CN=98
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 : Time (hours)	21 22 23 24 25 26 27 28 29 30

	Summary for Subcatchm	ent P-13: Main Parking Area	
off = 2.33 cfs @	2 12.09 hrs, Volume= 8	8,061 cf, Depth= 5.47"	
	I, UH=SCS, Weighted-CN, Time S	pan= 0.00-30.00 hrs, dt= 0.05 hrs	
e III 24-hr 25-Year Rainfa	II=6.17"		
	cription		
	onnected pavement, HSG D % Grass cover, Good, HSG D		
17,700 94 Wei	ghted Average		
	13% Pervious Area 17% Impervious Area		
	00% Unconnected		
	elocity Capacity Description		
nin) (feet) (ft/ft) 6.0	(ft/sec) (cfs) Direct Entry,	Min 60	
	Subcatchment P-1 Hydrograp	3: Main Parking Area	
2	2.33 cfs	Type III 24-hr 25-Year Rainfall=6.17"	Runoff
		Runoff Area=17,700 sf	
		Runoff Volume=8,061 cf	
		Runoff Depth=5.47"	
		Tc=6.0 min	
		CN=94	
1-1		••• • •	

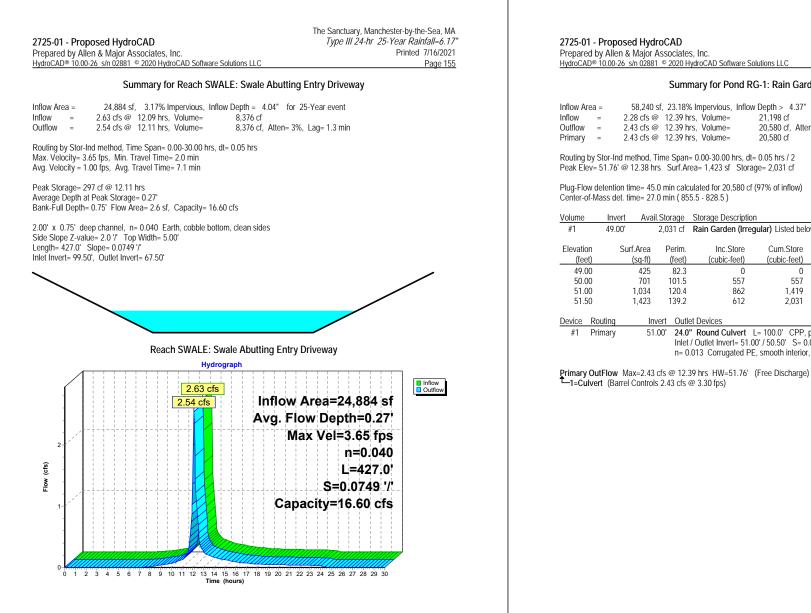

HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 25-Year Rainfall=6.17 Printed 7/16/2021 Page 142
Summary for Subcatchment P-14: WWTF	/Driveway
Runoff = 2.30 cfs @ 12.09 hrs, Volume= 7,468 cf, Depth= 4.5	7"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, Type III 24-hr 25-Year Rainfall=6.17"	, dt= 0.05 hrs
Area (sf) CN Description	
6,526 98 Paved parking, HSG D	
9,225 80 >75% Grass cover, Good, HSG D 3,854 80 GrassPave-2	
19,605 86 Weighted Average	
13,079 66.71% Pervious Area	
6,526 33.29% Impervious Area	
Tc Length Slope Velocity Capacity Description	
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Min. 6.0	
Runoff Runoff V	Type III 24-hr r Rainfall=6.17" Area=19,605 sf olume=7,468 cf off Depth=4.57" Tc=6.0 min CN=86

Prepared by Al	posed HydroCAD The Sanctuary, Manchester-by Type III 24-hr 25-Year R Printe -26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	
	Summary for Subcatchment P-16: Entrance Drive	
Runoff =	2.53 cfs @ 12.09 hrs, Volume= 8,310 cf, Depth= 4.79"	
	R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs 5-Year Rainfall=6.17"	
Area (sf)	CN Description	
9,187	98 Unconnected pavement, HSG D	
<u>11,633</u> 20.820	80 >75% Grass cover, Good, HSG D 88 Weighted Average	
11,633	55.87% Pervious Area	
9,187 9,187	44.13% Impervious Area 100.00% Unconnected	
9,187	100.00% Unconnected	
Tc Length		
(min) (feet) 6.0	(ft/ft) (ft/sec) (cfs) Direct Entry, Min. Tc.	
Elow (cis)	2.53 cfs Type III 24-hr 25-Year Rainfall=6.17" Runoff Area=20,820 sf Runoff Volume=8,310 cf Runoff Depth=4.79" Tc=6.0 min CN=88	Runoff

2725-01 - Proposed HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	The Sanctuary, Manchester-by-the-Sea, MA <i>Type III 24-hr 25-Year Rainfall=6.17</i> " Printed 7/16/2021 Page 146
Summary for Subcatchment P-18: Entry	Driveway
Runoff = 0.70 cfs @ 12.09 hrs, Volume= 2,551 cf, Depth= 5.9	3"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs Type III 24-hr 25-Year Rainfall=6.17"	, dt= 0.05 hrs
Area (sf) CN Description	
5,160 98 Unconnected pavement, HSG D	
5,160 100.00% Impervious Area 5,160 100.00% Unconnected	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
6.0 Direct Entry, Min. Tc.	
Subcatchment P-18: Entry Drivev	/ay
Hydrograph	
0.75	
0.7	Type III-24-hr
0.65 0.6	r Rainfall=6.17"
	ff Area=5,160 sf
	olume=2,551 cf
- 0451/1	off Depth=5.93"
© 0.43 0.44 0.43 0.33	Tc=6.0 min
0.3	CN=98
0.25	+ + - + +
0.15	
0.05	
	22 23 24 25 26 27 28 29 30
Time (hours)	

Summary for Subcatchment P-3: Flow Southw Runoff = 2.49 cfs @ 12.15 hrs, Volume= 9,177 cf, Depth= 3.93 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, or Type III 24-hr 24.995 80 24.995 80 >75% Grass cover, Good, HSG D 24.99 24.995 80 >75% Grass cover, Good, HSG D 24.99 24.90 77 Woods, Good, HSG D 500 27.985 80 Weighted Average 27.485 27.485 98.21% Pervious Area 500 100.00% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) Grass: Short n=0.150 P2= 3.16" 3.4 144 0.0100 0.70 Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps 10.9 194 Total Subcatchment P-3: Flow Southwest Of	
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, or Type III 24-hr 25-Year Rainfall=6.17" Area (sf) CN Description 24,995 80 >75% Grass cover, Good, HSG D 2,490 77 Woods, Good, HSG D 500 98 Unconnected pavement, HSG D 27,985 80 Weighted Average 27,485 98.21% Pervious Area 500 1.79% Impervious Area 500 100.00% Unconnected Tc Length Slope Velocity (freet) (ft/ft) (ft/scc) (cfs) 7.5 50 0.0100 3.4 144 0.0100 0.70 Shallow Concentrated Flow, Grass: Short n= 0.150 P2= 3.16" 3.4 144 0.0100 0.70 Subcatchment P-3: Flow Southwest OI Hydrograph	
Type III 24-hr 25-Year Rainfall=6.17" Area (sf) CN Description 24,995 80 >75% Grass cover, Good, HSG D 2,490 77 Woods, Good, HSG D 500 98 Unconnected pavement, HSG D 27,985 80 Weighted Average 27,985 80 Unconnected pavement, HSG D 200 1.79% Impervious Area 500 500 1.79% Impervious Area 500 500 1.79% Impervious Area 500 500 100.00% Unconnected Tc Tc Length Slope Velocity Capacity 7.5 50 0.0100 0.11 Sheet Flow, Grass: Short n= 0.150 P2= 3.16" 3.4 144 0.0100 0.70 Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps 10.9 194 Total	tt= 0.05 hrs
24,995 80 >75% Grass cover, Good, HSG D 2,490 77 Woods, Good, HSG D 500 98 Unconnected pavement, HSG D 27,985 80 Weighted Average 27,485 98.21% Pervious Area 500 1.79% Impervious Area 500 100.00% Unconnected Tc Length Slope Velocity Cfs (freet) (freet) (ft/ft) 0.0100 0.11 Sheet Flow, Grass: Short n= 0.150 P2= 3.16° 3.4 144 0.0100 0.70 Shallow Concentrated Flow, Short Grass Pasture Short Grass Pasture Kv= 7.0 fps 10.9 194 Total	
2,490 77 Woods, Good, HSG D 500 98 Unconnected pavement, HSG D 27,985 80 Weighted Average 27,485 98.21% Pervious Area 500 1.79% Impervious Area 500 100.00% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (feet) (ft/ft) (ft/sec) 7.5 50 0.0100 0.11 Sheet Flow, Grass: Short n= 0.150 P2= 3.16" 3.4 144 0.0100 0.70 Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps 10.9 194 Total Subcatchment P-3: Flow Southwest Of	
27,985 80 Weighted Average 27,485 98.21% Pervious Area 500 1.79% Impervious Area 500 100.00% Unconnected Tc Length Slope Velocity Capacity Description (min) (fieet) (ft/ft) 7.5 50 0.0100 0.11 Sheet Flow, Grass: Short n= 0.150 3.4 144 0.0100 0.70 Shallow Concentrated Flow, Short Grass Pasture Subcatchment P-3: Flow Southwest Of Hydrograph 2.49 cfs	
500 1.79% Impervious Area 500 100.00% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 7.5 50 0.0100 0.11 Sheet Flow, Grass: Short n= 0.150 P2= 3.16" 3.4 144 0.0100 0.70 Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps 10.9 194 Total Subcatchment P-3: Flow Southwest Of Hydrograph	
500 100.00% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (fuft) (fl/sec) (cfs) 7.5 50 0.0100 0.11 Sheet Flow, Grass: Short n= 0.150 P2= 3.16" 3.4 144 0.0100 0.70 Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps 10.9 194 Total Subcatchment P-3: Flow Southwest Of Hydrograph	
(min) (feet) (ft/ft) (ft/sec) (cfs) 7.5 50 0.0100 0.11 Sheet Flow, Grass: Short n= 0.150 P2= 3.16" 3.4 144 0.0100 0.70 Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps 10.9 194 Total Subcatchment P-3: Flow Southwest Of Hydrograph	
7.5 50 0.0100 0.11 Sheet Flow, Grass: Short n= 0.150 P2= 3.16" 3.4 144 0.0100 0.70 Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps 10.9 194 Total Subcatchment P-3: Flow Southwest Of Hydrograph 2.49 cfs 10.9	
Grass: Short n= 0.150 P2= 3.16" Grass: Short n= 0.150 P2= 3.16" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps 10.9 194 Total Subcatchment P-3: Flow Southwest Of Hydrograph	
10.9 194 Total Subcatchment P-3: Flow Southwest Of Hydrograph	
Hydrograph 2.49 cfs	
2 Runoff Runoff Vo Runo Flo	f-Site Type III 24-hr RainfalI=6.17" Area=27,985 sf olume=9,177 cf ff Depth=3.93" w Length=194' lope=0.0100 '/ Tc=10.9 min CN=80

droCAE		en & Ma	HydroCAD ajor Associate 12881 © 2020 H		Software So	lutions LLC	51	25-Year Rainfall=6.17 Printed 7/16/2021 Page 149
		Ś	Summary fo	r Subca	tchment	P-4: Flow Southeas	t to Wetlands "A"	
: of 4.6	rounds t	o minim	um of 5.0. Use	e Tc = 5.0	mimutes fo	r E-2.		
unoff	=	9.11 c	cfs @ 12.20 h	rs, Volun	ne=	36,598 cf, Depth= 3.7	3"	
			thod, UH=SCS ainfall=6.17"	S, Weighte	ed-CN, Tim	e Span= 0.00-30.00 hrs,	dt= 0.05 hrs	
	ea (sf)		Description					
	92,430 24.696		Woods, Good, >75% Grass c		H HSC D			
4	633		Unconnected					
	17,759 17,126		Weighted Ave 99.46% Pervic					
	633		0.54% Impervi	ious Area				
	633		100.00% Unco	onnected				
Tc (min)	Length (feet)	Slope (ft/ft)	e Velocity C) (ft/sec)	apacity (cfs)	Descriptior			
11.4	50	0.1000	0.07		Sheet Flow	v, nse underbrush n= 0.8	00 D2_ 2 14"	
2.6	136	0.1200	0.87		Shallow C	oncentrated Flow,		
44.5		T · ·			Forest w/H	eavy Litter Kv= 2.5 fps		
14.0	186	Total						
			Subc	atchmer	nt P-4: Flo	ow Southeast to We	tlands "A"	
			1_1_1_1_1		Hydrog	raph		
	6177			9.	11 cfs		Type III 24 Ir Rainfall=6.1	
10- 9-			+			20-192	n naimaii-0.	
9-					++		Aroa=117 750	ef
9						Runoff	Area=117,759	1 1
9- 8- 7-						Runoff Runoff Vo	olume=36,598	cf -
9- 8- 7-						Runoff Runoff Vo Run	olume=36,598 off Depth=3.	cf - 73"
(cfs) 986						Runoff Runoff Vo Run	olume=36,598 off Depth=3.7 ow Length=1	cf 73" 86'
Flow (cfs) 8						Runoff Runoff Vo Run	olume=36,598 off Depth=3 ow Length=1 Tc=14.0 n	cf 73" 86' nin
9- 						Runoff Runoff Vo Run	olume=36,598 off Depth=3.7 ow Length=1	cf 73" 86' nin
Flow (cfs) 8						Runoff Runoff Vo Run	olume=36,598 off Depth=3 ow Length=1 Tc=14.0 n	cf 73" 86' nin
9- 						Runoff Runoff Vo Run	olume=36,598 off Depth=3 ow Length=1 Tc=14.0 n	cf 73" 86' nin


Prepared by Al	Dosed HydroCAD en & Major Associates, Inc. 1-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	The Sanctuary, Manchester-by-the-Sea, MA <i>Type III 24-hr 25-Year Rainfall=6.17"</i> Printed 7/16/2021 Page 150
	Summary for Subcatchment P-5: Entrance	e Drive
Runoff =	1.96 cfs @ 12.09 hrs, Volume= 6,776 cf, Depth= 5.47	u
	R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, d i-Year Rainfall=6.17"	lt= 0.05 hrs
Area (sf)	CN Description	
11,745 3,134	 98 Paved parking, HSG D 80 >75% Grass cover, Good, HSG D 	
14,879	94 Weighted Average	
3,134 11,745	21.06% Pervious Area 78.94% Impervious Area	
	•	
Tc Length (min) (feet)		
6.0	Direct Entry, Min. Tc	
	Subcatchment P-5: Entrance Drive	2
	Hydrograph	
2	Runoff / Runoff /o	Type III 24-hr Rainfall=6.17" Area=14,879 sf Jume=6,776 cf ff Depth=5.47" Tc=6.0 min CN=94
0	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Time (hours)	

Prepared by All	The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 25-Year Rainfall=6.17" en & Major Associates, Inc. -26 s/n 02881 © 2020 HydroCAD Software Solutions LLC Page 151	2725-0 Prepare HydroCA
	Summary for Subcatchment P-6: Landcaped Slope/Walls	
Runoff =	1.91 cfs @ 12.09 hrs, Volume= 6,059 cf, Depth= 3.93"	Runoff
	R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs -Year Rainfall=6.17*	Runoff I Type III
Area (sf)	CN Adj Description	/
17,512 965	80 >75% Grass cover, Good, HSG D 98 Unconnected pavement, HSG D	
18,477	98 Unconnected pavement, HSG D 81 80 Weighted Average, UI Adjusted	
17,512	94.78% Pervious Area	
965 965	5.22% Impervious Area 100.00% Unconnected	
Tc Length (min) (feet)	(fVft) (ft/sec) (cfs)	To <u>(min)</u> 6.0
6.0	Direct Entry, Min. Tc	
	Subcatchment P-6: Landcaped Slope/Walls	
Liow (cts)	Hydrograph 1.91 cfs Type III 24-hr 25-Year Rainfall=6.17" Runoff Area=18,477 sf Runoff Depth=3.93" Tc=6.0 min UI Adjusted CN=80	Flow (cfs)

Prepa	ared by Alie		Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 25-Year Rainfall=6.17" Printed 7/16/2021 Page 152
		Summary for Subcatchment P-7: Landscaped	Slope
Runo	ff =	2.63 cfs @ 12.09 hrs, Volume= 8,376 cf, Depth= 4.04"	
		R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0. 5-Year Rainfall=6.17"	.05 hrs
	Area (sf)	CN Description	
	788 24,096	98 Paved parking, HSG D	
	24,096	80 >75% Grass cover, Good, HSG D 81 Weighted Average	
	24,096	96.83% Pervious Area	
	788	3.17% Impervious Area	
(mi	Tc Length n) (feet)		
6	.0	Direct Entry, Min. Tc.	
fs)	2-7	25-Year Ra Runoff Are Runoff Volu	
Flow (cfs)	1	Runom I	Depth=4.04" Tc=6.0 min CN=81

	Summary for Subcatchment P-8: Cul-de-Sac/Garage Turn Around	
noff =	2.93 cfs @ 12.09 hrs, Volume= 10,010 cf, Depth= 5.35"	
	R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs -Year Rainfall=6.17"	
Area (sf)	CN Description	
16,749 5,702	98 Paved parking, HSG D 80 >75% Grass cover, Good, HSG D	
22,451 5,702 16,749	93 Weighted Average 25.40% Pervious Area 74.60% Impervious Area	
Tc Length min) (feet)		
6.0	Direct Entry, Min. Tc.	
	Subcatchment P-8: Cul-de-Sac/Garage Turn Around	
	Hydrograph	
3	2.93 cfs Type III 24-hr 25-Year Rainfall=6.17" Runoff Area=22,451 sf Runoff Volume=10,010 cf Runoff Depth=5.35" Tc=6.0 min CN=93	Runoff
	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours)	

2725-01 - Proposed HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 25-Year Rainfall=6.17" Printed 7/16/2021 Page 154
Summary for Subcatchment P-9: North Court	yard/Green Roof
Runoff = 1.80 cfs @ 12.09 hrs, Volume= 5,839 cf, Depth= 4	57"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hr Type III 24-hr 25-Year Rainfall=6.17"	s, dt= 0.05 hrs
Area (sf) CN Description	
5,058 98 Unconnected roofs, HSG D	
10,270 80 >75% Grass cover, Good, HSG D	
15,328 86 Weighted Average 10.270 67.00% Pervious Area	
5,058 33.00% Impervious Area	
5,058 100.00% Unconnected	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
6.0 Direct Entry, Min. Tc.	
Runof Runoff	Type III 24-hr r Rainfall=6.17" f Area=15,328 sf /olume=5,839 cf off Depth=4.57" Tc=6.0 min CN=86

	The Sanctuary, Manchester-by-the-Sea, MA
5-01 - Proposed HydroCAD	Type III 24-hr 25-Year Rainfall=6.17"
pared by Allen & Major Associates, Inc.	Printed 7/16/2021
DCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 156

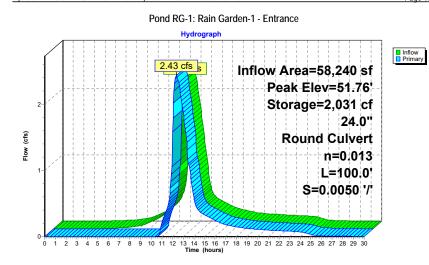
Summary for Pond RG-1: Rain Garden-1 - Entrance

Inflow Area	a =	58,240 sf, 23.18% Impervious, Inflow Depth > 4.37" for 25-Y	ear event
Inflow	=	2.28 cfs @ 12.39 hrs, Volume= 21,198 cf	
Outflow	=	2.43 cfs @ 12.39 hrs, Volume= 20,580 cf, Atten= 0%, La	ig= 0.0 min
Primary	=	2.43 cfs @ 12.39 hrs, Volume= 20,580 cf	-

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 51.76' @ 12.38 hrs Surf.Area= 1,423 sf Storage= 2,031 cf

Plug-Flow detention time= 45.0 min calculated for 20,580 cf (97% of inflow) Center-of-Mass det. time= 27.0 min (855.5 - 828.5)

#1	49.00'	2,031 cf	Rain Garden (Irr	egular) Listed belo	ow (Recalc)
Elevation	Surf.Ar			Cum.Store	Wet.Area
(feet)	(sq-	-ft) (feet) (cubic-feet)	(cubic-feet)	(sq-ft)
49.00	4	25 82.3	8 0	0	425
50.00	7	01 101.5	557	557	720
51.00	1,0	34 120.4	862	1,419	1,072
51.50	1,4	23 139.2	2 612	2,031	1,466


Invert Outlet Devices

51.00' 24.0" Round Culvert L= 100.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 51.00' / 50.50' S= 0.0050 '/' Cc= 0.900

n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

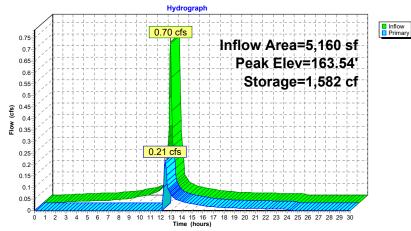
└─1=Culvert (Barrel Controls 2.43 cfs @ 3.30 fps)

The Sanctuary, Manchester-by-the-Sea, MA *Type III 24-hr 25-Year Rainfall=6.17"* Printed 7/16/2021 Page 157

	The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Proposed HydroCAD	Type III 24-hr 25-Year Rainfall=6.17"
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 158

Summary for Pond RG-2: Rain Garden #2 - Driveway

Inflow Are	ea =	5,160 sf,100.00% Impervious, Inflow Depth = 5.93" for 25-Year event
Inflow	=	0.70 cfs @ 12.09 hrs, Volume= 2,551 cf
Outflow	=	0.21 cfs @ 12.41 hrs, Volume= 1,036 cf, Atten= 69%, Lag= 19.3 min
Primary	=	0.21 cfs @ 12.41 hrs, Volume= 1,036 cf


Plug-Flow detention time= 328.1 min calculated for 1,034 cf (41% of inflow) Center-of-Mass det. time= 172.1 min (916.9 - 744.7)

Volume	Invert	i Ava	il.Storage	Storage Description			
#1	162.00'		3,504 cf	Custom Stage Data	(Irregular) List	ted below (Recalc)	
Elevation	n S	urf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(feet))	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
162.00)	564	214.6	0	0	564	
164.00)	1,965	252.4	2,388	2,388	2,044	
164.50)	2,509	276.8	1,116	3,504	3,080	
Device I	Routing	In	vert Outl	et Devices			
#1 I	Primary	163	8.50' 10.0	long x 5.0' breadth	Broad-Crested	Rectangular Weir	
			Hea	d (feet) 0.20 0.40 0.4	60 0.80 1.00 1	1.20 1.40 1.60 1.80	2.00 2.50 3.00 3.50 4.00
			4.50	5.00 5.50			
					2.70 2.68 2.6	68 2.66 2.65 2.65 2	2.65 2.65 2.67 2.66 2.68 2.
			2.74	2.79 2.88			

Primary OutFlow Max=0.21 cfs @ 12.41 hrs HW=163.54' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 0.21 cfs @ 0.48 fps)

The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 25-Year Rainfall=6.17" Printed 71/6/2021 Page 159

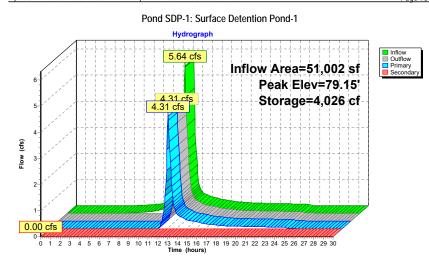
Pond RG-2: Rain Garden #2 - Driveway

	The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Proposed HydroCAD	Type III 24-hr 25-Year Rainfall=6.17"
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 160

Summary for Pond SDP-1: Surface Detention Pond-1

Inflow Area =	51,002 sf, 18.01% Impervious,	Inflow Depth = 4.28" for 25-Year event
Inflow =	5.64 cfs @ 12.09 hrs, Volume=	18,207 cf
Outflow =	4.31 cfs @ 12.16 hrs, Volume=	16,251 cf, Atten= 24%, Lag= 4.4 min
Primary =	4.31 cfs @ 12.16 hrs, Volume=	16,251 cf
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 79.15' @ 12.16 hrs Surf.Area= 2,169 sf Storage= 4,026 cf


Plug-Flow detention time= 93.3 min calculated for 16,224 cf (89% of inflow) Center-of-Mass det. time= 43.1 min (845.9 - 802.7)

Volume	Invert	Avail.S	Storage	Storage Description			
#1	76.00'	8	,088 cf	Surface Detention F	ond (Irregular)	Listed below (Recalc)	
Elevatio		urf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
76.0	00	531	104.1	0	0	531	
78.0	00	1,488	192.6	1,939	1,939	2,642	
80.0	00	2,756	230.3	4,179	6,118	3,979	
80.5	50	5,256	368.3	1,970	8,088	10,554	
Device	Routing	Inve	rt Outle	et Devices			
#1	Secondary	79.5	0' 10.0	long x 10.0' breadtl	Emergency Ov	verFlow Weir	
			Hea	d (feet) 0.20 0.40 0.6	50 0.80 1.00 1.	20 1.40 1.60	
			Coet	f. (English) 2.49 2.56	2.70 2.69 2.68	3 2.69 2.67 2.64	
#2	Primary	78.0	0' 15.0	" Round Culvert L=	100.0' CPP, s	quare edge headwall, I	Ke= 0.500
	2		Inlet	/ Outlet Invert= 78.00	/77.00' S= 0.0	0100 '/' Cc= 0.900	
			n= 0	.013 Corrugated PE,	smooth interior,	Flow Area= 1.23 sf	
				0			

Primary OutFlow Max=4.26 cfs @ 12.16 hrs HW=79.14' (Free Discharge) 2=Culvert (Inlet Controls 4.26 cfs @ 3.63 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=76.00' (Free Discharge) 1=Emergency OverFlow Weir (Controls 0.00 cfs)

The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 25-Year Rainfal=6.17" Printed 7/16/2021 Page 161

	The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Proposed HydroCAD	Type III 24-hr 25-Year Rainfall=6.17"
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 162

Summary for Pond UDS-1: UDS-1 - Driveway Entrance (36" CMP)

Inflow Area =	58,240 sf, 23.18% Impervious,	Inflow Depth = 4.37" for 25-Year event
Inflow =	6.36 cfs @ 12.10 hrs, Volume=	21,211 cf
Outflow =	2.28 cfs @ 12.39 hrs, Volume=	21,198 cf, Atten= 64%, Lag= 17.2 min
Primary =	2.28 cfs @ 12.39 hrs, Volume=	21,198 cf

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 49.17' @ 12.39 hrs Surf.Area= 3,520 sf Storage= 4,915 cf

Plug-Flow detention time= 29.6 min calculated for 21,198 cf (100% of inflow) Center-of-Mass det. time= 29.2 min (828.5 - 799.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	47.00'	3,452 cf	27.50'W x 128.00'L x 4.00'H Field A
			14,080 cf Overall - 5,450 cf Embedded = 8,630 cf x 40.0% Voids
#2A	47.50	5,450 cf	CMP Round 36 x 36 Inside #1
			Effective Size= 36.0"W x 36.0"H => 7.07 sf x 20.00'L = 141.4 cf
			Overall Size= 36.0"W x 36.0"H x 20.00'L
			36 Chambers in 6 Rows
			25.50' Header x 7.07 sf x 2 = 360.5 cf Inside
		8,902 cf	Total Available Storage

Storage Group A created with Chamber Wizard

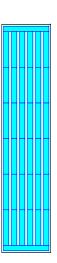
Device	Routing	Invert	Outlet Devices
#1	Primary	47.00'	18.0" Round Culvert L= 100.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 47.00' / 46.00' S= 0.0100 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 1.77 sf
#2	Device 1	51.00'	5.0' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32
#3	Device 1	47.00'	8.0" Vert. 8" Orifice C= 0.600
1=Ci −1=Ci	Ivert (Passes 2.2 Broad-Crested F	27 cfs of Rectangu	 2 12.39 hrs HW=49.16' (Free Discharge) 7.99 cfs potential flow) ular Weir (Controls 0.00 cfs) ls 2.27 cfs @ 6.52 fps)

The Sanctuary, Manchester-by-the-Sea, MA *Type III 24-hr 25-Year Rainfall=6.17"* Printed 7/16/2021 Page 163

Pond UDS-1: UDS-1 - Driveway Entrance (36" CMP) - Chamber Wizard Field A

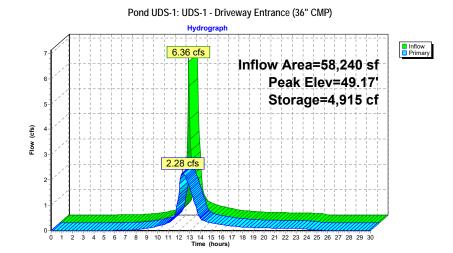
Chamber Model = CMP Round 36 (Round Corrugated Metal Pipe) Effective Size= 36.0"W x 36.0"H => 7.07 sf x 20.00'L = 141.4 cf Overall Size= 36.0"W x 36.0"H x 20.00'L

36.0" Wide + 18.0" Spacing = 54.0" C-C Row Spacing


6 Chambers/Row x 20.00' Long +3.00' Header x 2 = 126.00' Row Length +12.0" End Stone x 2 = 128.00' Base Length 6 Rows x 36.0" Wide + 18.0" Spacing x 5 + 12.0" Side Stone x 2 = 27.50' Base Width 6.0" Base + 36.0" Chamber Height + 6.0" Cover = 4.00' Field Height

36 Chambers x 141.4 cf + 25.50' Header x 7.07 sf x 2 = 5,449.9 cf Chamber Storage

14,080.0 cf Field - 5,449.9 cf Chambers = 8,630.1 cf Stone x 40.0% Voids = 3,452.0 cf Stone Storage


Chamber Storage + Stone Storage = 8,901.9 cf = 0.204 af Overall Storage Efficiency = 63.2% Overall System Size = 128.00' x 27.50' x 4.00'

36 Chambers 521.5 cy Field 319.6 cy Stone

2725-01 - Proposed HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC

The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 25-Year Rainfall=6.17" Printed 7/16/2021 s LLC Page 164

00000

Prepare	1 - Propose ed by Allen & D® 10.00-26 s.	Major Associ		The Sanctuary, Manchester-by-the-Sea, MA <i>Type III 24-hr 25-Year Rainfall=6.17"</i> Printed 7/16/2021 Page 165	2725-0 Prepare HydroCA
		Summary	for Pond UIS-1: UIS-1 - Fire Acce	ess Road/Lawn (96" CMP)	
Inflow A Inflow Outflow Primary	= 9.1 = 0.0	5 cfs @ 12.0 10 cfs @ 0.0	35% Impervious, Inflow Depth = 5.55" 19 hrs, Volume= 32,441 cf 10 hrs, Volume= 0 cf, Atte 10 hrs, Volume= 0 cf	for 25-Year event en= 100%, Lag= 0.0 min	Chambo Effective Overall
Peak Ele	ev= 107.21' @	24.40 hrs S	pan= 0.00-30.00 hrs, dt= 0.05 hrs µf.Area= 7,020 sf Storage= 32,442 cf 20 sf Storage= 42,647 cf		96.0" W 6 Cham 5 Rows
			lated: initial storage exceeds outflow) lated: no outflow)		6.0" Bas
Volume	Invert	Avail Stora	ge Storage Description		30 Char
#1A	101.00'		cf 54.00'W x 130.00'L x 9.00'H Field		63,180.0
#2A	101.50'	32,773	63,180 cf Overall - 32,773 cf Embe cf CMP Round 96 x 30 Inside #1 Effective Size= 96.0"W x 96.0"H => Overall Size= 96.0"W x 96.0"H x 20 30 Chambers in 5 Rows	> 50.27 sf x 20.00'L = 1,005.3 cf	Chambe Overall Overall
			52.00' Header x 50.27 sf x 1 = 2,6"	13.8 cf Inside	30 Char
Stora	age Group A cr		cf Total Available Storage amber Wizard		2,340.0 1,126.2
Device	Routing	Invert (Dutlet Devices		
#1	Primary Device 1	103.00' 1 I r 109.25' 4	2.0" Round Culvert L= 100.0' CPP, nlet / Outlet Invert= 103.00' / 102.00' S I= 0.013 Corrugated PE, smooth interior 0.0' long x 0.5' breadth Broad-Crested lead (feet) 0.20 0.40 0.60 0.80 1.00	= 0.0100 ^{-//} Cc= 0.900 r, Flow Area= 0.79 sf	
1=Cu	ulvert (Contro	x=0.00 cfs @ ols 0.00 cfs)	Coef. (English) 2.80 2.92 3.08 3.30 3. 0.00 hrs HW=101.00' (Free Discharge rr Weir (Controls 0.00 cfs)		

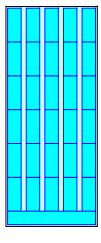
The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 25-Year Rainfall=6.17" -01 - Proposed HydroCAD ared by Allen & Major Associates, Inc. CAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC

Pond UIS-1: UIS-1 - Fire Access Road/Lawn (96" CMP) - Chamber Wizard Field A

Printed 7/16/2021 Page 166

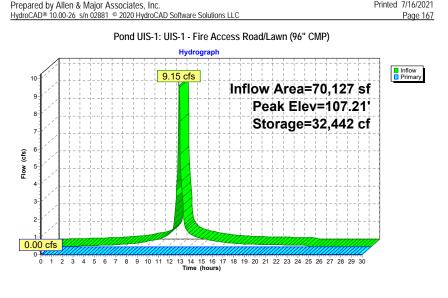
ber Model = CMP Round 96 (Round Corrugated Metal Pipe) ive Size= 96.0"W x 96.0"H => 50.27 sf x 20.00'L = 1.005.3 cf all Size= 96.0"W x 96.0"H x 20.00'L

Wide + 36.0" Spacing = 132.0" C-C Row Spacing


mbers/Row x 20.00' Long +8.00' Header x 1 = 128.00' Row Length +12.0" End Stone x 2 = 130.00' Base Length vs x 96.0" Wide + 36.0" Spacing x 4 + 12.0" Side Stone x 2 = 54.00' Base Width Base + 96.0" Chamber Height + 6.0" Cover = 9.00' Field Height

ambers x 1,005.3 cf + 52.00' Header x 50.27 sf = 32,773.1 cf Chamber Storage

0.0 cf Field - 32,773.1 cf Chambers = 30,406.9 cf Stone x 40.0% Voids = 12,162.8 cf Stone Storage


ber Storage + Stone Storage = 44,935.9 cf = 1.032 af all Storage Efficiency = 71.1% all System Size = 130.00' x 54.00' x 9.00'

ambers .0 cy Field .2 cy Stone

The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 25-Year Rainfall=6.17" Printed 7/16/2021

	The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Proposed HydroCAD	Type III 24-hr 25-Year Rainfall=6.17
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 168

Summary for Pond UIS-2: UIS-2 - Main Building Entrance (36" CMP)

Inflow Area =	44,954 sf, 90.58% Impervious,	Inflow Depth = 5.75" for 25-Year event
Inflow =	6.03 cfs @ 12.09 hrs, Volume=	21,533 cf
Outflow =	0.11 cfs @ 17.99 hrs, Volume=	9,138 cf, Atten= 98%, Lag= 354.3 min
Discarded =	0.11 cfs @ 17.99 hrs, Volume=	9,138 cf
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 120.44' @ 17.99 hrs Surf.Area= 6,624 sf Storage= 15,193 cf

Plug-Flow detention time= 441.0 min calculated for 9,122 cf (42% of inflow) Center-of-Mass det. time= 297.2 min (1,050.6 - 753.4)

Volume	Invert	Avail.Storage	Storage Description
#1A	117.00'	6,521 cf	23.00'W x 288.00'L x 4.00'H Field A
			26,496 cf Overall - 10,193 cf Embedded = 16,303 cf x 40.0% Voids
#2A	117.50'	10,193 cf	CMP Round 36 x 70 Inside #1
			Effective Size= 36.0"W x 36.0"H => 7.07 sf x 20.00'L = 141.4 cf
			Overall Size= 36.0"W x 36.0"H x 20.00'L
			70 Chambers in 5 Rows
			21.00' Header x 7.07 sf x 2 = 296.9 cf Inside
		16,714 cf	Total Available Storage
	#1A	#1A 117.00'	#1A 117.00' 6,521 cf #2A 117.50' 10,193 cf

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	117.00'	15.0" Round Culvert L= 100.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 117.00' / 116.00' S= 0.0100 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 1.23 sf
#2 #3	Discarded Device 1		0.520 in/hr Exfiltration over Wetted area 4.0' long x 0.5' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 Coef. (English) 2.80 2.92 3.08 3.30 3.32

Discarded OutFlow Max=0.11 cfs @ 17.99 hrs HW=120.44' (Free Discharge) —2=Exfiltration (Exfiltration Controls 0.11 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=117.00' (Free Discharge) -1=Culvert (Controls 0.00 cfs)
-3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 25-Year Rainfall=6.17" Printed 7/16/2021 Page 169

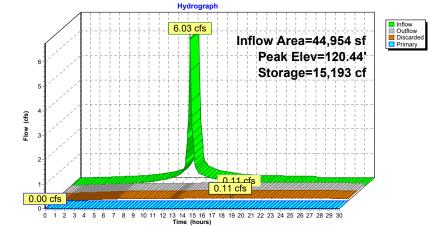
Pond UIS-2: UIS-2 - Main Building Entrance (36" CMP) - Chamber Wizard Field A

Chamber Model = CMP Round 36 (Round Corrugated Metal Pipe) Effective Size= 36.0"W x 36.0"H => 7.07 sf x 20.00'L = 141.4 cf Overall Size= 36.0"W x 36.0"H x 20.00'L

36.0" Wide + 18.0" Spacing = 54.0" C-C Row Spacing

14 Chambers/Row x 20.00' Long +3.00' Header x 2 = 286.00' Row Length +12.0" End Stone x 2 = 288.00' Base Length 5 Rows x 36.0" Wide + 18.0" Spacing x 4 + 12.0" Side Stone x 2 = 23.00' Base Width 6.0" Base + 36.0" Chamber Height + 6.0" Cover = 4.00' Field Height

70 Chambers x 141.4 cf + 21.00' Header x 7.07 sf x 2 = 10,192.9 cf Chamber Storage


26,496.0 cf Field - 10,192.9 cf Chambers = 16,303.1 cf Stone x 40.0% Voids = 6,521.2 cf Stone Storage

Chamber Storage + Stone Storage = 16,714.1 cf = 0.384 af Overall Storage Efficiency = 63.1% Overall System Size = 288.00' x 23.00' x 4.00'

70 Chambers 981.3 cy Field 603.8 cy Stone 2725-01 - Proposed HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC

The Sanctuary, Manchester-by-the-Sea, MA *Type III 24-hr 25-Year Rainfall=6.17"* Printed 7/16/2021 Page 170

The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 25-Year Rainfall=6.17" Printed 7/16/2021 Page 171

Summary for Pond UIS-3: UIS-3 - Cul-de-Sac (36" CMP)

Inflow Area =	37,779 sf, 57.72% Impervious,	Inflow Depth = 5.03" for 25-Year event
Inflow =	4.73 cfs @ 12.09 hrs, Volume=	15,849 cf
Outflow =	0.47 cfs @ 12.89 hrs, Volume=	15,089 cf, Atten= 90%, Lag= 48.1 min
Discarded =	0.13 cfs @ 12.89 hrs, Volume=	10,221 cf
Primary =	0.34 cfs @ 12.89 hrs, Volume=	4,869 cf

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 109.32' @ 12.89 hrs Surf.Area= 4,930 sf Storage= 7,555 cf Flood Elev= 108.50' Surf.Area= 4,930 sf Storage= 4,321 cf

Plug-Flow detention time= 281.2 min calculated for 15,089 cf (95% of inflow) Center-of-Mass det. time= 253.9 min (1,035.1 - 781.2) Invert Avail Storage Storage Description

volume	Invert	Avail.Storage	Storage Description
#1A	107.00'	4,775 cf	72.50'W x 68.00'L x 4.00'H Field A
			19,720 cf Overall - 7,783 cf Embedded = 11,937 cf x 40.0% Voids
#2A	107.50'	7,783 cf	CMP Round 36 x 48 Inside #1
			Effective Size= 36.0"W x 36.0"H => 7.07 sf x 20.00'L = 141.4 cf
			Overall Size= 36.0"W x 36.0"H x 20.00'L
			48 Chambers in 16 Rows
			70.50' Header x 7.07 sf x 2 = 996.7 cf Inside
		12,558 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Volumo

Device	Routing	Invert	Outlet Devices
#1	Primary	107.00'	12.0" Round Culvert L= 100.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 107.00' / 102.00' S= 0.0500 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	108.50'	4.0" Vert. Orifice/Grate C= 0.600
#3	Discarded	107.00'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.13 cfs @ 12.89 hrs HW=109.32' (Free Discharge) 3=Exfiltration (Exfiltration Controls 0.13 cfs)

Primary OutFlow Max=0.34 cfs @ 12.89 hrs HW=109.32' (Free Discharge) ¹=Culvert (Passes 0.34 cfs of 4.03 cfs potential flow)

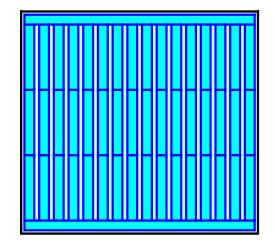
←2=Orifice/Grate (Orifice Controls 0.34 cfs @ 3.90 fps)

2725-01 - Proposed HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 25-Year Rainfall=6.17" Printed 7/16/2021 Page 172

Pond UIS-3: UIS-3 - Cul-de-Sac (36" CMP) - Chamber Wizard Field A

Chamber Model = CMP Round 36 (Round Corrugated Metal Pipe) Effective Size= 36.0"W x 36.0"H => 7.07 sf x 20.00'L = 141.4 cf Overall Size= 36.0"W x 36.0"H x 20.00'L

36.0" Wide + 18.0" Spacing = 54.0" C-C Row Spacing

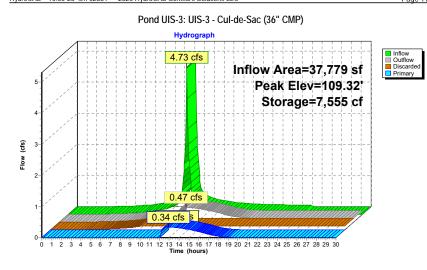

3 Chambers/Row x 20.00' Long +3.00' Header x 2 = 66.00' Row Length +12.0" End Stone x 2 = 68.00' Base Length 16 Rows x 36.0" Wide + 18.0" Spacing x 15 + 12.0" Side Stone x 2 = 72.50' Base Width 6.0" Base + 36.0" Chamber Height + 6.0" Cover = 4.00' Field Height

48 Chambers x 141.4 cf + 70.50' Header x 7.07 sf x 2 = 7,782.5 cf Chamber Storage

19,720.0 cf Field - 7,782.5 cf Chambers = 11,937.5 cf Stone x 40.0% Voids = 4,775.0 cf Stone Storage

Chamber Storage + Stone Storage = 12,557.5 cf = 0.288 af Overall Storage Efficiency = 63.7% Overall System Size = 68.00' x 72.50' x 4.00'

48 Chambers 730.4 cv Field 442.1 cy Stone

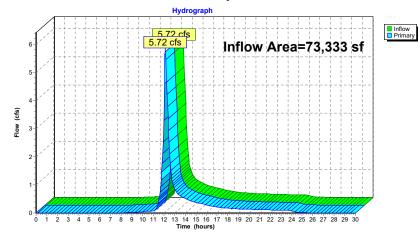


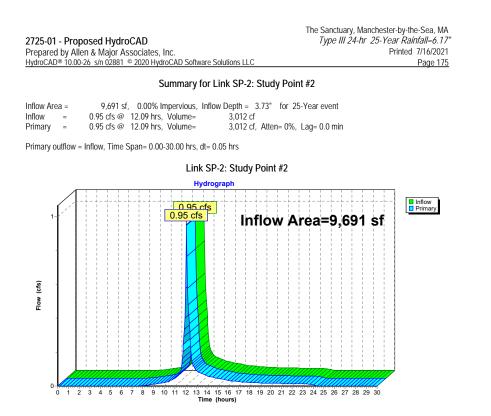
0101010101010101010101010101010

 2725-01 - Proposed HydroCAD
 Type

 Prepared by Allen & Major Associates, Inc.
 HydroCAD® 10.00-26 sh 02881 © 2020 HydroCAD Software Solutions LLC

The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 25-Year Rainfall=6.17" Printed 7/16/2021 Page 173

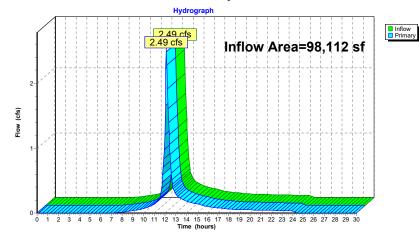

	The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Proposed HydroCAD	Type III 24-hr 25-Year Rainfall=6.17"
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 174


Summary for Link SP-1: Study Point #1

Inflow Area	=	73,333 sf	19.56% lr	npervious,	Inflow Depth >	3.73"	for 25-Year event
Inflow :	=	5.72 cfs @	12.13 hrs,	Volume=	22,769 c	f	
Primary :	-	5.72 cfs @	12.13 hrs,	Volume=	22,769 c	f, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Link SP-1: Study Point #1


	The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Proposed HydroCAD	Type III 24-hr 25-Year Rainfall=6.17"
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 176

Summary for Link SP-3: Study Point #3

Inflow Area =	98,112 sf, 58.66% Imperv	vious, Inflow Depth = 1.12" for 25-Year ev	vent
Inflow =	2.49 cfs @ 12.15 hrs, Volu	ime= 9,177 cf	
Primary =	2.49 cfs @ 12.15 hrs, Volu	ime= 9,177 cf, Atten= 0%, Lag= 0.1	0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

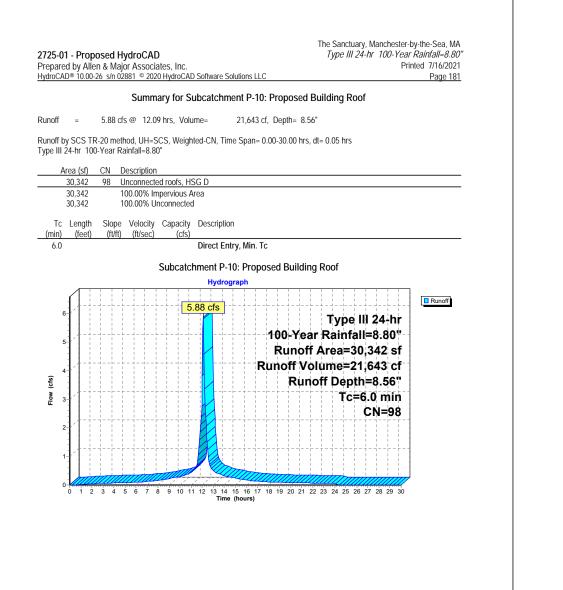
Link SP-3: Study Point #3

'25-01 - Proposed HydroCAD epared by Allen & Major Associates, Inc. droCAD [®] 10.00-26 s/n 02881 [®] 2020 HydroCAD Software Solution:	Printed 7/16/2021 ns LLC Page 177
Summary for Link S	SP-4: Study Point #4
	oth > 2.88" for 25-Year event 047 cf 047 cf, Atten= 0%, Lag= 0.0 min
imary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs	S
Link SP-4: St	tudy Point #4
Hydrograph	
(9) 8) 8) 8) 8) 8) 8) 7) 6) 5) 4) 4) 4) 4) 4) 4) 4) 4) 4) 4	Inflow Area=258,732 sf
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 Time (hours)	17 18 19 20 21 22 23 24 25 26 27 28 29 30)

2725-01 - Proposed HydroCAD	Type III 24-
Prepared by Allen & Major Associates, Inc.	
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	

The Sanctuary, Manchester-by-Ihe-Sea, MA *Type III 24-hr 100-Year Rainfall=8.80*" Printed 7/16/2021 Page 178

Time span=0.00-30.00 hrs, dt=0.05 hrs, 601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind method - Pond routing by Stor-Ind method


Subcatchment P-1: Flow to Wetlands - North	Runoff Area=17,171 sf 0.00% Impervious Runoff Depth=6.26" Tc=6.0 min CN=79 Runoff=2.78 cfs 8,953 cf
Subcatchment P-10: Proposed Building Roof	Runoff Area=30,342 sf 100.00% Impervious Runoff Depth=8.56" Tc=6.0 min CN=98 Runoff=5.88 cfs 21,643 cf
Subcatchment P-11: South Courtyard	Runoff Area=20,180 sf 100.00% Impervious Runoff Depth=8.56* Tc=6.0 min CN=98 Runoff=3.91 cfs 14,395 cf
Subcatchment P-12: Southeast Roof Area	Runoff Area=27,254 sf 100.00% Impervious Runoff Depth=8.56* Tc=6.0 min CN=98 Runoff=5.28 cfs 19,441 cf
Subcatchment P-13: Main Parking Area	Runoff Area=17,700 sf 76.07% Impervious Runoff Depth=8.08" Tc=6.0 min CN=94 Runoff=3.38 cfs 11,915 cf
Subcatchment P-14: WWTF/Driveway	Runoff Area=19,605 sf 33.29% Impervious Runoff Depth=7.11" Tc=6.0 min CN=86 Runoff=3.49 cfs 11,614 cf
Subcatchment P-15: South Lawn/Fire Access Road	Runoff Area=18,445 sf 0.00% Impervious Runoff Depth=6.38" Tc=6.0 min CN=80 Runoff=3.03 cfs 9,805 cf
Subcatchment P-16: Entrance Drive	Runoff Area=20,820 sf 44.13% Impervious Runoff Depth=7.35" Tc=6.0 min CN=88 Runoff=3.79 cfs 12,755 cf
Subcatchment P-17: Detention Pond-1	Runoff Area=11,737 sf 0.00% Impervious Runoff Depth=6.38" Tc=6.0 min CN=80 Runoff=1.93 cfs 6,239 cf
Subcatchment P-18: Entry Driveway	Runoff Area=5,160 sf 100.00% Impervious Runoff Depth=8.56" Tc=6.0 min CN=98 Runoff=1.00 cfs 3,681 cf
Subcatchment P-2: Direct Flow to Wetlands "F"	Runoff Area=9,691 sf 0.00% Impervious Runoff Depth=6.13" Tc=6.0 min CN=78 Runoff=1.54 cfs 4,954 cf
Subcatchment P-3: Flow Southwest Off-Site Flow Length	Runoff Area=27,985 sf 1.79% Impervious Runoff Depth=6.38" =194' Slope=0.0100 '/ Tc=10.9 min CN=80 Runoff=3.97 cfs 14,876 cf
Subcatchment P-4: Flow Southeast to Wetlands "A"	Runoff Area=117,759 sf 0.54% Impervious Runoff Depth=6.13" Flow Length=186' Tc=14.0 min CN=78 Runoff=14.83 cfs 60,203 cf
Subcatchment P-5: Entrance Drive	Runoff Area=14,879 sf 78.94% Impervious Runoff Depth=8.08* Tc=6.0 min CN=94 Runoff=2.84 cfs 10,016 cf
Subcatchment P-6: Landcaped Slope/Walls	Runoff Area=18,477 sf 5.22% Impervious Runoff Depth=6.38* Tc=6.0 min UI Adjusted CN=80 Runoff=3.04 cfs 9,822 cf
Subcatchment P-7: Landscaped Slope	Runoff Area=24,884 sf 3.17% Impervious Runoff Depth=6.50" Tc=6.0 min CN=81 Runoff=4.15 cfs 13,480 cf

2725-01 - Proposed HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Softw	The Sanctuary, Manchester-by-the-Sea, MA <i>Type III 24-hr 100-Year Rainfall=8.80</i> " Printed 7/16/2021 vare Solutions LLC Page 179
Subcatchment P-8: Cul-de-Sac/Garage Turn Aroun	nd Runoff Area=22,451 sf 74.60% Impervious Runoff Depth=7.96* Tc=6.0 min CN=93 Runoff=4.26 cfs 14,887 cf
Subcatchment P-9: North Courtyard/Green Roof	Runoff Area=15,328 sf 33.00% Impervious Runoff Depth=7.11" Tc=6.0 min CN=86 Runoff=2.73 cfs 9,080 cf
Reach SWALE: Swale Abutting Entry Driveway	Avg. Flow Depth=0.35' Max Vel=4.22 fps Inflow=4.15 cfs 13,480 cf n=0.040 L=427.0' S=0.0749 '/' Capacity=16.60 cfs Outflow=4.05 cfs 13,480 cf
Pond RG-1: Rain Garden-1 - Entrance	$\label{eq:peak-Elev=51.87'} \begin{array}{l} \mbox{Storage=2,031 cf} & \mbox{Inflow=3.10 cfs} & \mbox{33,304 cf} \\ \mbox{24.0''} & \mbox{Round Culvert} & \mbox{n=0.013 L=100.0'} & \mbox{S=0.0050 '} & \mbox{Outflow=3.10 cfs} & \mbox{31,814 cf} \\ \end{array}$
Pond RG-2: Rain Garden #2 - Driveway	Peak Elev=163.61' Storage=1,691 cf Inflow=1.00 cfs 3,681 cf Outflow=0.87 cfs 2,166 cf
Pond SDP-1: Surface Detention Pond-1	Peak Elev=79.62' Storage=5,115 cf Inflow=8.75 cfs 28,799 cf Primary=5.89 cfs 26,581 cf Secondary=0.96 cfs 261 cf Outflow=6.84 cfs 26,841 cf
Pond UDS-1: UDS-1 - Driveway Entrance (36" CMP	Peak Elev=50.74' Storage=8,540 cf Inflow=9.87 cfs 33,317 cf Outflow=3.10 cfs 33,304 cf
Pond UIS-1: UIS-1 - Fire Access Road/Lawn (96" C	MP) Peak Elev=109.33' Storage=42,955 cf Inflow=13.28 cfs 47,652 cf Outflow=0.27 cfs 5,005 cf
Pond UIS-2: UIS-2 - Main Building Entrance (36" Cl	MP) Peak Elev=120.82' Storage=16,227 cf Inflow=8.66 cfs 31,355 cf olscarded=0.11 cfs 9,672 cf Primary=2.58 cfs 8,783 cf Outflow=2.68 cfs 18,455 cf
Pond UIS-3: UIS-3 - Cul-de-Sac (36" CMP) Disc	Peak Elev=110.67' Storage=11,900 cf Inflow=6.99 cfs 23,967 cf carded=0.14 cfs 11,061 cf Primary=0.59 cfs 11,393 cf Outflow=0.73 cfs 22,454 cf
Link SP-1: Study Point #1	Inflow=9.21 cfs 37,699 cf Primary=9.21 cfs 37,699 cf
Link SP-2: Study Point #2	Inflow=2.16 cfs 5,215 cf Primary=2.16 cfs 5,215 cf
Link SP-3: Study Point #3	Inflow=3.97 cfs 19,880 cf Primary=3.97 cfs 19,880 cf
Link SP-4: Study Point #4	Inflow=18.08 cfs 112,194 cf Primary=18.08 cfs 112,194 cf

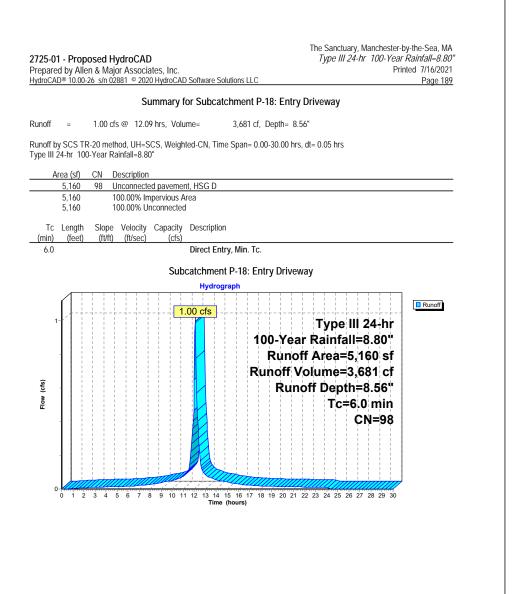
 Total Runoff Area = 439,868 sf
 Runoff Volume = 257,758 cf
 Average Runoff Depth = 7.03"

 66.23%
 Pervious = 291,317 sf
 33.77%
 Impervious = 148,551 sf

Prepared by All	oosed HydroCAD en & Major Associates, Inc. -26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 100-Year Rainfall=8.80 Printed 7/16/2021 Page 180
	Summary for Subcatchment P-1: Flow to W	/etlands - North
Runoff =	2.78 cfs @ 12.09 hrs, Volume= 8,953 cf, Depth= 6	5.26"
	R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 h 0-Year Rainfall=8.80"	rs, dt= 0.05 hrs
Area (sf)	CN Description	
12,252 4,919	80 >75% Grass cover, Good, HSG D 77 Woods, Good, HSG D	
17,171 17,171	79 Weighted Average 100.00% Pervious Area	
Tc Length (min) (feet)	(ft/ft) (ft/sec) (cfs)	
6.0	Direct Entry, Min. Tc.	
	Subcatchment P-1: Flow to Wetland	s - North
	Hydrograph	
3-7-1		Type III 24-hr ar Rainfall=8.80" ff Area=17,171 sf
2-*^	· · · · · · · · · · · · · · · · · · ·	Volume=8,953 cf noff Depth=6.26" Tc=6.0 min
1		CN=79

Summary for Subcatchment P-11: South Courtyard Runoff = 3.91 cfs @ 12.09 hrs, Volume= 14,395 cf, Depth= 8.56° Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.80° Area (sf) CN Description 20,180 100.00% Impervious Area 20,180 100.00% Impervious Area 20,180 100.00% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Min. Tc. Subcatchment P-11: South Courtyard Hydrograph 100-Year Rainfall=8.80° Runoff Area=20,180 sf
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.80" Area (sf) CN Description 20,180 100.00% Impervious Area 20,180 100.00% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Min. Tc. Subcatchment P-11: South Courtyard Hydrograph 4 4 4 4 4 4 4 4 4 4 4 4 4
Type III 24-hr 100-Year Rainfall=8.80" Area (sf) CN Description 20,180 98 Unconnected pavement, HSG D 20,180 100.00% Impervious Area 20,180 100.00% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Min. Tc. Subcatchment P-11: South Courtyard Hydrograph 4 4 4 4 4 4 4 4 4 4 4 4 4
20,180 98 Unconnected pavement, HSG D 20,180 100.00% Impervious Area 20,180 100.00% Unconnected Tc Length Slope (fiet) (ft/ft) (ft/sec) 6.0 Direct Entry, Min. Tc. Subcatchment P-11: South Courtyard Hydrograph Type III 24-hr 100-Year Rainfall=8.80" Runoff Area=20,180 sf
20,180 100.00% Impervious Area 20,180 100.00% Unconnected Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Min. Tc. Subcatchment P-11: South Courtyard Hydrograph 3.91 cfs Type III 24-hr 100-Year Rainfall=8.80" Runoff Area=20,180 sf
20,180 100.00% Unconnected Tc Length Slope Velocity Capacity Description (freet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Min. Tc. Subcatchment P-11: South Courtyard Hydrograph 3.91 cfs Type III 24-hr 100-Year Rainfall=8.80" Runoff Area=20,180 sf
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Min. Tc. Subcatchment P-11: South Courtyard Hydrograph 3.91 cfs Type III 24-hr 100-Year Rainfall=8.80" Runoff Area=20,180 sf
Subcatchment P-11: South Courtyard Hydrograph Jong Type III 24-hr 100-Year Rainfall=8.80" Runoff Area=20;180 sf
Hydrograph 3.91 cfs Type III 24-hr 100-Year Rainfall=8.80" Runoff Area=20,180 sf
Image: Section of the section of th

	10-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC Page 183 Summary for Subcatchment P-12: Southeast Roof Area
of 4.6 round	s to minimum of 5.0. Use Tc = 5.0 mimutes for E-2.
noff =	5.28 cfs @ 12.09 hrs, Volume= 19,441 cf, Depth= 8.56"
	TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs 00-Year Rainfall=8.80"
Area (sf) 27,254	
27,254	100.00% Impervious Area
27,254	
Tc Lengt (min) (fee	
6.0	Direct Entry, Min. Tc
	Subcatchment P-12: Southeast Roof Area
	Hydrograph
	5.28 cfs
5	100-Year Rainfall=8.80"
4-	Runoff Volume=19,441 cf
- cts	Runoff Depth=8.56"
=low (cfs)	Tc=6.0 min
-	CN=98
2	
	*
1-1-1-1	
2	UN=98

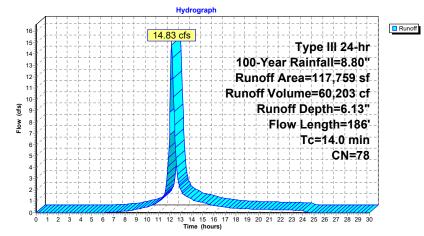

2725-01 - Proposed HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC									The Sanctuary, Manchester-by-the-Sea, MA <i>Type III 24-hr 100-Year Rainfall=8.80</i> Printed 7/16/202 Page 18:							
				Sumn	nary fo	r Subca	Itchm	ient P-	13: Mai	n Par	king <i>i</i>	Area				
Runoff	=	3.38	cfs @	12.09 h	ırs, Volu	ume=	11	1,915 cf	, Depth=	8.08	ı.					
Runoff b Type III					S, Weigh	nted-CN,	Time S	Span= 0	00-30.00) hrs, d	t= 0.05	5 hrs				
51	rea (sf)	CN	Descrip													
	13,464	98			paveme	nt, HSG [)									
	4,236	80				ood, HSG	i D									
	17,700 4,236	94	Weight		rage ous Area											
	4,230				vious Area											
	13,464				onnected											
Tc (min)	Length (feet)			ocity C sec)	Capacity (cfs)	Descrip	otion									
6.0						Direct I	Entry, I	Min. 6.)							
						atchmei Hyd .38 cfs	rograp				Т			24-1		Runoff
3	3							R	100-) Run unoff	off Vo	Are um	a=1 e=1	7,7 1,9	00 15	sf cf	
(cfs)	111	- 	-+-+	-l	+ -			+	R	unc	off D	ep	th⊨	8.08	3"	
Flow (cfs)	-											Tc) mi N=9	- 1 - 1	
1																
C		3 4	5 6	7 8	9 10 1	1 12 13	14 15	16 17		21 22		25	26 27	28 20	30	

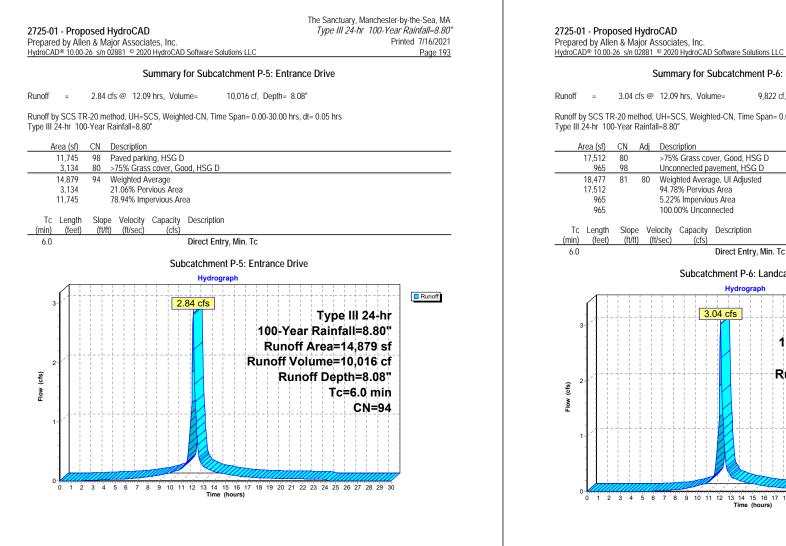
		2-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC Page Summary for Subcatchment P-14: WWTF/Driveway
Runoff	_	
		3.49 cfs @ 12.09 hrs, Volume= 11,614 cf, Depth= 7.11"
		'R-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs)0-Year Rainfall=8.80"
51	Area (sf)	CN Description
r	6,526	98 Paved parking, HSG D
	9,225 3,854	80 >75% Grass cover, Good, HSG D 80 GrassPave-2
	19,605	86 Weighted Average
	13,079	66.71% Pervious Area
	6,526	33.29% Impervious Area
Tc (min)	Length (feet)	
6.0	(leel)	Direct Entry, Min. 6.0
		Subcatchment P-14: WWTF/Driveway
		Hydrograph
		3.49 cfs
		Type III 24-hr
3	3-4-1-	100-Year Rainfall=8.80"
		Runoff Area=19,605 sf
	•	Runoff Volume=11,614 cf
Flow (cfs)	2-1/1-+-	Runoff Depth=7.11"-
Flow		Tc=6.0 min
		CN=86
	· / /	
	1	

Summary for Subcatchment P-15: South Lawn/Fire Runoff = 3.03 cfs @ 12.09 hrs, Volume= 9.805 cf, Depth= 6.38*	
Runoff - 3.03 cfs @ 12.09 hrs Volume- 9.805 cf Donth- 6.38"	e Access Road
runon – 5.05 CIS @ 12.07 IIIS, VOIUIIC– 7,005 CI, Deptil= 0.50	
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt Type III 24-hr 100-Year Rainfall=8.80"	= 0.05 hrs
Area (sf) CN Description	
14,591 80 >75% Grass cover, Good, HSG D * 3.854 80 GrassPave-2	
18,445 80 Weighted Average 18,445 100.00% Pervious Area	
Tc Length Slope Velocity Capacity Description	
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Min. 6.0	
Runoff A Runoff Vo	Type III 24-hr Rainfall=8.80" rea=18,445 sf lume=9,805 cf f Depth=6.38" Tc=6.0 min CN=80

-	catchment P-16: Entrance Drive
f = 3.79 cfs @ 12.09 hrs, Volume=	12,755 cf, Depth= 7.35"
f by SCS TR-20 method, UH=SCS, Weighted-CN, 1	
II 24-hr 100-Year Rainfall=8.80"	nine Span= 0.00-50.00 nils, di= 0.05 nils
Area (sf) CN Description	
9,187 98 Unconnected pavement, HSG D	
11,633 80 >75% Grass cover, Good, HSG 20,820 88 Weighted Average	U
11,633 55.87% Pervious Area	
9,187 44.13% Impervious Area 9,187 100.00% Unconnected	
	Hon.
c Length Slope Velocity Capacity Descrip n) (feet) (ft/ft) (ft/sec) (cfs)	lion
0 Direct E	Entry, Min. Tc.
Subcatchm	ent P-16: Entrance Drive
Hydr	rograph
4-2	Type III 24-hr
	100-Year Rainfall=8.80"
	Runoff Area=20,820 sf
3-	
3	Runoff Volume=12,755 cf Runoff Depth=7,35"
2-	Runoff Volume=12,755 cf
2	Runoff Volume=12,755 cf Runoff Depth=7.35" Tc=6.0 min
	Runoff Volume=12,755 cf Runoff Depth=7.35" Tc=6.0 min

2725-01 - Proposed HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 100-Year Rainfall=8.80" Printed 7/16/2021 Page 188
Summary for Subcatchment P-17: Detenti	on Pond-1
Runoff = 1.93 cfs @ 12.09 hrs, Volume= 6,239 cf, Depth= 6.3	8"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, Type III 24-hr 100-Year Rainfall=8.80"	dt= 0.05 hrs
Area (sf) CN Description 4,872 91 Gravel roads, HSG D 6,865 73 Brush, Good, HSG D 11,737 80 Weighted Average	
11,737 100.00% Pervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Min. Tc	
(g) mp 1 0	d-1 Type III 24-hr Rainfall=8.80" Area=11,737 sf olume=6,239 cf off Depth=6.38" Tc=6.0 min CN=80

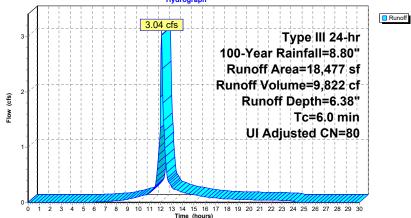

	The Sanctuary, Manchester-by-the-Sea, M <i>Type III 24-hr 100-Year Rainfall=8.8</i> Printed 7/16/202 utions LLC Page 19			
Summary for Subcatchment P-2: Direct Flow to W	etlands "F"			
Runoff = 1.54 cfs @ 12.09 hrs, Volume= 4,954 cf, Depth= 6.13"				
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= Type III 24-hr 100-Year Rainfall=8.80"	0.05 hrs			
Area (sf) CN Description 1,678 80 >75% Grass cover, Good, HSG D 8,013 77 Woods, Good, HSG D 9,691 78 Weighted Average				
9,691 100,00% Pervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry,				
100-Year R Runoff A Runoff Volu	Type III 24-hr ainfall=8.80" area=9,691 sf ume=4,954 cf Depth=6.13" Tc=6.0 min CN=78			

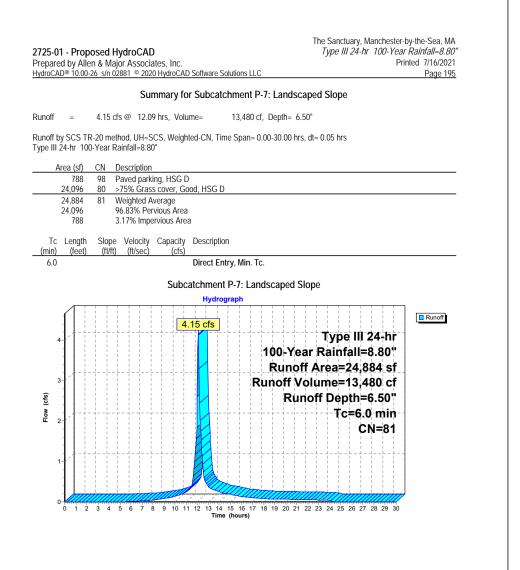

AJOUR			or Associa 1881 © 202		Software Solut	ons LLC		Printec	1 7/16/2021 Page 191
			Summ	ary for S	ubcatchmer	t P-3: Flow Southw	est Off-Site		
noff	=	3.97 cf	s@ 12.1	5 hrs, Volu	me= 1	1,876 cf, Depth= 6.38"			
			nod, UH=S ainfall=8.80		ted-CN, Time S	pan= 0.00-30.00 hrs, dt	= 0.05 hrs		
A	rea (sf)		Description						
	24,995 2,490			s cover, Go od. HSG D	od, HSG D				
	500	98 l	Inconnecte	ed pavemer	nt, HSG D				
	27,985 27,485		Veighted A	verage vious Area					
	500	1	.79% Impe	ervious Area	а				
	500	1	00.00% Ui	nconnected					
	Length			Capacity	Description				
min) 7.5	(feet) 50	(ft/ft) 0.0100	(ft/sec) 0.11	(cfs)	Sheet Flow,				
3.4	144	0.0100	0.70			n= 0.150 P2= 3.16" centrated Flow.			
3.4	144	0.0100	0.70			asture Kv= 7.0 fps			
10.9	194	Total							
				Subcatc	hment P-3:	low Southwest Off	-Site		
				Subcatc	hment P-3: Hydrogra		-Site		
					Hydrogra		-Site		Runoff
4									Runoff
4					Hydrogra	h	Type III 2	4-hr	Runoff
4					Hydrogra	h 100-Year	Type III 2 Rainfall=8	4-hr 8.80"	Runoff
4					Hydrogra	h 100-Year Runoff /	Type III 2 Rainfall=8 Area=27,98	24-hr 3.80" 35 sf	Runoff
_					Hydrogra	h 100-Year Runoff / Runoff Vol	Type III 2 Rainfall=8 Area=27,98 ume=14,87	24-hr 3.80" 35-sf 76 cf	Runoff
_					Hydrogra	h 100-Year Runoff / Runoff Vol Runo	Type III 2 Rainfall=8 Area=27,98 ume=14,87 ff Depth=6	24-hr 8.80" 35 sf 76 cf 6.38"	Runoff
_					Hydrogra	h 100-Year Runoff / Runo Runo Flo	Type III 2 Rainfall=8 Area=27,98 ume=14,87 ff Depth=6 w Length=	24-hr 3.80" 35-sf 76 cf 5.38" 194'	Runoff
_					Hydrogra	h 100-Year Runoff / Runo Runo Flo	Type III 2 Rainfall=8 Area=27,98 ume=14,87 ff Depth=6	:4-hr 3.80" 35 sf 76 cf 3.38" 194' 00 '/	Runoff
_					Hydrogra	h 100-Year Runoff / Runo Runo Flo	Type III 2 Rainfall=8 Area=27,98 ume=14,87 ff Depth=6 w Length= lope=0.01 Tc=10.9	:4-hr 3.80" 35 sf 76 cf 3.38" 194' 00 '/	Runoff
_					Hydrogra	h 100-Year Runoff / Runo Runo Flo	Type III 2 Rainfall=8 Area=27,98 ume=14,87 ff Depth=6 w Length= lope=0.01 Tc=10.9	4-hr 3.80" 35 sf 76 cf 5.38" 194' 00 '/' min	Runof
w (cfs)					Hydrogra	h 100-Year Runoff / Runo Runo Flo	Type III 2 Rainfall=8 Area=27,98 ume=14,87 ff Depth=6 w Length= lope=0.01 Tc=10.9	4-hr 3.80" 35 sf 76 cf 5.38" 194' 00 '/' min	Runoff

			ydroCAE or Associa			Type III 24-hr 100-Year Rainfall=8.80 Printed 7/16/202
				D Software Solutions LLC	Page 19	
		Su	ummary	for Subca	atchment P-4: Flow Southeast t	o Wetlands "A"
Tc of 4.6	rounds t	o minimu	m of 5.0. L	Jse Tc = 5.0	0 mimutes for E-2.	
Runoff	=	14.83 cfs	s@ 12.1	9 hrs, Volu	ume= 60,203 cf, Depth= 6.13"	
Type III :	24-hr 100	0-Year Ra	iinfall=8.80)"	ated-CN, Time Span= 0.00-30.00 hrs, d	t= 0.05 hrs
		CN D	escription			
	rea (sf)					
	92,430	77 W		od, HSG D		
	92,430 24,696	77 W 80 >	75% Gras	s cover, Go	ood, HSG D	
	92,430 24,696 633	77 W 80 > 98 U	75% Gras	s cover, Go ed pavemer	ood, HSG D	
1	92,430 24,696 633 17,759	77 W 80 > 98 U 78 W	75% Grass nconnecte /eighted A	s cover, Go ed pavemer verage	ood, HSG D nt, HSG D	
1	92,430 24,696 633 17,759 17,126	77 W 80 > 98 U 78 W 99	75% Grass nconnecte /eighted A 9.46% Per	s cover, Go ed pavemer verage vious Area	ood, HSG D nt, HSG D	
1	92,430 24,696 633 17,759 17,126 633	77 W 80 > 98 U 78 W 99	75% Grass nconnecte /eighted A 9.46% Per .54% Impe	s cover, Go ed pavemer verage rvious Area ervious Area	ood, HSG D nt, HSG D a	
1	92,430 24,696 633 17,759 17,126	77 W 80 > 98 U 78 W 99	75% Grass nconnecte /eighted A 9.46% Per .54% Impe	s cover, Go ed pavemer verage vious Area	ood, HSG D nt, HSG D a	
1	92,430 24,696 633 17,759 17,126 633 633	77 W 80 > 98 U 78 W 9' 0. 10	75% Grass nconnected /eighted A 9.46% Per 54% Impe 00.00% U	s cover, Go ed pavemer verage rvious Area ervious Area nconnected	ood, HSG D nt, HSG D a j	
1 1 Tc	92,430 24,696 633 17,759 17,126 633 633 Length	77 W 80 > 98 U 78 W 99 0. 11 Slope	75% Grass nconnecte /eighted A 9.46% Per 54% Impe 00.00% Ur Velocity	s cover, Go ed pavemer verage vious Area ervious Area nconnected Capacity	ood, HSG D nt, HSG D a j	
1 1 Tc (min)	92,430 24,696 633 17,759 17,126 633 633 Length (feet)	77 W 80 > 98 U 78 W 99 0 11 Slope (ft/ft)	75% Grass nconnecte /eighted A 9.46% Per 54% Impe 00.00% Ur Velocity (ft/sec)	s cover, Go ed pavemer verage rvious Area ervious Area nconnected	ood, HSG D nt, HSG D a d Description	
1 1 Tc	92,430 24,696 633 17,759 17,126 633 633 Length	77 W 80 > 98 U 78 W 99 0. 11 Slope	75% Grass nconnecte /eighted A 9.46% Per 54% Impe 00.00% Ur Velocity	s cover, Go ed pavemer verage vious Area ervious Area nconnected Capacity	bod, HSG D nt, HSG D a d Description Sheet Flow,) P2= 3.16"
1 1 Tc (min)	92,430 24,696 633 17,759 17,126 633 633 Length (feet) 50	77 W 80 > 98 U 78 W 99 0 11 Slope (ft/ft)	75% Grass nconnecte /eighted A 9.46% Per 54% Impe 00.00% Ur Velocity (ft/sec)	s cover, Go ed pavemer verage vious Area ervious Area nconnected Capacity	ood, HSG D nt, HSG D a d Description) P2= 3.16"
1 1 	92,430 24,696 633 17,759 17,126 633 633 Length (feet) 50	77 W 80 > 98 U 78 W 99 0 11 Slope (ft/ft) 0.1000	75% Gras: nconnecte /eighted A 9.46% Per 54% Impe 00.00% Ur Velocity (ft/sec) 0.07	s cover, Go ed pavemer verage vious Area ervious Area nconnected Capacity	bod, HSG D nt, HSG D Description Sheet Flow, Woods: Dense underbrush n= 0.800) P2= 3.16"

The Sanctuary, Manchester-by-the-Sea, MA

Subcatchment P-4: Flow Southeast to Wetlands "A"

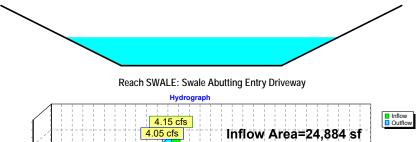

The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 100-Year Rainfall=8.80" Printed 7/16/2021 Page 194

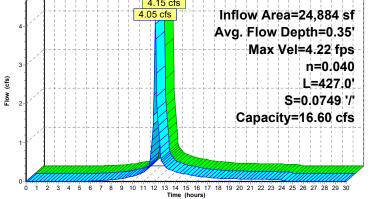

Summary for Subcatchment P-6: Landcaped Slope/Walls

9,822 cf, Depth= 6.38"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

A	rea (sf)	CN	Adj [Desc	ription						
	17,512	80	;	>75%	Grass co	ver, Good, HSG D					
	965	98	l	Unco	Jnconnected pavement, HSG D						
	18,477	81	80 \	Weig	hted Avera	ige, UI Adjusted					
	17,512		ç	94.78	8% Perviou	s Area					
	965		Ę	5.22%	6 Impervio	us Area					
	965			100.0	0% Uncon	inected					
Tc (min)	Length (feet)	Slope (ft/ft)			Capacity (cfs)	Description					
6.0						Direct Entry, Min. Tc					
	Subcatchment P-6: Landcaped Slope/Walls										


Prepar	ed by Alle	osed HydroC n & Major Ass _{26 s/n 02881} ©	ociates, Inc.	O Software Solution	ins LLC	The Sanctuary, Manchester <i>Type III 24-hr 100-Yea</i> Pr	
		Summa	ry for Subc	atchment P-8	: Cul-de-Sac/Gara	ge Turn Around	
Runoff	=	4.26 cfs @ 1	2.09 hrs, Volu	ume= 14	,887 cf, Depth= 7.96	н	
		R-20 method, Uł)-Year Rainfall=		ited-CN, Time S	pan= 0.00-30.00 hrs, d	lt= 0.05 hrs	
	Area (sf)	CN Descrip	ion				
	16,749 5,702		arking, HSG E rass cover, Go				
	22,451 5,702 16,749	93 Weighte 25.40%	d Average Pervious Area Impervious Ar	l			
(min)		Slope Veloo (ft/ft) (ft/se	ity Capacity ec) (cfs)				
6.0)			Direct Entry,	Min. Tc.		
		1	Subcatchme	ent P-8: Cul-c	e-Sac/Garage Turi	n Around	
				Hydrograp	h		_
	$\left[\right]$		4	.26 cfs		Type III 24-hr	Runoff
	4-1					Rainfall=8.80" Area=22,451 sf	
Flow (cfs)	3-1					lume=14,887 cf off Depth=7.96"	
Flow	2-1					Tc=6.0 min CN=93	
	0 1 2	3 4 5 6	7 8 9 10 1	1 12 13 14 15 Time (ho		23 24 25 26 27 28 29 30	


Summary for Reach SWALE: Swale A Inflow Area = 24,884 sf, 3.17% Impervious, Inflow Depth = 6.1 Inflow = 4.15 cfs @ 12.09 hrs, Volume= 13,480 cf Outflow = 4.05 cfs @ 12.11 hrs, Volume= 13,480 cf, A Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.22 [ps, Min. Travel Time= 1.7 min Avg. Velocity = 1.14 fps, Avg. Travel Time= 6.2 min Peak Storage= 410 cf @ 12.11 hrs Average Depth at Peak Storage= 0.35' Bank-Full Depth= 0.75' Flow Area= 2.6 sf, Capacity= 16.60 cfs 2.00' x 0.75' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 2.0 '/ Top Width= 5.00'
Inflow = 4.15 cfs @ 12.09 hrs, Volume= 13,480 cf Outflow = 4.05 cfs @ 12.11 hrs, Volume= 13,480 cf, J Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.22 fps, Min. Travel Time= 1.7 min Avg. Velocity = 1.14 fps, Avg. Travel Time= 6.2 min Peak Storage= 410 cf @ 12.11 hrs Average Depth at Peak Storage= 0.35' Bank-Full Depth= 0.75' Flow Area= 2.6 sf, Capacity= 16.60 cfs 2.00' x 0.75' deep channel, n= 0.040 Earth, cobble bottom, clean sides
Max. Velocity = 4.22 fps, Min. Travel Time= 1.7 min Avg. Velocity = 1.14 fps, Avg. Travel Time= 6.2 min Peak Storage= 410 cf @ 12.11 hrs Average Depth at Peak Storage= 0.35' Bank-Full Depth= 0.75' Flow Area= 2.6 sf, Capacity= 16.60 cfs 2.00' x 0.75' deep channel, n= 0.040 Earth, cobble bottom, clean sides
Length= 427.0' Slope= 0.0749 '/'
Reach SWALE: Swale Abuttin Hydrograph

The Sanctuary, Manchester-by-the-Sea, MA *Type III 24-hr 100-Year Rainfall=8.80"* Printed 7/16/2021 Page 198

SWALE: Swale Abutting Entry Driveway

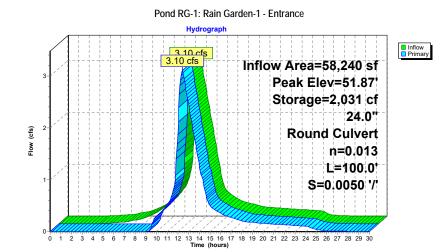
Inflow Area	a =	24,884 sf,	3.17% Impe	rvious, Ir	nflow Depth =	6.50"	for 100)-Year event
Inflow	=	4.15 cfs @ 1	2.09 hrs, Vo	lume=	13,480 cf			
Outflow	=	4.05 cfs @ 1	2.11 hrs, Vo	lume=	13,480 cf	, Atten	= 2%, l	_ag= 1.2 min

	The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Proposed HydroCAD	Type III 24-hr 100-Year Rainfall=8.80"
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 199

Summary for Pond RG-1: Rain Garden-1 - Entrance

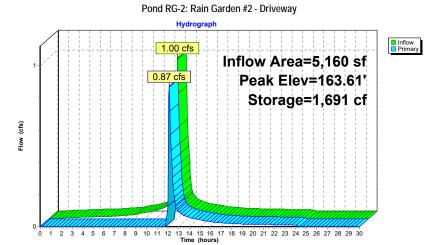
Inflow Area =	58,240 sf, 23.18% Impervious, Ir	nflow Depth > 6.86" for 100-Year event
Inflow =	3.10 cfs @ 12.42 hrs, Volume=	33,304 cf
Outflow =	3.10 cfs @ 12.42 hrs, Volume=	31,814 cf, Atten= 0%, Lag= 0.0 min
Primary =	3.10 cfs @ 12.42 hrs, Volume=	31,814 cf

Routing by Stor-Ind method, Time Span= $0.00\-30.00$ hrs, dt= 0.05 hrs / 2 Peak Elev= 51.87' @ 12.42 hrs Surf.Area= 1,423 sf Storage= 2,031 cf


Plug-Flow detention time= 50.9 min calculated for 31,814 cf (96% of inflow) Center-of-Mass det. time= 24.9 min (844.6 - 819.7)

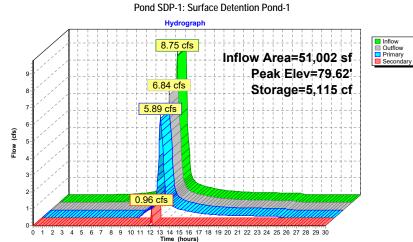
#1	49.00'	2,031 cf	Rain Garden (Irreg	ular) Listed below	(Recalc)
Elevation (feet)	Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
49.00	425	82.3	0	0	425
50.00	701	101.5	557	557	720
51.00	1,034	120.4	862	1,419	1,072
51.50	1,423	139.2	612	2,031	1,466

Bottoo	rtouting	intoit	Sullet Demote
#1	Primary	51.00'	24.0" Round Culvert L= 100.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 51.00' / 50.50' S= 0.0050 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf


Primary OutFlow Max=3.09 cfs @ 12.42 hrs HW=51.87' (Free Discharge) 1=Culvert (Barrel Controls 3.09 cfs @ 3.49 fps)

	The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Proposed HydroCAD	Type III 24-hr 100-Year Rainfall=8.80"
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 200

HydroCAD® 10.	00-20 5/11 02881	© 2020 Hyd	rocad Soliware So	lutions LLC		Page 201
		Summa	ry for Pond RG	-2: Rain Garder	1 #2 - Driveway	
nflow Area =				Depth = 8.56" f	or 100-Year event	
nflow = Outflow =		 2 12.09 hrs, 2 12.14 hrs, 	13%, Lag= 3.2 min			
Primary =		2.14 hrs, 2.12.14 hrs,		2,166 cf	1376, Lay= 3.2 min	
Routing by Sto	r-Ind method T	ime Snan- ().00-30.00 hrs, dt=	0.05 hrs		
			a= 1,626 sf Stora			
			lated for 2,166 cf	(59% of inflow)		
	ntion time= 233 s det. time= 117			(59% of inflow)		
Center-of-Mass	s det. time= 117	7.5 min (857 .Storage S	.6 - 740.1)	1		
Center-of-Mass Volume	s det. time= 117	7.5 min (857 .Storage S	.6 - 740.1)	. ,	below (Recalc)	
Center-of-Mass Volume	s det. time= 117 Invert Avail	7.5 min (857 .Storage S	.6 - 740.1)	1	below (Recalc) Wet.Area	
Center-of-Mass <u>Volume</u> #1 16	s det. time= 117 Invert Avail 52.00'	7.5 min (857 . <u>Storage S</u> 3,504 cf C	2.6 - 740.1) Storage Description Custom Stage Dat	a (Irregular) Listed		
Center-of-Mass Volume #1 16 Elevation (feet) 162.00	s det. time= 117 Invert Avail 52.00' Surf.Area (sq-ft) 564	7.5 min (857 <u>.Storage S</u> 3,504 cf C Perim. <u>(feet)</u> 214.6	2.6 - 740.1) Storage Description Custom Stage Dat Inc.Store (cubic-feet) 0	a (Irregular) Listed Cum.Store (cubic-feet) 0	Wet.Area (sq-ft) 564	
Center-of-Mass /olume #1 16 Elevation (feet) 162.00 164.00	s det. time= 117 Invert Avail 52.00' Surf.Area (sq-ft) 564 1,965	7.5 min (857 <u>.Storage S</u> 3,504 cf C Perim. <u>(feet)</u> 214.6 252.4	1.6 - 740.1) Storage Description Sustom Stage Dat Inc.Store (cubic-feet) 0 2,388	a (Irregular) Listed Cum.Store (cubic-feet) 0 2,388	Wet.Area (sq-ft) 564 2,044	
Center-of-Mass Volume #1 16 Elevation (feet) 162.00	s det. time= 117 Invert Avail 52.00' Surf.Area (sq-ft) 564	7.5 min (857 <u>.Storage S</u> 3,504 cf C Perim. <u>(feet)</u> 214.6	2.6 - 740.1) Storage Description Custom Stage Dat Inc.Store (cubic-feet) 0	a (Irregular) Listed Cum.Store (cubic-feet) 0	Wet.Area (sq-ft) 564	
Center-of-Mass <u>Volume</u> #1 16 Elevation <u>(feet)</u> 162.00 164.00	s det. time= 117 <u>invert Avail</u> <u>s2.00'</u> Surf.Area <u>(sq-ft)</u> <u>564</u> 1,965 2,509	7.5 min (857 <u>.Storage S</u> 3,504 cf C Perim. <u>(feet)</u> 214.6 252.4	L6 - 740.1) Storage Description Sustom Stage Dat Inc.Store (cubic-feet) 0 2,388 1,116	a (Irregular) Listed Cum.Store (cubic-feet) 0 2,388	Wet.Area (sq-ft) 564 2,044	
Center-of-Mass /olume #1 16 Elevation (feet) 162.00 164.00 164.50	s det. time= 117 invert Avail 52.00' Surf.Area (sq-ft) 564 1,965 2,509 ng Inv	7.5 min (857 <u>.Storage S</u> 3,504 cf C Perim. (feet) 214.6 252.4 276.8 vert Outlet I	2.6 - 740.1) Storage Description Sustom Stage Dat Inc.Store (cubic-feet) 0 2,388 1,116 Devices	a (Irregular) Listed Cum.Store (cubic-feet) 0 2,388	Wet.Area (sq-ft) 564 2,044 3,080	
Center-of-Mass #1 16 Elevation (feet) 162.00 164.00 164.50 164.50 Device Routi	s det. time= 117 invert Avail 52.00' Surf.Area (sq-ft) 564 1,965 2,509 ng Inv	7.5 min (857 <u>.Storage S</u> 3,504 cf C Perim. (feet) 214.6 252.4 276.8 vert Outlet I 50' 10.0' lc	:.6 - 740.1) storage Descriptior custom Stage Dat Inc.Store (cubic-feet) 0 2,388 1,116 Devices ong x 5.0' breadti	a (Irregular) Listed Cum.Store (cubic-feet) 0 2,388 3,504	Wet.Area (sq-ft) 564 2,044 3,080	0 3.00 3.50 4.00
Center-of-Mass #1 16 Elevation (feet) 162.00 164.00 164.50 164.50 Device Routi	s det. time= 117 invert Avail 52.00' Surf.Area (sq-ft) 564 1,965 2,509 ng Inv	7.5 min (857 <u>.Storage S</u> 3,504 cf C Perim. (feet) 214.6 252.4 276.8 rert Outlet 1 50' 10.0' lc Head (4.50' 5	L6 - 740.1) Storage Description Custom Stage Dat Inc.Store (cubic-feet) 0 2,388 1,116 Devices Devices Devices Devices Device Stol' breadth feet) 0.20 0.40 0 .00 5.50	a (Irregular) Listed Cum.Store (cubic-feet) 0 2,388 3,504 n Broad-Crested R .60 0.80 1.00 1.2	Wet.Area (sq-ft) 564 2,044 3,080 ectangular Weir 0 1.40 1.60 1.80 2.00 2.5	
Center-of-Mass /olume #1 16 Elevation (feet) 162.00 164.00 164.50 Device	s det. time= 117 invert Avail 52.00' Surf.Area (sq-ft) 564 1,965 2,509 ng Inv	7.5 min (857 <u>.Storage S</u> 3,504 cf C Perim. (feet) 214.6 252.4 276.8 rert Outlet 1 50' 10.0' lc Head (4.50' 5	L6 - 740.1) Storage Description Custom Stage Dat Inc.Store (cubic-feet) 0 2,388 1,116 Devices Devices Devices Devices Device Stol' breadth feet) 0.20 0.40 0 .00 5.50	a (Irregular) Listed Cum.Store (cubic-feet) 0 2,388 3,504 n Broad-Crested R .60 0.80 1.00 1.2	Wet.Area (sq-ft) 564 2,044 3,080 ectangular Weir	



			Associates, © 2020 Hyd	Inc. roCAD Software So	lutions LLC		Printed 7/16/2021 Page 203
			Summa	ry for Pond SD	P-1: Surface De	tention Pond-1	
Inflow Ar					Depth = 6.78" fo	or 100-Year event	
Inflow			12.09 hrs,		28,799 cf	200/ 1.5.5. 1.2.5.5	
Outflow			12.16 hrs,			22%, Lag= 4.3 min	
Primary Seconda			12.16 hrs, 12.16 hrs,		26,581 cf 261 cf		
	5						
).00-30.00 hrs, dt= = 2,483 sf Stora			
					<u>,</u>		
			7 min calcula 7 min (826.1	ated for 26,841 cf	(93% of inflow)		
Center-0	I-IVIDSS UPL	ume= 55.	/ 11111 (020.	1 - 790.4)			
Volume	Invert			torage Description			
#1	76.00'		8,088 cf S	urface Detention	Pond (Irregular) L	isted below (Recalc)	
Elevatio	n Si	urf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area	
(fee	t)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	(sq-ft)	
76.0		531	104.1	0	0	531	
78.0		1,488	192.6	1,939	1,939	2,642	
80.0		2,756	230.3	4,179	6,118	3,979	
80.5	0	5,256	368.3	1,970	8,088	10,554	
Device	Routing	Inv	ert Outlet	Devices			
#1	Secondary	79.			th Emergency Ove		
					.60 0.80 1.00 1.2		
#2	Drimonu	70 /			6 2.70 2.69 2.68	2.69 2.67 2.64 Jare edge headwall, Ke=	0 500
#2	Primary	78.0			_= 100.0 CPP, squ 0' / 77.00' S= 0.01		0.000
					, smooth interior, F		
				0		1.20 31	
Primary	OutFlow N	lax=5.84 (cfs @ 12.16	hrs HW=79.60'	(Free Discharge)		
⊏_2=Cu	lvert (Inlet)	Controls 5	.84 cfs @ 4	76 fps)			
<u> </u>	0.151			4/1 104/ 70 //			
				Controls 0.84 cfs @)' (Free Discharge))	
-1=EIII	ergency or		ven (wen (01101015 0.04 015 @	\$ 0.00 ips)		

2725-01 - Proposed HydroCAD

The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 100-Year Rainfall=8.80"

The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 100-Year Rainfall=8.80" Printed 7/16/2021 2725-01 - Proposed HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC

Page 204

HydroCAD		Major Associate n 02881 © 2020 I	es, Inc. Printed 7/16/2021 HydroCAD Software Solutions LLC Page 205	1 1
		Summary for	or Pond UDS-1: UDS-1 - Driveway Entrance (36" CMP)	
Inflow Area Inflow Outflow Primary	= 9.8° = 3.10	18,240 sf, 23.18 7 cfs @ 12.10 h 0 cfs @ 12.42 h 0 cfs @ 12.42 h	hrs, Volume= 33,304 cf, Atten= 69%, Lag= 19.3 min	
			n= 0.00-30.00 hrs, dt= 0.05 hrs Area= 3,520 sf Storage= 8,540 cf	
		ne= 32.1 min cal ne= 31.8 min (81	Iculated for 33,304 cf (100% of inflow) 19.7 - 787.9)	
Volume	Invert	Avail.Storage	Storage Description	
#1A	47.00'		27.50'W x 128.00'L x 4.00'H Field A	
#2A	47.50'	5,450 cf	14,080 cf Overall - 5,450 cf Embedded = 8,630 cf x 40.0% Voids CMP Round 36 x 36 Inside #1	
11 213	47.50	5,450 0	Effective Size= 36.0° W x 36.0° H => 7.07 sf x 20.00° L = 141.4 cf	
			Overall Size= 36.0"W x 36.0"H x 20.00'L	
			36 Chambers in 6 Rows 25.50' Header x 7.07 sf x 2 = 360.5 cf Inside	
		8,902 cf	Total Available Storage	
			ů –	
Storage	e Group A cre	eated with Cham	nber Wizard	
Device F				
	Routing	Invert Out	tlet Devices	
	Routing Primary	47.00' 18.0 Inle	0" Round Culvert L= 100.0' CPP, projecting, no headwall, Ke= 0.900 et / Outlet Invert= 47.00' / 46.00' S= 0.0100 '/' Cc= 0.900	
#1 F		47.00' 18.0 Inle n= (51.00' 5.0' Hea	0" Round Culvert L= 100.0' CPP, projecting, no headwall, Ke= 0.900 2t / Outlet Invert= 47.00' / 46.00' S= 0.0100'' Cc= 0.900 0.012 Corrugated PP, smooth interior, Flow Area= 1.77 sf ' long x 0.5' breadth Broad-Crested Rectangular Weir ad (feet) 0.20 0.40 0.60 0.80 1.00	
#1 F #2 [#3 [Primary Device 1 Device 1	47.00' 18.0 Inle n= (51.00' 5.0' Hea Coe 47.00' 8.0'	0" Round Culvert L= 100.0' CPP, projecting, no headwall, Ke= 0.900 et / Outlet Invert= 47.00' / 46.00' S= 0.0100 '/' Cc= 0.900 0.012 Corrugated PP, smooth interior, Flow Area= 1.77 sf ' long x 0.5' breadth Broad-Crested Rectangular Weir	

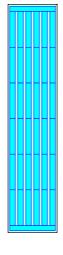
2725-01 - Proposed HydroCAD	
Prepared by Allen & Major Associates, Inc.	
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	

The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 100-Year Rainfall=8.80" Printed 7/16/2021 Page 206

Pond UDS-1: UDS-1 - Driveway Entrance (36" CMP) - Chamber Wizard Field A

Chamber Model = CMP Round 36 (Round Corrugated Metal Pipe) Effective Size= 36.0"W x 36.0"H => 7.07 sf x 20.00'L = 141.4 cf Overall Size= 36.0"W x 36.0"H x 20.00'L

36.0" Wide + 18.0" Spacing = 54.0" C-C Row Spacing

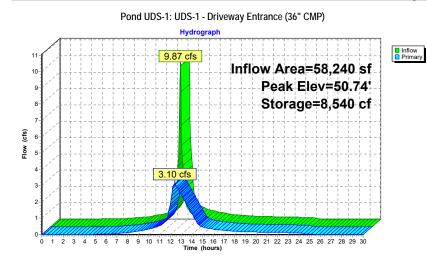

6 Chambers/Row x 20.00' Long +3.00' Header x 2 = 126.00' Row Length +12.0" End Stone x 2 = 128.00' Base Length 6 Rows x 36.0" Wide + 18.0" Spacing x 5 + 12.0" Side Stone x 2 = 27.50' Base Width 6.0" Base + 36.0" Chamber Height + 6.0" Cover = 4.00' Field Height

36 Chambers x 141.4 cf + 25.50' Header x 7.07 sf x 2 = 5,449.9 cf Chamber Storage

14,080.0 cf Field - 5,449.9 cf Chambers = 8,630.1 cf Stone x 40.0% Voids = 3,452.0 cf Stone Storage

Chamber Storage + Stone Storage = 8,901.9 cf = 0.204 af Overall Storage Efficiency = 63.2% Overall System Size = 128.00' x 27.50' x 4.00'

36 Chambers 521.5 cy Field 319.6 cy Stone



00000

 2725-01 - Proposed HydroCAD
 Type

 Prepared by Allen & Major Associates, Inc.
 HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC

The Sanctuary, Manchester-by-the-Sea, MA *Type III 24-hr 100-Year Rainfall=8.80"* Printed 71/6/2021 Page 207

	The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Proposed HydroCAD	Type III 24-hr 100-Year Rainfall=8.80"
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 208

Summary for Pond UIS-1: UIS-1 - Fire Access Road/Lawn (96" CMP)

Inflow Area =	70,127 sf, 81.35% Impervious,	Inflow Depth = 8.15" for 100-Year event
Inflow =	13.28 cfs @ 12.09 hrs, Volume=	47,652 cf
Outflow =	0.27 cfs @ 17.55 hrs, Volume=	5,005 cf, Atten= 98%, Lag= 327.9 min
Primary =	0.27 cfs @ 17.55 hrs, Volume=	5,005 cf

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 109.33' @ 17.55 hrs Surf.Area= 7,020 sf Storage= 42,955 cf Flood Elev= 109.25' Surf.Area= 7,020 sf Storage= 42,647 cf

Plug-Flow detention time= 832.0 min calculated for 4,996 cf (10% of inflow) Center-of-Mass det. time= 463.6 min (1,214.5 - 750.9)

Volume	Invert	Avail.Storage	Storage Description
#1A	101.00'	12,163 cf	54.00'W x 130.00'L x 9.00'H Field A
			63,180 cf Overall - 32,773 cf Embedded = 30,407 cf x 40.0% Voids
#2A	101.50'	32,773 cf	CMP Round 96 x 30 Inside #1
			Effective Size= 96.0"W x 96.0"H => 50.27 sf x 20.00'L = 1,005.3 cf
			Overall Size= 96.0"W x 96.0"H x 20.00'L
			30 Chambers in 5 Rows
			52.00' Header x 50.27 sf x 1 = 2,613.8 cf Inside
		44,936 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	103.00'	12.0" Round Culvert L= 100.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 103.00' / 102.00' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	109.25'	4.0' long x 0.5' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 Coef. (English) 2.80 2.92 3.08 3.30 3.32

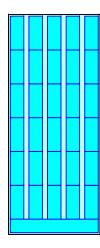
Primary OutFlow Max=0.26 cfs @ 17.55 hrs HW=109.33' (Free Discharge) 1=Culvert (Passes 0.26 cfs of 7.06 cfs potential flow) 2=Broad-Crested Rectangular Weir (Weir Controls 0.26 cfs @ 0.80 fps)

The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 100-Year Rainfall=8.80" Printed 7/16/2021 Page 209

Pond UIS-1: UIS-1 - Fire Access Road/Lawn (96" CMP) - Chamber Wizard Field A

Chamber Model = CMP Round 96 (Round Corrugated Metal Pipe) Effective Size= 96.0"W x 96.0"H => 50.27 sf x 20.00'L = 1,005.3 cf Overall Size= 96.0"W x 96.0"H x 20.00'L

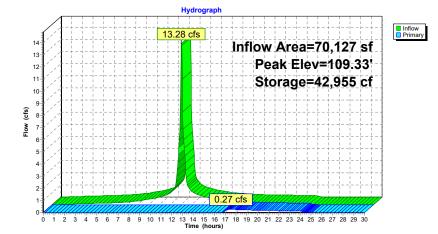
96.0" Wide + 36.0" Spacing = 132.0" C-C Row Spacing


6 Chambers/Row x 20.00' Long +8.00' Header x 1 = 128.00' Row Length +12.0" End Stone x 2 = 130.00' Base Length 5 Rows x 96.0" Wide + 36.0" Spacing x 4 + 12.0" Side Stone x 2 = 54.00' Base Width 6.0" Base + 96.0" Chamber Height + 6.0" Cover = 9.00' Field Height

30 Chambers x 1,005.3 cf + 52.00' Header x 50.27 sf = 32,773.1 cf Chamber Storage

63,180.0 cf Field - 32,773.1 cf Chambers = 30,406.9 cf Stone x 40.0% Voids = 12,162.8 cf Stone Storage

Chamber Storage + Stone Storage = 44,935.9 cf = 1.032 af Overall Storage Efficiency = 71.1% Overall System Size = 130.00' x 54.00' x 9.00'


30 Chambers 2,340.0 cy Field 1,126.2 cy Stone

2725-01 - Proposed HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC

The Sanctuary, Manchester-by-the-Sea, MA *Type III 24-hr 100-Year Rainfall=8.80"* Printed 7/16/2021 C Page 210

Pond UIS-1: UIS-1 - Fire Access Road/Lawn (96" CMP)

00000

2725-01 - Proposed HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC			ciates, Inc.	The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 100-Year Rainfall=8.80" Printed 7/16/2021 Page 211	2725-0 Prepare <u>HydroCA</u>
		Summar	y for Pond UIS-2: UIS-2 - Main Build	Jing Entrance (36" CMP)	
Inflow A Inflow Outflow Discard Primary Routing	= 8.6 = 2.6 ed = 0.7 = 2.5	56 cfs @ 12 58 cfs @ 12 11 cfs @ 12 58 cfs @ 12	0.58% Impervious, Inflow Depth = 8.37" 2.09 hrs, Volume= 31,355 cf 2.40 hrs, Volume= 18,455 cf, Atter 2.40 hrs, Volume= 9,672 cf 2.40 hrs, Volume= 8,783 cf Span= 0.00-30.00 hrs, dt= 0.05 hrs	for 100-Year event n= 69%, Lag= 19.0 min	Chambe Effective Overall \$ 36.0" Wi
Peak El	lev= 120.82' @	12.40 hrs	Surf.Area= 6,624 sf Storage= 16,227 cf		14 Chan 5 Rows
			hin calculated for 18,424 cf (59% of inflow)		6.0" Base
Center-	of-Mass det. tir	me= 1/9.8 n	nin (927.1 - 747.3)		70 Cham
Volume #1A	Invert 117.00		Storage Description 21 cf 23.00'W x 288.00'L x 4.00'H Field A 24 cf 24.00'H Field A		26,496.0
#2A	117.50'	10,19	26,496 cf Overall - 10,193 cf Embed 23 cf CMP Round 36 x 70 Inside #1 Effective Size= 36.0"W x 36.0"H => Overall Size= 36.0"W x 36.0"H x 20. 70 Chambers in 5 Rows	7.07 sf x 20.00'L = 141.4 cf	Chambe Overall S Overall S
		16.7	21.00' Header x 7.07 sf x 2 = 296.9 4 cf Total Available Storage	cf Inside	70 Chan 981.3 cy
Device	Routing	Invert	Chamber Wizard Outlet Devices 15.0" Pound Culturet 1, 100.0", CDD.	are leaded. Ke 0.000	603.8 cy
#1	Primary	117.00	15.0" Round Culvert L= 100.0' CPP, J Inlet / Outlet Invert= 117.00' / 116.00' S= n= 0.012 Corrugated PP, smooth interior,	0.0100 ['] /' Cc= 0.900	
#2 #3	Discarded Device 1	117.00' 120.45'	0.520 in/hr Exfiltration over Wetted area 4.0' long x 0.5' breadth Broad-Crested Head (feet) 0.20 0.40 0.60 0.80 1.00 Coef. (English) 2.80 2.92 3.08 3.30 3.3	Rectangular Weir	
	ded OutFlow I xfiltration (Ex		s @ 12.40 hrs HW=120.82' (Free Dischar trols 0.11 cfs)	'ge)	
Primary	y OutFlow Ma ulvert (Passes	x=2.56 cfs of s 2.56 cfs of	@ 12.40 hrs HW=120.82' (Free Discharge 8.33 cfs potential flow) Jlar Weir (Weir Controls 2.56 cfs @ 1.75 f		

The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 100-Year Rainfall=8.80" Printed 7/16/2021 Page 212

Pond UIS-2: UIS-2 - Main Building Entrance (36" CMP) - Chamber Wizard Field A

Chamber Model = CMP Round 36 (Round Corrugated Metal Pipe) Effective Size= 36.0"W x 36.0"H => 7.07 sf x 20.00'L = 141.4 cf Overall Size= 36.0"W x 36.0"H x 20.00'L

36.0" Wide + 18.0" Spacing = 54.0" C-C Row Spacing

14 Chambers/Row x 20.00' Long +3.00' Header x 2 = 286.00' Row Length +12.0" End Stone x 2 = 288.00' Base Length 5 Rows x 36.0" Wide + 18.0" Spacing x 4 + 12.0" Side Stone x 2 = 23.00' Base Width 6.0" Base + 36.0" Chamber Height + 6.0" Cover = 4.00' Field Height

70 Chambers x 141.4 cf + 21.00' Header x 7.07 sf x 2 = 10,192.9 cf Chamber Storage

26,496.0 cf Field - 10,192.9 cf Chambers = 16,303.1 cf Stone x 40.0% Voids = 6,521.2 cf Stone Storage

Chamber Storage + Stone Storage = 16,714.1 cf = 0.384 af Overall Storage Efficiency = 63.1% Overall System Size = 288.00' x 23.00' x 4.00'

70 Chambers 981.3 cy Field 603.8 cy Stone

The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 100-Year Rainfall=8.80" Printed 7/16/2021 Page 213

Pond UIS-2: UIS-2 - Main Building Entrance (36" CMP) Hydrograph 8.66 cfs Inflow Area=44,954 sf Peak Elev=120.82' Storage=16,227 cf

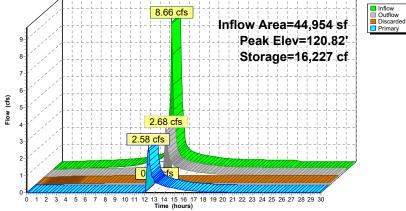
	The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Proposed HydroCAD	Type III 24-hr 100-Year Rainfall=8.80"
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 214

Summary for Pond UIS-3: UIS-3 - Cul-de-Sac (36" CMP)

Inflow Area =	37,779 sf, 57.72% Impervious,	Inflow Depth = 7.61" for 100-Year event
Inflow =	6.99 cfs @ 12.09 hrs, Volume=	23,967 cf
Outflow =	0.73 cfs @ 12.82 hrs, Volume=	22,454 cf, Atten= 89%, Lag= 44.1 min
Discarded =	0.14 cfs @ 12.82 hrs, Volume=	11,061 cf
Primary =	0.59 cfs @ 12.82 hrs, Volume=	11,393 cf

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 110.67' @ 12.82 hrs Surf.Area= 4,930 sf Storage= 11,900 cf Flood Elev= 108.50' Surf.Area= 4,930 sf Storage= 4,321 cf

Plug-Flow detention time= 255.8 min calculated for 22,417 cf (94% of inflow) Center-of-Mass det. time= 221.8 min (993.0 - 771.2)


Vo	lume	Invert	Avail.Storage	Storage Description
-	#1A	107.00'	4,775 cf	72.50'W x 68.00'L x 4.00'H Field A
				19,720 cf Overall - 7,783 cf Embedded = 11,937 cf x 40.0% Voids
÷	#2A	107.50'	7,783 cf	CMP Round 36 x 48 Inside #1
				Effective Size= 36.0"W x 36.0"H => 7.07 sf x 20.00'L = 141.4 cf
				Overall Size= 36.0"W x 36.0"H x 20.00'L
				48 Chambers in 16 Rows
_				70.50' Header x 7.07 sf x 2 = 996.7 cf Inside
			12,558 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Devic	ce Routing	Invert	Outlet Devices		
#1	1 Primary	107.00'	12.0" Round Culvert L= 100.0' CPP, projecting, no headwall, Ke= 0.900		
			Inlet / Outlet Invert= 107.00' / 102.00' S= 0.0500 '/' Cc= 0.900		
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf		
#2	2 Device 1	108.50'	4.0" Vert. Orifice/Grate C= 0.600		
#3	3 Discarded	107.00'	1.020 in/hr Exfiltration over Wetted area		
Disca	arded OutFlow	Max = 0.14 cf	s @ 12.82 hrs HW–110.67' (Free Discharge)		

arded OutFlow Max=0.14 cfs @ 12.82 hrs HW=110.67' (Free Discharge) **Galery Controls On the State of Controls On t**

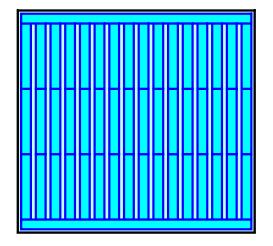
Primary OutFlow Max=0.59 cfs @ 12.82 hrs HW=110.67' (Free Discharge) 1=Culvert (Passes 0.59 cfs of 5.31 cfs potential flow) 2=Orifice/Grate (Orifice Controls 0.59 cfs @ 6.81 fps)

The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 100-Year Rainfall=8.80" Printed 7/16/2021 Page 215

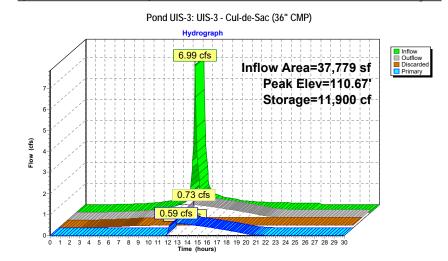
Pond UIS-3: UIS-3 - Cul-de-Sac (36" CMP) - Chamber Wizard Field A

Chamber Model = CMP Round 36 (Round Corrugated Metal Pipe) Effective Size= 36.0"W x 36.0"H => 7.07 sf x 20.00'L = 141.4 cf Overall Size= 36.0"W x 36.0"H x 20.00'L

36.0" Wide + 18.0" Spacing = 54.0" C-C Row Spacing


3 Chambers/Row x 20.00' Long +3.00' Header x 2 = 66.00' Row Length +12.0" End Stone x 2 = 68.00' Base Length 16 Rows x 36.0" Wide + 18.0" Spacing x 15 + 12.0" Side Stone x 2 = 72.50' Base Width 6.0" Base + 36.0" Chamber Height + 6.0" Cover = 4.00' Field Height

48 Chambers x 141.4 cf + 70.50' Header x 7.07 sf x 2 = 7,782.5 cf Chamber Storage

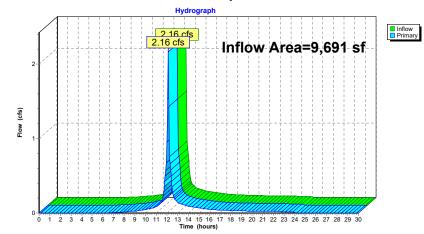

19,720.0 cf Field - 7,782.5 cf Chambers = 11,937.5 cf Stone x 40.0% Voids = 4,775.0 cf Stone Storage

Chamber Storage + Stone Storage = 12,557.5 cf = 0.288 af Overall Storage Efficiency = 63.7% Overall System Size = 68.00' x 72.50' x 4.00'

48 Chambers 730.4 cy Field 442.1 cy Stone

2725-01 - Proposed HydroCAD Prepared by Allen & Major Associates, Inc. HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC The Sanctuary, Manchester-by-the-Sea, MA Type III 24-hr 100-Year Rainfall=8.80" Printed 7/16/2021 Page 216

2725-01 - Propos				:hester-by-the-Sea, MA 90-Year Rainfall=8.80*
Prepared by Allen HvdroCAD® 10.00-26	& Major Associates, Inc. s/n 02881 © 2020 HydroCAD Software Solu	tions LLC		Printed 7/16/2021 Page 217
		k SP-1: Study Point	t #1	
nflow Area =	73,333 sf, 19.56% Impervious, Inflow [D-Year event	
		37,699 cf 37,699 cf, Atten= 0%,	Lag= 0.0 min	
Primary outflow = In	flow, Time Span= 0.00-30.00 hrs, dt= 0.05	hrs		
	Link SP-1	Study Point #1		
	Hydrogra	ph		
10-1	921.cfs			Inflow Primary
9	9.21 cfs	Inflow A	ea=73,333	sf
8				
7				
a 6				+
-+				


	The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Proposed HydroCAD	Type III 24-hr 100-Year Rainfall=8.80"
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 218

Summary for Link SP-2: Study Point #2

Inflow Area =	9,691 sf, 0	.00% Impervious,	Inflow Depth = 6.46"	for 100-Year event
Inflow =	2.16 cfs @ 12.1	15 hrs, Volume=	5,215 cf	
Primary =	2.16 cfs @ 12.1	15 hrs, Volume=	5,215 cf, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Link SP-2: Study Point #2

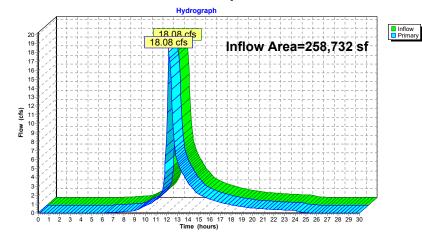
(9) 9.21 cfs 9.21 cfs

	The Sanctuary, Manchester-by-the-Sea, MA
2725-01 - Proposed HydroCAD	Type III 24-hr 100-Year Rainfall=8.80"
Prepared by Allen & Major Associates, Inc.	Printed 7/16/2021
HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC	Page 219

Summary for Link SP-3: Study Point #3

Inflow Area =	98,112 sf, 58.66% Impervious, Ir	nflow Depth = 2.43" for 100-Year event	
Inflow =	3.97 cfs @ 12.15 hrs, Volume=	19,880 cf	
Primary =	3 97 cfs @ 12 15 hrs Volume=	19 880 cf Atten= 0% Lag= 0.0 min	

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

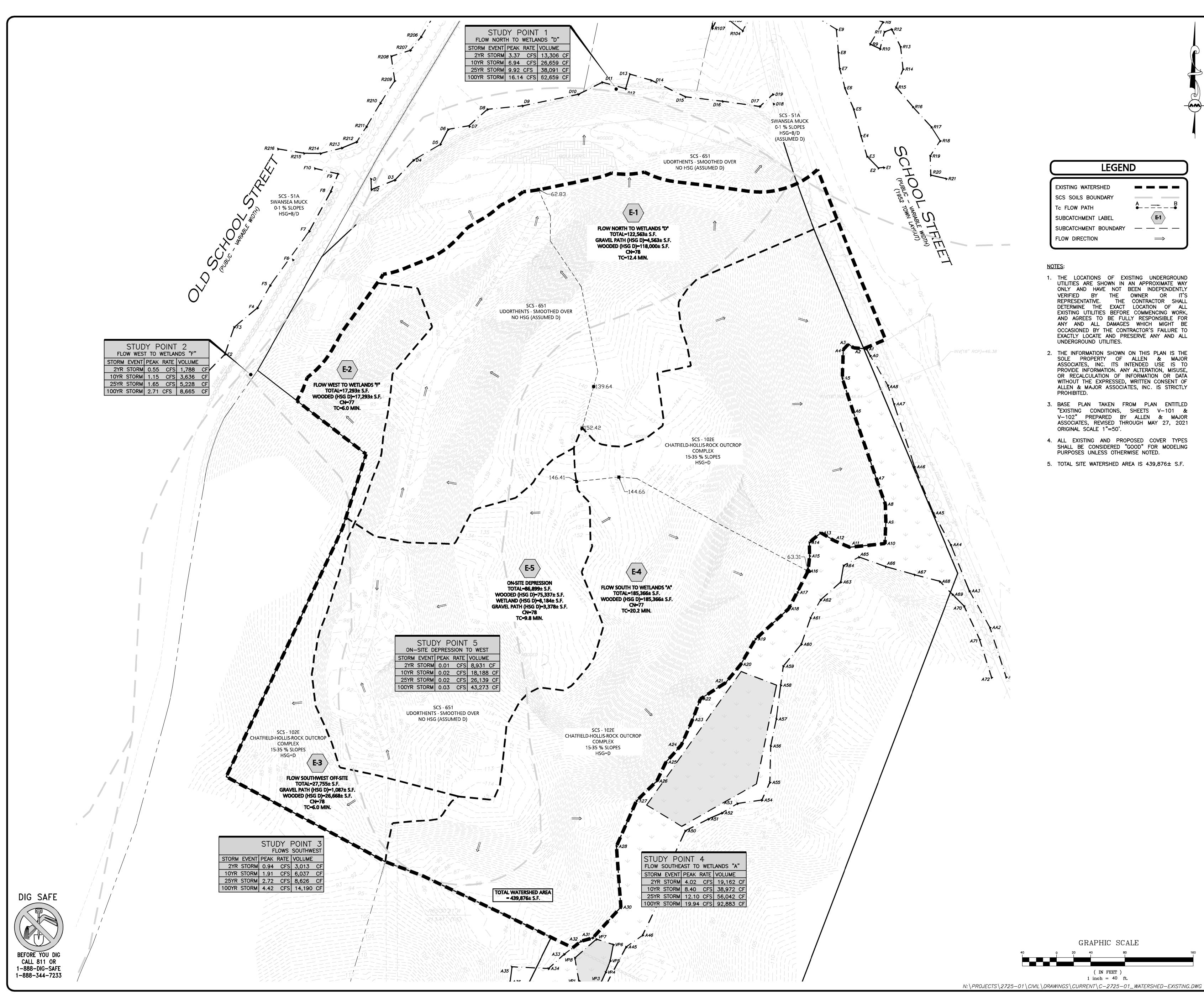

e-Sea, MA	Th
nfall=8.80"	2725-01 - Proposed HydroCAD
7/16/2021	Prepared by Allen & Major Associates, Inc.
Page 220	HydroCAD® 10.00-26 s/n 02881 © 2020 HydroCAD Software Solutions LLC

Summary for Link SP-4: Study Point #4

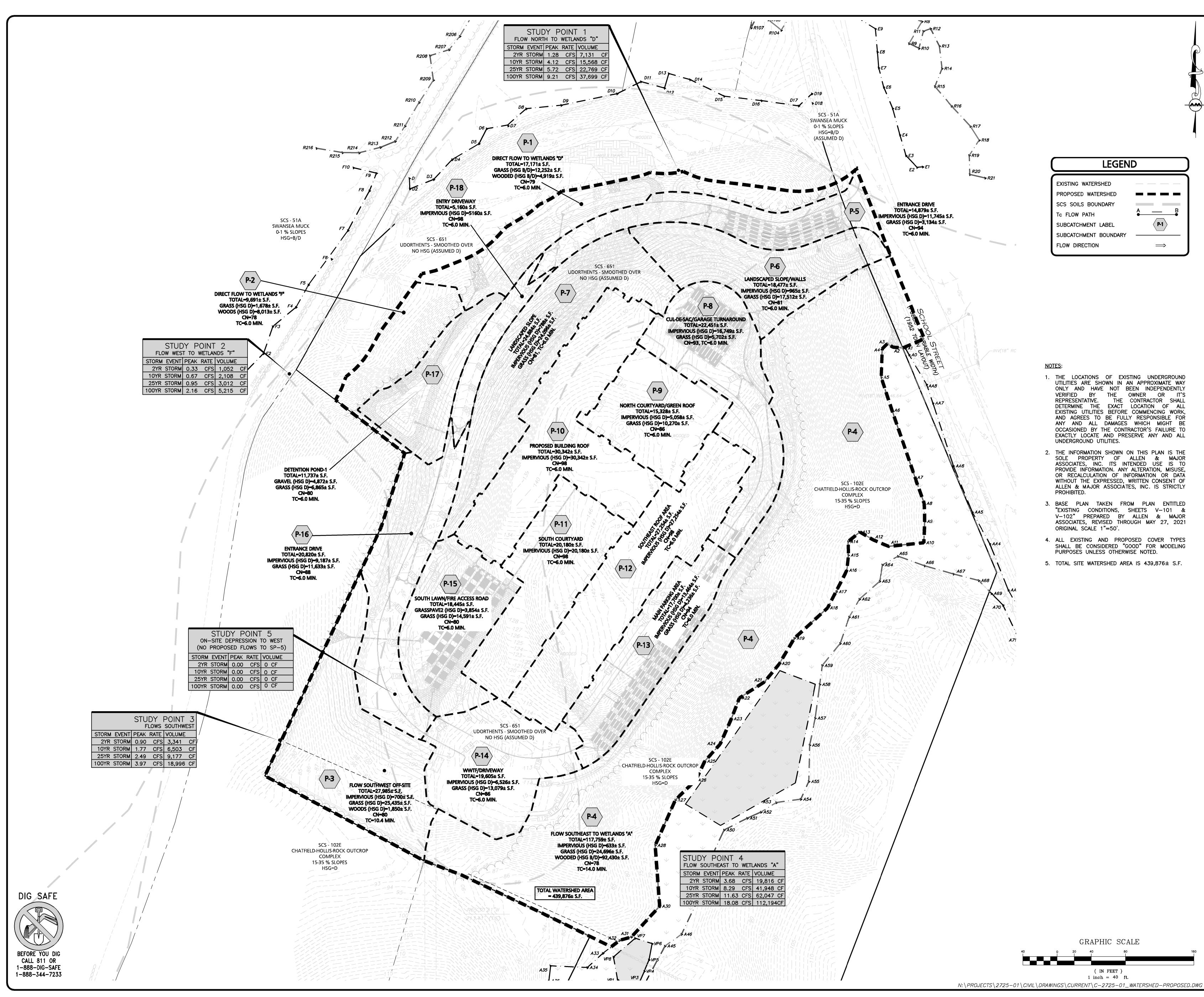
Inflow Are	ea =	258,732 sf, 29.63% Impervious, Inflow Depth > 5.20" for 100-Year event
Inflow	=	18.08 cfs @ 12.20 hrs, Volume= 112,194 cf
Primary	=	18.08 cfs @ 12.20 hrs, Volume= 112,194 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

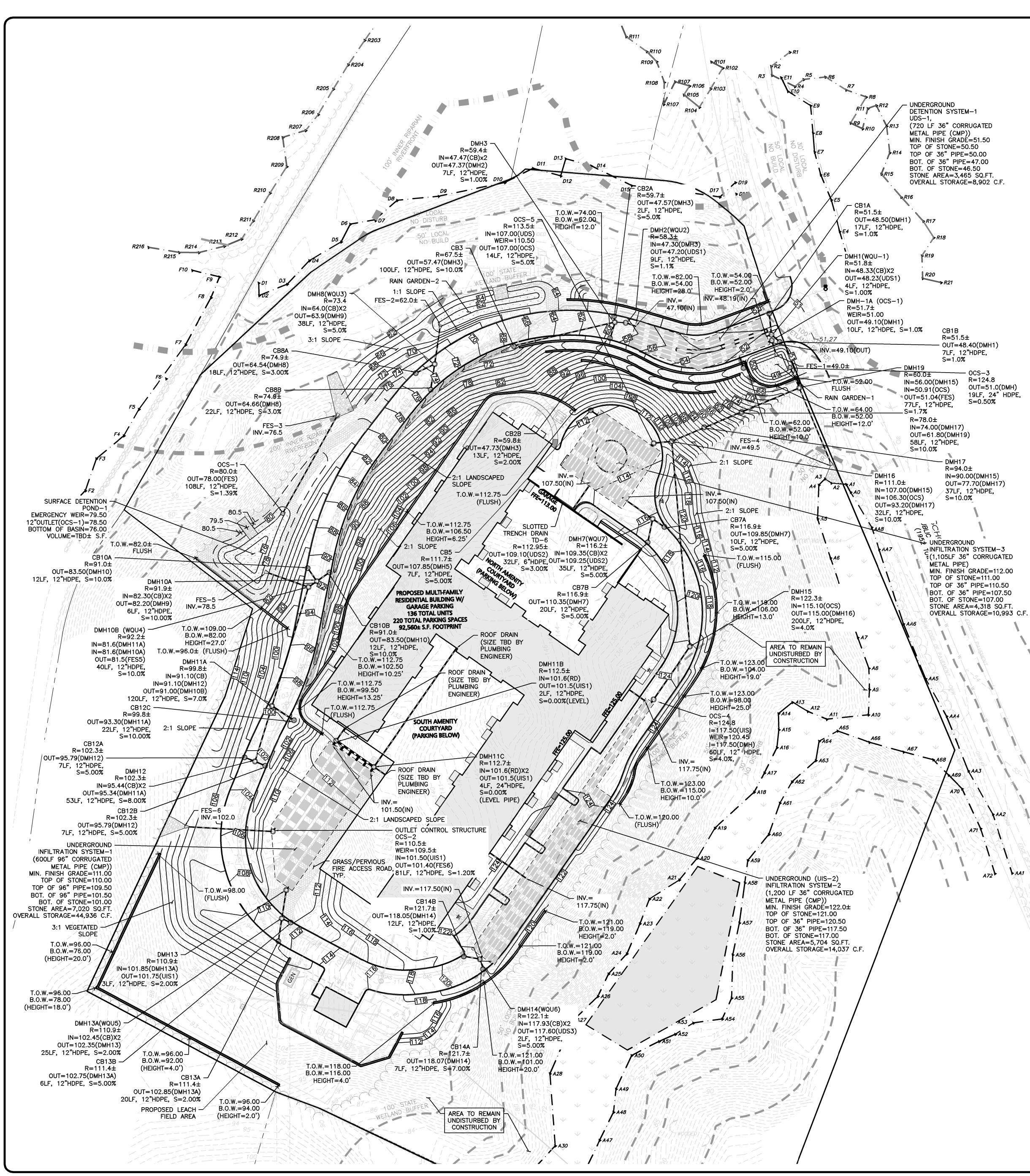
Link SP-4: Study Point #4







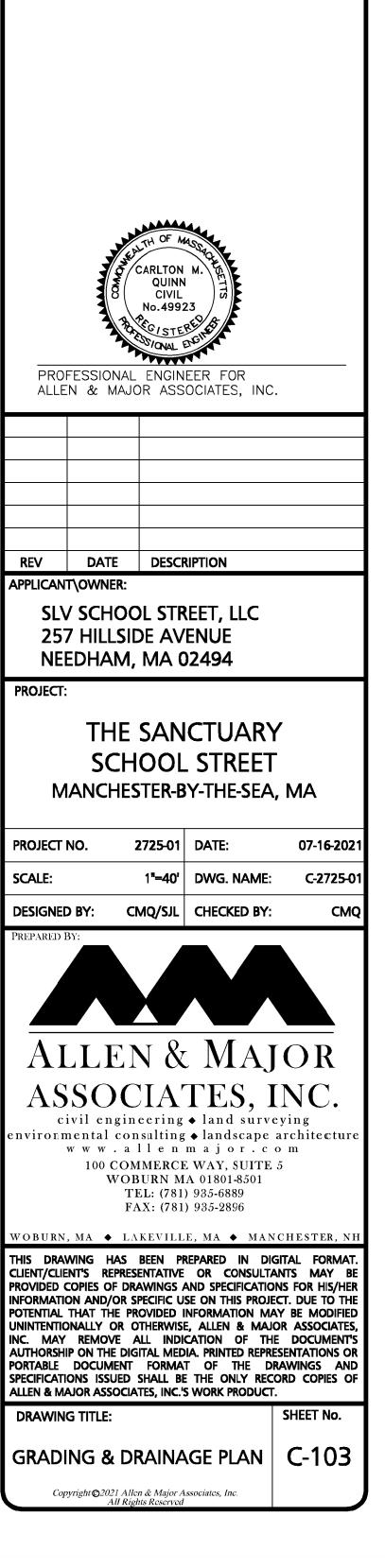
SECTION 5.0 – PLANS



LEGEND					
DRAIN MANHOLE	0				
CATCH BASIN					
CATCH BASIN - DOUBLE GR	ATE				
DRAIN MANHOLE W/ WEIR	0				
AREA DRAIN	⊞				
CLEANOUT	•				
SPOT GRADE	X 124.25				
DRAIN LINE					
10' CONTOUR	<u> 120 </u>				
2' CONTOUR	<u> </u>				
INFILTRATION SYSTEM					
INFILTRATION CHAMBERS					
ISOLATOR ROW	(11/11/1/11/11/11/12)				

-**(^^)**-

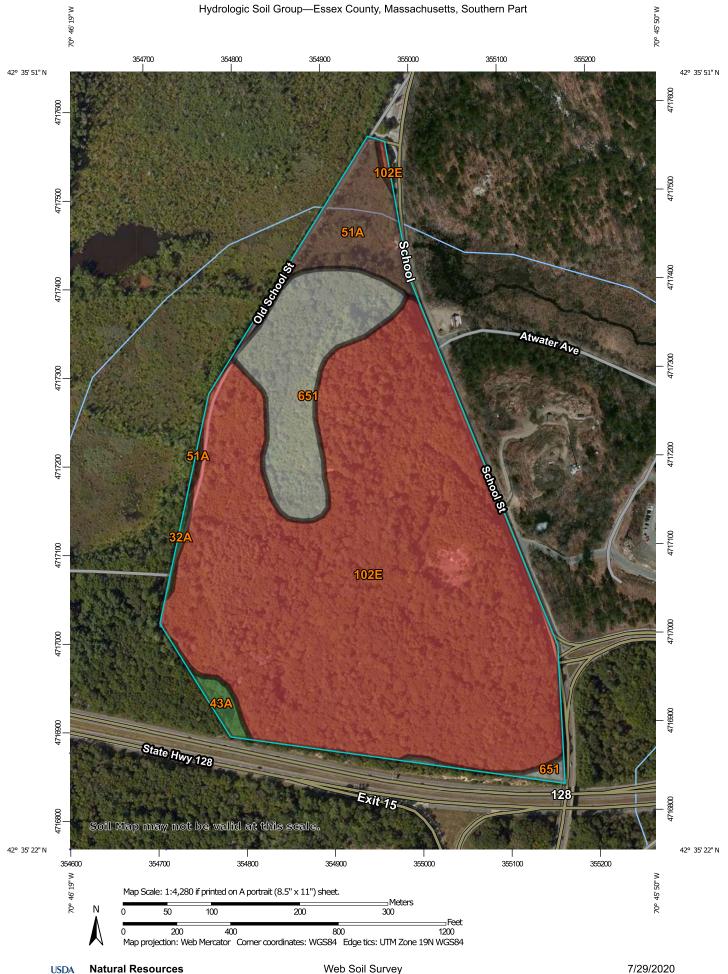
NOTES:


- THE LOCATIONS OF EXISTING UNDERGROUND UTILITIES ARE SHOWN IN AN APPROXIMATE WAY ONLY AND HAVE NOT BEEN INDEPENDENTLY VERIFIED BY THE OWNER OR IT'S REPRESENTATIVE. THE CONTRACTOR SHALL DETERMINE THE EXACT LOCATION OF ALL EXISTING UTILITIES BEFORE COMMENCING WORK, AND AGREES TO BE FULLY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH MIGHT BE OCCASIONED BY THE CONTRACTOR'S FAILURE TO EXACTLY LOCATE AND PRESERVE ANY AND ALL UNDERGROUND UTILITIES.
- 2. THE INFORMATION SHOWN ON THIS PLAN IS THE SOLE PROPERTY OF ALLEN & MAJOR ASSOCIATES, INC. IT'S INTENDED USE IS TO PROVIDE INFORMATION. ANY ALTERATION, MISUSE, OR RECALCULATION OF INFORMATION OR DATA WITHOUT THE EXPRESSED, WRITTEN CONSENT OF ALLEN & MAJOR ASSOCIATES, INC. IS STRICTLY PROHIBITED.
- 3. BASE PLAN TAKEN FROM PLAN ENTITLED "EXISTING CONDITIONS, SHEETS V-101 & V-102" PREPARED BY ALLEN & MAJOR ASSOCIATES, REVISED THROUGH MAY 27, 2021 ORIGINAL SCALE 1"=50'.
- 4. PIPE DIMENSIONS ARE MEASURED FROM THE INSIDE FACE OF THE STRUCTURE.
- 5. THE CONTRACTOR SHALL CONTACT "DIGSAFE" AND THE AT LEAST 72 HOURS PRIOR TO ANY EXCAVATION WORK TO REQUEST THE LOCATION OF THE EXISTING UTILITIES. DIGSAFE: 1-888-344-7233
- 6. ANY ROOF DRAINAGE PIPE LOCATED WITHIN 10' OF THE BUILDING FOUNDATION SHALL BE CAST IRON PIPE PER MA PLUMBING CODE. ALL "CDS" STRUCTURES SHALL BE SIZED USING THE WATER QUALITY
- FLOW RATE PER MASS STORMWATER HANDBOOK. 8. FINAL DESIGN FOR ALL THE RETAINING WALLS SHALL BE COORDINATED WITH THE APPROPRIATE TOWN STAFF FOR REVIEW AND APPROVAL PRIOR TO CONSTRUCTION.
- 9. ALL CORRUGATED METAL PIPE (CMP) PROPOSED FOR SUBSURFACE INFILTRATION/DETENTION SYSTEMS SHALL BE MADE OF GALVANIZED STFFI

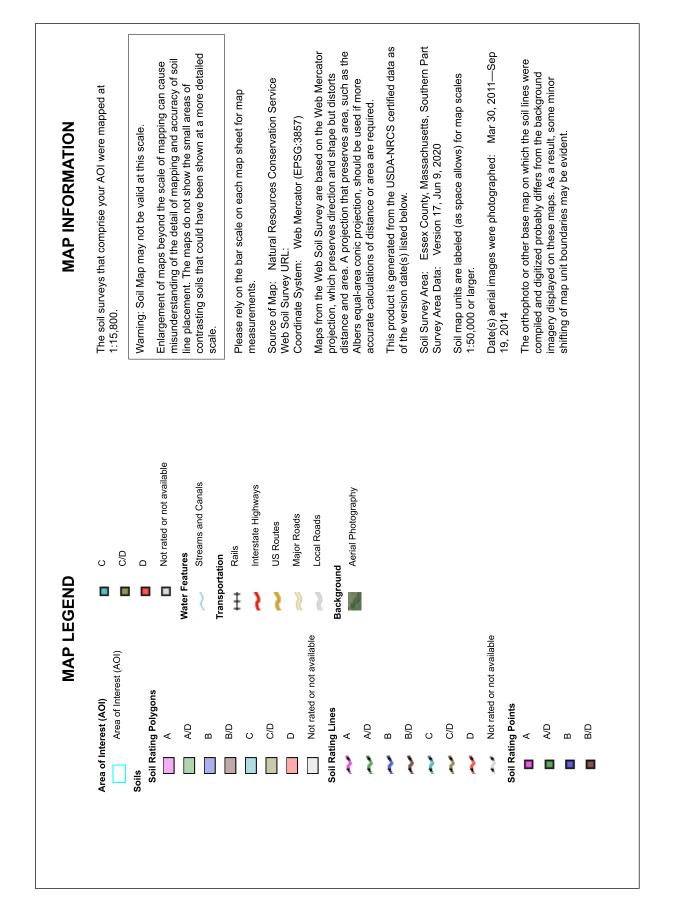
OUT=51.0(DMH) 19LF, 24" HDPE,

AA1

N:\PROJECTS\2725-01\


GRAPH	HIC SCALE	£				
0 20 40	80		160			
(IN FEET) 1 inch = 40 ft.						
CIVIL\DRAWINGS\CURRENT\C	-2725-01_G	RADING &	DRAINAGE.DWG			

SECTION 6.0 - APPENDIX



Web Soil Survey National Cooperative Soil Survey

USDA

Conservation Service

Hydrologic Soil Group—Essex County, Massachusetts, Southern Part

Conservation Service

Natural Resources

NSDA

Hydrologic Soil Group

	-	1		
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
32A	Wareham loamy sand, 0 to 3 percent slopes	A/D	0.2	0.3%
43A	Scarboro mucky fine sandy loam, 0 to 3 percent slopes	A/D	0.5	1.0%
51A	Swansea muck, 0 to 1 percent slopes	B/D	3.3	6.7%
102E	Chatfield-Hollis-Rock outcrop complex, 15 to 35 percent slopes	D	38.5	78.8%
651	Udorthents, smoothed		6.4	13.1%
Totals for Area of Inter	est		48.9	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

Extreme Precipitation Tables

Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

Smoothing	Yes
State	Massachusetts
Location	
Longitude	70.767 degrees West
Latitude	42.595 degrees North
Elevation	0 feet
Date/Time	Wed, 29 Jul 2020 13:03:32 -0400

Extreme Precipitation Estimates

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.27	0.41	0.51	0.67	0.84	1.06	1yr	0.72	0.98	1.24	1.60	2.07	2.71	2.99	1yr	2.40	2.87	3.30	4.01	4.69	1yr
2yr	0.33	0.51	0.64	0.84	1.05	1.34	2yr	0.91	1.24	1.56	1.98	2.53	3.24	3.60	2yr	2.86	3.46	3.97	4.74	5.38	2yr
5yr	0.39	0.61	0.76	1.02	1.31	1.68	5yr	1.13	1.56	1.96	2.51	3.20	4.09	4.60	5yr	3.62	4.42	5.07	6.00	6.76	5yr
10yr	0.44	0.69	0.87	1.19	1.54	2.00	10yr	1.33	1.85	2.34	3.00	3.83	4.88	5.55	10yr	4.32	5.33	6.10	7.18	8.05	10yr
25yr	0.52	0.82	1.05	1.44	1.91	2.50	25yr	1.65	2.33	2.94	3.79	4.84	6.17	7.10	25yr	5.46	6.83	7.79	9.12	10.14	25yr
50yr	0.58	0.93	1.19	1.67	2.26	2.98	50yr	1.95	2.78	3.53	4.55	5.81	7.37	8.57	50yr	6.52	8.24	9.38	10.92	12.08	50yr
100yr	0.66	1.07	1.38	1.95	2.66	3.54	100yr	2.30	3.31	4.20	5.43	6.93	8.80	10.34	100yr	7.79	9.95	11.29	13.09	14.40	100yr
200yr	0.75	1.22	1.58	2.27	3.15	4.22	200yr	2.71	3.94	5.02	6.50	8.30	10.52	12.49	200yr	9.31	12.01	13.60	15.69	17.17	200yr
500yr	0.90	1.48	1.93	2.80	3.92	5.29	500yr	3.39	4.96	6.32	8.21	10.51	13.34	16.03	500yr	11.81	15.41	17.41	19.95	21.67	500yr

Lower Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.23	0.35	0.43	0.58	0.71	0.84	1yr	0.61	0.82	1.03	1.41	1.81	2.42	2.67	1yr	2.14	2.57	2.95	3.49	4.15	1yr
2yr	0.32	0.49	0.60	0.82	1.01	1.23	2yr	0.87	1.20	1.41	1.84	2.37	3.13	3.47	2yr	2.77	3.34	3.85	4.59	5.21	2yr
5yr	0.36	0.56	0.70	0.96	1.22	1.46	5yr	1.05	1.43	1.66	2.15	2.75	3.74	4.20	5yr	3.31	4.04	4.65	5.55	6.24	5yr
10yr	0.40	0.62	0.77	1.08	1.39	1.67	10yr	1.20	1.64	1.88	2.41	3.08	4.30	4.85	10yr	3.80	4.66	5.37	6.36	7.12	10yr
25yr	0.46	0.70	0.87	1.25	1.64	1.98	25yr	1.42	1.94	2.20	2.79	3.57	5.17	5.84	25yr	4.57	5.62	6.48	7.62	8.41	25yr
50yr	0.51	0.77	0.96	1.38	1.86	2.26	50yr	1.60	2.21	2.48	3.12	3.98	5.96	6.71	50yr	5.27	6.45	7.46	8.73	9.72	50yr
100yr	0.57	0.85	1.07	1.55	2.12	2.57	100yr	1.83	2.51	2.80	3.49	4.43	6.87	7.71	100yr	6.08	7.41	8.60	10.04	11.03	100yr
200yr	0.63	0.94	1.20	1.73	2.41	2.93	200yr	2.08	2.86	3.17	3.88	4.91	7.95	8.88	200yr	7.03	8.54	9.92	11.52	12.50	200yr
500yr	0.73	1.08	1.39	2.02	2.87	3.49	500yr	2.48	3.41	3.73	4.47	5.64	9.66	10.72	500yr	8.55	10.30	12.00	13.87	14.73	500yr

Upper Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.30	0.46	0.56	0.75	0.92	1.08	1yr	0.80	1.05	1.34	1.72	2.20	2.96	3.30	1yr	2.62	3.18	3.67	4.33	5.13	1yr
2yr	0.35	0.54	0.66	0.90	1.11	1.33	2yr	0.96	1.30	1.52	2.01	2.57	3.37	3.75	2yr	2.99	3.61	4.14	4.96	5.61	2yr
5yr	0.42	0.65	0.81	1.11	1.41	1.73	5yr	1.22	1.69	1.99	2.64	3.38	4.45	5.00	5yr	3.94	4.81	5.49	6.49	7.28	5yr
10yr	0.50	0.77	0.96	1.34	1.73	2.13	10yr	1.50	2.09	2.44	3.26	4.14	5.49	6.25	10yr	4.86	6.01	6.84	8.01	8.93	10yr
25yr	0.64	0.97	1.21	1.73	2.27	2.81	25yr	1.96	2.75	3.20	4.31	5.46	7.25	8.40	25yr	6.41	8.08	9.14	10.57	11.72	25yr
50yr	0.76	1.16	1.44	2.08	2.79	3.47	50yr	2.41	3.40	3.94	5.35	6.76	8.93	10.52	50yr	7.91	10.12	11.39	13.04	14.20	50yr
100yr	0.92	1.39	1.74	2.51	3.44	4.28	100yr	2.97	4.19	4.83	6.63	8.35	11.00	13.19	100yr	9.74	12.68	14.20	16.13	17.44	100yr
200yr	1.10	1.65	2.10	3.04	4.23	5.29	200yr	3.65	5.17	5.95	8.22	10.33	13.54	16.53	200yr	11.98	15.89	17.72	19.95	21.42	200yr
500yr	1.41	2.09	2.69	3.91	5.56	6.99	500yr	4.80	6.83	7.84	10.96	13.72	17.83	22.21	500yr	15.78	21.36	23.68	26.40	28.17	500yr

Northeast Regional Climate Center

Conduit	Manning's Coefficients
Closed Conduits	
Asbestos-Cement Pipe	0.011 to 0.015
Brick	0.013 to 0.017
Cast Iron Pipe	
Cement-lined and seal-coated	0.011 to 0.015
Concrete (Monolithic)	
Smooth forms	0.012 to 0.014
Rough forms	0.015 to 0.017
Concrete Pipe	0.011 to 0.015
Corrugated-Metal Pipe (1/2 - STUL 34470 2 1/2-inch corrgtn.)	
Plain	0.022 to 0.026
Paved invert	0.018 to 0.022
Spun asphalt-lined	0.011 to 0.015
Plastic Pipe (Smooth)	0.011 to 0.015
Vitrified Clay	
Pipes	0.011 to 0.015
Liner channels	0.013 to 0.017
Open Channels	
Lined Channels	
Asphalt	0.013 to 0.017
Brick	0.012 to 0.018
Concrete	0.011 to 0.020
Rubble or riprap	0.020 to 0.035
Vegetal	0.030 to 0.040
Excavated or Dredged	
Earth, straight and uniform	0.020 to 0.030
Earth, winding, fairly uniform	0.025 to 0.040
Rock	0.030 to 0.045
Unmaintained	0.050 to 0.140
Natural Channels (minor streams, top width at flood state < 100 feet)	
Fairly regular section	0.030 to 0.070
Irregular section with pools	0.040 to 0.100

Manning's Roughness Coefficients ("n")

- .

1

								Computation Sheet	
tle	MA DEP Standard	Calculations						Ву	DMR/SJL
roject		chester-by-the-Sea, MA						Chk'd	CMQ
ate	July 16, 2021	····,						Apprv'd	CMQ
Revised	oury 10, 2021							, ippi v d	
Rv = F * Impervi	ous Area								
		essed in ft ³ , cubic yards	or acre-feet						
-		ith each Hydraulic Soil							
	= pavement & roofto		-						
$V_{WQ} = Required$	Water Quality Treatm	ent Volume (ft ³)							
$\mathbf{O}_{WQ} = Water Qu$									
IMP = Imperviou	us Area (excluding no	n-metal roofs)							
						Recharge Required		Water Quality	Volume Required
			IMPERVIOUS A	REA (S.F.) BY HSG		Impervious Area		D _{WQ} (Inch)	V
W'SHED	Area (Sq. Ft)	Landscaped		HSG D (F=.1)	F Avg. (Inches)	(Sq. Ft)	$\mathbf{R}\mathbf{v}$ (ft ³)	D_{WQ} (Inch)	V_{WQ}
P-1	17,171	17,171		0	0.100	0	0	1.0	0
P-2	9,691	9,691		0	0.100	0	0	1.0	0
P-3	27,985	27,985		0	0.100	0	0	1.0	0
P-4	117,759	117,126		633	0.100	633	5	1.0	53
P-5	14,879	3,134		11,745	0.100	11,745	98	1.0	979
P-6	18,477	17,512		965	0.100	965	8	1.0	80
P-7	24,884	24,096		788	0.100	788	0	1.0	66
P-8	22,451	5,972		16,479	0.100	16,479	137	1.0	1,373
P-9	15,326	10,268		5,058	0.100	5,058	42	1.0	422
P-10	30,342	0		30,342	0.100	30,342	253	1.0	2,529
P-11	20,180	0		20,180	0.100	20,180	168	1.0	1,682
P-12	27,254	0		27,254	0.100	27,254	227	1.0	2,271
P-13	17,700	4,236		13,464	0.100	13,464	112	1.0	1,122
P-14	19,605	13,079		6,526	0.100	6,526	54	1.0	544
P-15	18,455	18,455		0	0.100	0	0	1.0	0
P-16 P-17	20,820 11,737	11,633 11,737		9,187 0	0.100	9,187 0	77 0	1.0	766 0
P-17	5,160	0		5,160	0.100	5,160	43	1.0	430
Total	439,876	292,095		147,781	0.100	13,343	43 1,225	1.0	430 12,315
Total	433,070	232,035	STOR	IWATER RECHAR			1,225		12,010
Rv = F * Impervi	ous Area								
		essed in ft ³ , cubic yards	on gone fact						
-	· ·	essea in ff , cubic yaras ith each Hydraulic Soil (•						
= 1 argei Depir	Required (cf)	Provided (cf)							
Rv =	1 (0)	42,647	96" CMP Underar	ound Infiltration System	n = 1 (P=10 P=11 P=1	1)			
$\frac{Rv}{Rv} =$		4,321		ound Infiltration System		•/			
Rv = Rv = Rv		15,235		ound Infiltration System					
$\frac{Rv}{Rv} =$	106	0		ound Detention System					
$\frac{Rv}{Rv} =$	77	1,939	0	Pond - 1 (P-15, P-16, P	()))				
$\frac{Rv}{Rv} =$		1,419	Rain Garden - 1 (F		/				
Rv =	-	1,515	Rain Garden - 2 (P						-
Rv =		0		gated Area (P-1, P-2, F	P-3, P-4)				7
Rv =		67,076			1 of 4				-

ect sed	MA DEP Standard School Street, Manu July 16, 2021	Calculations hester-by-the-Sea, MA					By Chk'd Apprv'd	DMR/SJL CMQ CMQ
				WATER QUALITY VO	LUME CALCULATIONS			
-		ent Volume, expressed in f	ť					
= Water Que		с. I. I.						
= Impervioi	is Area (pavement & i	rooftop area excluding nor	-metal roofs)					
	Required (cf)	Provided (cf)						
$V_{WQ} =$		42,647	96'' CMP Underground	Infiltration System - 1 (P-	10, P-11, P-14)			
$V_{WQ} =$	1,795	4,321	36'' CMP Underground	Infiltration System - 3 (P-	8 & P-9)			
$\frac{V_{WQ}}{V_{WQ}} =$				Infiltration System - 2 (P- Detention System - 1 (P-5,				
$V_{WQ} = V_{WQ}$	1,125 766	1,939	Surface Detention Pond		1-0,1-/)			—
$V_{WQ}^{HQ} =$		1,419	Rain Garden - 1 (Flows	from UDS-4)				
$V_{WQ} =$			Rain Garden - 2 (P-18)					
$V_{WQ} =$			Deminimus Unmitigate	d Area (P-1, P-2, P-3, P-4)				
$V_{WQ} =$	<u>12,315</u>	67,076						
drawdown=(Rv) (1/Design minitratio	n Rate in inches per hour)	Conversion for inches to	feet) (1/bottom area in feet	ONS (72 HOURS MAX)			
drawdown=(Rv		Infiltration System-1		e feet) (1/bottom area in feet) Underground Infil		4.00	
edrawdown=(Rv		Infiltration System-1 Infiltration Rate (in/Hr)=	1.02	o feet) (1/bottom area in feet) Underground Infil	Infiltration Rate (in/Hr)=		
drawdown=(Rv	Underground	Infiltration System-1Infiltration Rate (in/Hr)=Bottom Area (ft^2) =	1.02 7,020	e feet) (1/bottom area in feet) Underground Infil	Infiltration Rate (in/Hr)= Bottom Area (ft ²) =	5,704	
drawdown=(Rv	Underground	Infiltration System-1 Infiltration Rate (in/Hr)= Bottom Area (ft ²) = Infiltration Volume (ft ³) =	1.02 7,020 42,647	o feet) (1/bottom area in feet) Underground Infil	Infiltration Rate (in/Hr)= Bottom Area (ft^2) = nfiltration Volume (ft^3) =	5,704 4,321	
drawdown=(Rv	Underground	Infiltration System-1Infiltration Rate (in/Hr)=Bottom Area (ft^2) =	1.02 7,020 42,647	e feet) (1/bottom area in feet) Underground Infil	Infiltration Rate (in/Hr)= Bottom Area (ft ²) =	5,704 4,321	
drawdown=(Rv	Underground	Infiltration System-1 Infiltration Rate (in/Hr)= Bottom Area (ft ²) = Infiltration Volume (ft ³) =	1.02 7,020 42,647	e feet) (1/bottom area in feet) Underground Infil	Infiltration Rate (in/Hr)= Bottom Area (ft ²) = nfiltration Volume (ft ³) = Time _{drawdown} (Hours)=	5,704 4,321	
drawdown=(Rv	Underground	Infiltration System-1 Infiltration Rate (in/Hr)= Bottom Area (ft ²) = Infiltration Volume (ft ³) = Time _{drawdown} (Hours)=	1.02 7,020 42,647 71.47	o feet) (1/bottom area in feet) Underground Infii Ii Underground Det	Infiltration Rate (in/Hr)= Bottom Area (ft ²) = nfiltration Volume (ft ³) = Time _{drawdown} (Hours)=	5,704 4,321 8.91	
drawdown=(Rv	Underground	Infiltration System-1 Infiltration Rate (in/Hr)= Bottom Area (ft ²) = Infiltration Volume (ft ³) = Time _{drawdown} (Hours)= Infiltration System-3	1.02 7,020 42,647 71.47	o feet) (1/bottom area in feet) Underground Infii Ii Underground Det	Infiltration Rate (in/Hr)= Bottom Area (ft ²) = filtration Volume (ft ³) = Time _{drawdown} (Hours)= tention System-1	5,704 4,321 8.91	
drawdown=(Rv	Underground	Infiltration System-1 Infiltration Rate (in/Hr)= Bottom Area (ft ²) = Infiltration Volume (ft ³) = Time _{drawdown} (Hours)= Infiltration System-3 Infiltration Rate (in/Hr)=	1.02 7,020 42,647 71.47 1.02 4,318	o feet) (1/bottom area in feet) Underground Infi In Underground Def	Infiltration Rate (in/Hr)= Bottom Area (ft ²) = filtration Volume (ft ³) = Time_{drawdown} (Hours) = tention System-1 Infiltration Rate (in/Hr)=	5,704 4,321 8.91 0 0	
drawdown=(Rv	Underground	Infiltration System-1 Infiltration Rate (in/Hr)= Bottom Area (ft ²) = Infiltration Volume (ft ³) = Time _{drawdown} (Hours)= Infiltration System-3 Infiltration Rate (in/Hr)= Bottom Area (ft ²) =	1.02 7,020 42,647 71.47 1.02 4,318 15,235	o feet) (1/bottom area in feet) Underground Infi In Underground Def	Infiltration Rate (in/Hr)= Bottom Area (ft ²) = filtration Volume (ft ³) = Time_{drawdown} (Hours) = tention System-1 Infiltration Rate (in/Hr)= Bottom Area (ft ²) =	5,704 4,321 8.91 0 0 0	
drawdown=(Rv	Underground	Infiltration System-1 Infiltration Rate (in/Hr)= Bottom Area (ft ²) = Infiltration Volume (ft ³) = Time _{drawdown} (Hours)= Infiltration System-3 Infiltration Rate (in/Hr)= Bottom Area (ft ²) = Infiltration Volume (ft ³) =	1.02 7,020 42,647 71.47 1.02 4,318 15,235	o feet) (1/bottom area in feet) Underground Infi In Underground Def	Infiltration Rate (in/Hr)= Bottom Area (ft ²) = filtration Volume (ft ³) = Time_{drawdown} (Hours) = Exention System-1 Infiltration Rate (in/Hr)= Bottom Area (ft ²) = filtration Volume (ft ³) = Time_{drawdown} (Hours) =	5,704 4,321 8.91 0 0 0	
drawdown=(Rv	Underground	Infiltration System-1 Infiltration Rate (in/Hr)= Bottom Area (ft ²) = Infiltration Volume (ft ³) = Time _{drawdown} (Hours)= Infiltration System-3 Infiltration Rate (in/Hr)= Bottom Area (ft ²) = Infiltration Volume (ft ³) = Time _{drawdown} (Hours)= n Garden-2	1.02 7,020 42,647 71.47 1.02 4,318 15,235	o feet) (1/bottom area in feet) Underground Infii	Infiltration Rate (in/Hr)= Bottom Area (ft ²) = filtration Volume (ft ³) = Time_{drawdown} (Hours) = Exention System-1 Infiltration Rate (in/Hr)= Bottom Area (ft ²) = filtration Volume (ft ³) = Time_{drawdown} (Hours) =	5,704 4,321 8.91 0 0 0 0 0.00	
drawdown=(Rv	Underground	Infiltration System-1 Infiltration Rate (in/Hr)= Bottom Area (ft ²) = Infiltration Volume (ft ³) = Time _{drawdown} (Hours)= Infiltration System-3 Infiltration Rate (in/Hr)= Bottom Area (ft ²) = Infiltration Volume (ft ³) = Time _{drawdown} (Hours)= n Garden-2 Infiltration Rate (in/Hr)=	1.02 7,020 42,647 71.47 1.02 4,318 15,235 41.51 1.02	o feet) (1/bottom area in feet) Underground Infii	Infiltration Rate (in/Hr)= Bottom Area (ft ²) = filtration Volume (ft ³) = Time_{drawdown} (Hours) = tention System-1 Infiltration Rate (in/Hr)= Bottom Area (ft ²) = filtration Volume (ft ³) = Time_{drawdown} (Hours) = traden-1 Infiltration Rate (in/Hr)=	5,704 4,321 8.91 0 0 0 0 0.00 1.02	
drawdown=(Rv	Underground Underground Rai	Infiltration System-1 Infiltration Rate (in/Hr)= Bottom Area (ft ²) = Infiltration Volume (ft ³) = Time _{drawdown} (Hours)= Infiltration System-3 Infiltration Rate (in/Hr)= Bottom Area (ft ²) = Infiltration Volume (ft ³) = Time _{drawdown} (Hours)= n Garden-2 Infiltration Rate (in/Hr)= Bottom Area (ft ²) =	1.02 7,020 42,647 71.47 1.02 4,318 15,235 41.51 1.02 2,509	o feet) (1/bottom area in feet) Underground Infi	Infiltration Rate (in/Hr)= Bottom Area (ft ²) = filtration Volume (ft ³) = Time_{drawdown} (Hours) = Eention System-1 Infiltration Rate (in/Hr)= Bottom Area (ft ²) = filtration Volume (ft ³) = Time_{drawdown} (Hours) = Infiltration Rate (in/Hr) = Bottom Area (ft ²) =	5,704 4,321 8.91 0 0 0 0 0 0 0.00 1.02 1,423	
drawdown=(Rv	Underground Underground Rai	Infiltration System-1 Infiltration Rate (in/Hr)= Bottom Area (ft ²) = Infiltration Volume (ft ³) = Time _{drawdown} (Hours)= Infiltration System-3 Infiltration Rate (in/Hr)= Bottom Area (ft ²) = Infiltration Volume (ft ³) = Time _{drawdown} (Hours)= n Garden-2 Infiltration Rate (in/Hr)= Bottom Area (ft ²) =	1.02 7,020 42,647 71.47 1.02 4,318 15,235 41.51 1.02 2,509 1,515	o feet) (1/bottom area in feet) Underground Infi	Infiltration Rate (in/Hr)= Bottom Area (ft ²) = filtration Volume (ft ³) = Time_{drawdown} (Hours) = tention System-1 Infiltration Rate (in/Hr)= Bottom Area (ft ²) = filtration Volume (ft ³) = Time_{drawdown} (Hours) = traden-1 Infiltration Rate (in/Hr)=	5,704 4,321 8.91 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

Computation Sheet Title MA DEP Standard Calculations By DMR/SJL Project School Street, Manchester-by-the-Sea, MA Chk'd CMQ Date July 16, 2021 CMQ Apprv'd Revised **TSS REMOVAL CALCULATIONS WORKSHEET** В С D Ε В С D Ε TSS Removal Starting TSS Amount Remaining TSS Removal Starting TSS Amount Remaining BMP¹ Rate¹ BMP¹ Rate¹ Load* Removed (C*D) Load (D-E) Load* Removed (C*D) Load (D-E) Deep Sump Deep Sump 0.25 1.00 0.25 0.75 0.25 1.00 0.25 0.75 **Catch Basins Catch Basins** Sediment Sediment Removal Removal 0.50 0.75 0.38 0.38 0.50 0.75 0.38 0.38 Proprietary Proprietary Device Device Surface Infiltration 0.80 0.38 0.30 0.08 Rain Garden 0.80 0.38 0.30 0.08 System w/ **Outlet Control** Total TSS Removal = Total TSS Removal = 93% 93% С В D Ε В С D Ε Starting TSS **TSS Removal** Amount **TSS Removal** Remaining Starting TSS Amount Remaining BMP¹ Rate¹ BMP¹ Rate¹ Load (D-E) Load (D-E) Load* Removed (C*D) Load* Removed (C*D) Deep Sump Deep Sump 0.25 1.00 0.25 0.75 0.25 1.00 0.25 0.75 Catch Basins **Catch Basins** Sediment Sediment Removal Removal 0.50 0.75 0.38 0.38 0.50 0.75 0.38 0.38 Proprietary Proprietary Device Device Surface Sub-surface Detention 0.80 0.38 0.30 0.08 Infiltration 0.80 0.38 0.30 0.08 Pond System Total TSS Removal = Total TSS Removal = 93% 93%

		Computation Shee	
Title	MA DEP Standard Calculations	By	DMR/SJL
Project	School Street, Manchester-by-the-Sea, MA	Chk'd	CMQ
Date	July 16, 2021	Apprv'd	CMQ
Revised			

STORMWATER QUALITY FLOW RATE CALCULATIONS FOR WATER QUALITY UNITS

Structure Name	Total Area (Acres)	Imp. Area (Acres)	A ^{IMP} (Sq. Miles)	Tc (min.)	Tc (hrs.)	WQV (inches)	qu (csm/in)
NQU-1	0.34	0.27	0.00042	6.0	0.10	1	774
NQU-2	0.34	0.27	0.00042	6.0	0.10	1	774
WQU-3	0.12	0.12	0.00019	6.0	0.10	1	774
WQU-4	0.48	0.21	0.00033	6.0	0.10	1	774
NQU-5	0.45	0.15	0.00023	6.0	0.10	1	774
NQU-6	0.41	0.31	0.00048	6.0	0.10	1	774
WQU-7	0.22	0.23	0.00037	6.0	0.10	1	774
WQU-8	0.30	0.15	0.00023	6.0	0.10	1	774

Water Quality Flow Rate = Q1 = (qu) (A) (WQV)

Structure Name	Q1 (cfs)	
CDS #1	0.33	Use Contech CDS Model 2015-4 (or approved equal
CDS #2	0.33	
CDS #3	0.14	
CDS #4	0.26	
CDS #5	0.18	
CDS #6	0.37	
CDS #7	0.28	
CDS #8	0.18	

Computation Sheet

Title

Pipe Sizing Table The Sanctuary - School Street - Manchester By the Sea - Comprehensive Permit Project Date July 16, 2021 Revised TBD A&M Project Number: 2725-01

Minimum Slope:	0.50%		Ву	DMR
Minimum Pipe Size:	12.00	_	Chk'd	SJL
Rainfall Intensity (in/hr):	6.17	(25 year storm)	Apprv'd	CMQ
Manning's n:	0.013	HDPE/PVC		
Minimum Pipe Cover:	2.51	_		
· ·		_		

Hayes Memorial Drive - Parcel L

Line)					Reg'd. Capac.	Pipe Size	Slope	Design	Capacity	Drop	Invert Elev	vation	Rim Elev.	
From	То	Length	Area	wgt. C	CA	Qd	D	s	Q _{full}	V _{full}	•	Upper	Lower	Upper	Cover
Upper	Lower	(feet)	(acres)			(cfs)	(in)	(%)	(cfs)	(fps)	(feet)	(ft)	(ft)	(ft)	(ft)
CB-1A	DMH1 (WQU1)	17	0.085	0.84	0.072	0.44	12	1.00%	3.6	4.54	0.17	48.50	48.33	51.50	1.88
CB-1B	DMH1 (WQU1)	7	0.085	0.84	0.072	0.44	12	2.43%	5.6	7.07	0.17	48.50	48.33	51.50	1.88
DMH-1	UDS	4				0.89	12	1.00%	3.6	4.54	0.04	48.23	48.19	51.80	2.45
CB-2A	DMH-3	17	0.085	0.84	0.072	0.44	12	1.00%	3.6	4.54	0.17	48.50	48.33	51.50	1.88
CB-2B	DMH-3	7	0.085	0.84	0.072	0.44	12	2.43%	5.6	7.07	0.17	48.50	48.33	51.50	1.88
CB-3	DMH-3	100	0.571	0.35	0.200	1.23	12	10.00%	11.3	14.35	10.00	57.47	47.47	67.50	8.91
DMH-3	DMH-2(WQU)	7				2.12	12	1.00%	3.6	4.54	0.07	47.37	47.30	59.40	10.91
CB-8A	DMH-8	18	0.059	0.95	0.056	2.47	12	3.00%	6.2	7.86	0.54	64.54	64.00	74.90	9.24
CB-8B	DMH-8	22	0.059	0.95	0.056	2.82	12	3.00%	6.2	7.86	0.66	64.66	64.00	74.90	9.12
DMH-8	FES-2	38	0.000	0.35	0.000	5.29	12	5.00%	8.0	10.14	1.90	63.90	62.00	73.40	8.38
Divit 1-0	1 20-2	50				5.25	12	0.0070	0.0	10.14	1.50	00.00	02.00	75.40	0.00
CB-12A	DMH-12	7	0.119	0.61	0.073	0.45	12	5.00%	8.0	10.14	0.35	95.79	95.44	102.30	5.38
CB-12B	DMH-12	7	0.119	0.61	0.073	0.45	12	5.00%	8.0	10.14	0.35	95.79	95.44	102.30	5.38
DMH-12	DMH-11A	53				0.91	12	8.00%	10.1	12.83	4.24	95.34	91.10	102.30	5.83
CB-12C	DMH-11A	22	0.423	0.35	0.148	0.91	12	10.00%	11.3	14.35	2.20	93.30	91.10	99.80	5.38
DMH-11A	DMH-10B	120				1.82	12	7.00%	9.4	12.00	8.40	91.00	82.60	99.80	7.68
CB-10A	DMH-10A	12	0.119	0.61	0.073	1.36	12	10.00%	11.3	14.35	1.20	83.50	82.30	91.00	6.38
CB-10B	DMH-10A	12	0.119	0.61	0.073	1.81	12	10.00%	11.3	14.35	1.20	83.50	82.30	91.00	6.38
DMH-10A	DMH-10B	6				3.17	12	10.00%	11.3 7.9	14.35	0.60	82.20	81.60	91.90	8.58
DMH-10B	FES-5	40				4.99	15	1.50%	7.9	6.45	0.60	82.20	81.60	92.20	8.63
CB-13A	DMH-13A	20	0.225	0.70	0.157	0.97	12	2.00%	5.0	6.42	0.40	102.85	102.45	111.40	7.43
CB-13B	DMH-13A	6	0.225	0.70	0.157	0.97	12	5.00%	8.0	10.14	0.30	102.75	102.45	111.40	7.53
DMH-1	DMH-2(WQU)	25		••		1.94	12	2.00%	5.0	6.42	0.50	102.35	101.85	110.90	7.43
CB-14A	DMH-14	7	0.259	0.80	0.206	1.27	12	2.00%	5.0	6.42	0.14	118.07	117.93	121.70	2.51
CB-14B	DMH-14	12	0.259	0.80	0.206	1.27	12	1.00%	3.6	4.54	0.12	118.05	117.93	121.70	2.53
DMH-14	UIS2	2				2.54	12	5.00%	8.0	10.14	0.10	117.60	117.50	122.10	3.38
CB-7A	DMH-7	10	0.487	0.95	0.462	2.85	12	5.00%	8.0	10.14	0.50	109.85	109.35	121.70	10.73
CB-7B	DMH-7	20	0.487	0.95	0.462	2.85	12	5.00%	8.0	10.14	1.00	110.35	109.35	121.70	10.23
DMH-7	UIS-3	35	0.107	0.00	01102	5.70	12	5.00%	8.0	10.14	1.75	109.25	107.50	122.10	11.73
OCS-4	DMH-15	60	From Hydr	o-CAD: 25-	Year Storm	0.11	12	4.00%	7.1	9.07	2.40	117.50	115.10	124.80	6.18
DMH-15	DMH-16	200				0.11	12	4.00%	7.1	9.07	8.00	115.00	107.00	122.30	6.18
OCS-5	DMH-16	14	From Hydr	o-CAD: 25-	Year Storm	0.34	12	5.00%	8.0	10.14	0.70	107.00	106.30	113.50	5.38
DMH-16	DMH-17	32				0.34	12	10.00%	11.3	14.35	3.20	93.20	90.00	111.00	16.68
DMH-17	DMH-18	37				0.34	12	10.00%	11.3	14.35	3.70	77.70	74.00	94.00	15.18
DMH-18	DMH-19	58				0.34	12	10.00%	11.3	14.35	5.80	61.80	56.00	78.00	15.08
DMH-19	FES-4	77				0.34	12	10.39%	11.5	14.62	8.00	115.00	107.00	122.30	6.18

	<i>RipRap Sizing</i> The Sanctuary - July 16, 2021	Spreadsheet Manchester-by-the-Se	ea			Computation Sh By Chk'd Apprv'd	eet SJL CMQ CMQ		
Revised: A&M Project Number:	2725-01								
OUTLET	Do (ft.)	Q25 (cfs)***	Tw (ft.)	La (ft.)	Wup (ft.)	Wdn (ft.)**	d50 (ft.)*		
FES-1	2.00	2.28	0.5	15.5	6.0	21.5	0.06		
FES-2	1.00	0.21	0.5	7.4	3.0	10.4	0.01		
FES-3	1.00	4.31	0.5	14.8	3.0	17.8	0.27		
FES-4	2.00	2.43	0.5	15.5	6.0	21.5	0.06		
FES-5	1.00	4.43	0.5	15.0	3.0	18.0	0.28		
FES-6	1.00	0.00	0.5	7.0	3.0	10.0	0.00		
Notes:									
Assume 6" Tw at Outfall				*6" Minimum St	one Diameter				
Jse MHD M2.02.2 Stone				**Apron width s	hall meet defined	downstream cha	nnel		
Depth of Stone to be 6" or 1.5 times d	150 - which ever i	s larger		**See pipe sizin	g spreadsheet fo	Q25 flows			
When Tw < 0.5Do at pipe outlet: La = 1.8Q/Do^1.5 + 7Do		Where:		let of the mine on	aha u u a l				
La = 1.8Q/Don1.5 + 7Do Wup = 3Do			Tw = the tailwater depth at the outlet of the pipe or channel						
Wup = 3Do Wdn = 3Do + La		Do = the diameter of the pipe or the width of channel Q_{2} where d_{2} are d_{2} and d_{2} and d_{2} and d_{2} and d_{3} a							
d50 = (0.02Q^1.3)/(TwDo)		Q = the discharge from the pipe of channel (25 year Storm) La = the length of apron							
-(0.020(1.3)/(100))		Wup = the upstream	•						
<u> When Tw > or = 0.5Do at pipe outle</u>	<u>t:</u>		dn = the downstream width of apron						
_a = 3Q/Do^1.5 + 7Do		d50 = the median stone diameter							
Wup = 3Do $Wdn = 3Do + 0.4La$									

NJCAT TECHNOLOGY VERIFICATION VortSentry[®] Stormwater Treatment System

December 2005

TABLE OF CONTENTS

1.	Intro	duction					
	1.1	New Jersey Corporation for Advanced Technology (NJCAT) Pro					
	1.2	Technology Verification Report	2				
	1.3	Technology Description					
		1.3.1 Technology Status					
		1.3.2 Specific Applicability					
		1.3.3 Range of Contaminant Characteristics					
		1.3.4 Range of Site Characteristics	5				
		1.3.5 Material Overview, Handling and Safety					
	1.4	Project Description					
	1.5	Key Contacts					
2.	Evalu	uation of the Applicant	8				
	2.1	Corporate History					
	2.2	Organization and Management	8				
	2.3	Operating Experience with the Proposed Technology	8				
	2.4	Patents					
	2.5	Technical Resources, Staff and Capital Equipment					
3.	Treat	tment System Description					
4.	Tech	nical Performance Claim					
5.	Treat	tment System Performance	11				
		5.1 NJDEP Recommended TSS Laboratory Testing Procedure					
	5.2	Laboratory Studies					
		5.2.1 Performance Testing Procedure					
		5.2.2 Washout Testing Procedure					
		5.2.3 Sample Analysis					
		5.2.4 Description of Laboratory Testing Facility	15				
		5.2.5 Laboratory Testing Results					
		5.2.6 Washout Testing Results					
	5.3	Verification Procedures					
		5.3.1 Verified Treatment Flow					
	5.4	Inspection and Maintenance					
		5.4.1 Inspection					
		5.4.2 Maintenance	20				
		5.4.3 Solids Disposal	20				
		5.4.4 Damage Due to Lack of Maintenance					

TABLE OF CONTENTS (Continued)

6.	Tech	nical Eva	aluation Analysis	21
	6.1		cation of Performance Claim	
	6.2		ations	
			Factors Causing Under-Performance	
		6.2.2		
		6.2.3		
		6.2.4	Bypass Flow	22
		6.2.5	Mosquitoes	
7.	Net H	Environn	nental Benefit	22
8.	Refe	rences		22
Figur Figur	re 2. Ro re 3. M	outine V oderate l	 [®] Features ortSentry[®] Operation Intensity VortSentry[®] Operation F-95 Particle Size Distribution Testing Facility for the VortSentry[®] System 	5 6
	of Tabl			
			ortSentry [®] Model Sizes and Dimensions	
			e Distribution	
Table	e 3. Tre	atment (Operating Rates and Weight Factors	13
			f VortSentry [®] Laboratory Testing Results with F-95 Grade Silica_ Vashout Testing at 50% and 100% of	16
1 401			try [®] Sediment Storage Capacity	17
Table	e 6. We	ighted R	emoval Efficiency for the VortSentry [®] System	18
Table	e 7. Vo	rtSentry	Treatment Flows Assuming Volumetric Scaling	19

1. Introduction

1.1 New Jersey Corporation for Advanced Technology (NJCAT) Program

NJCAT is a not-for-profit corporation to promote in New Jersey the retention and growth of technology-based businesses in emerging fields such as environmental and energy technologies. NJCAT provides innovators with the regulatory, commercial, technological and financial assistance required to bring their ideas to market successfully. Specifically, NJCAT functions to:

- Advance policy strategies and regulatory mechanisms to promote technology commercialization;
- Identify, evaluate, and recommend specific technologies for which the regulatory and commercialization process should be facilitated;
- Facilitate funding and commercial relationships/alliances to bring new technologies to market and new business to the state; and
- Assist in the identification of markets and applications for commercialized technologies.

The technology verification program specifically encourages collaboration between vendors and users of technology. Through this program, teams of academic and business professionals are formed to implement a comprehensive evaluation of vendor specific performance claims. Thus, suppliers have the competitive edge of an independent third party confirmation of claims.

Pursuant to N.J.S.A. 13:1D-134 et seq. (Energy and Environmental Technology Verification Program), the New Jersey Department of Environmental Protection (NJDEP) and NJCAT have established a Performance Partnership Agreement (PPA) whereby NJCAT performs the technology verification review and NJDEP certifies the net beneficial environmental effect of the technology. In addition, NJDEP/NJCAT work in conjunction to develop expedited or more efficient timeframes for review and decision-making of permits or approvals associated with the verified/certified technology.

The PPA also requires that:

- The NJDEP shall enter into reciprocal environmental technology agreements concerning the evaluation and verification protocols with the United States Environmental Protection Agency (USEPA), other local required or national environmental agencies, entities or groups in other states and New Jersey for the purpose of encouraging and permitting the reciprocal acceptance of technology data and information concerning the evaluation and verification of energy and environmental technologies; and
- The NJDEP shall work closely with the State Treasurer to include in State bid specifications, as deemed appropriate by the State Treasurer, any technology verified under the Energy and Environment Technology Verification Program.

1.2 Technology Verification Report

In October 2005, Stormwater360TM, Inc., 200 Enterprise Drive, Scarborough, Maine, 04074, submitted a formal request for participation in the NJCAT Technology Verification Program. The technology proposed, The VortSentry[®] Stormwater Treatment System, is a hydrodynamic separator designed to enhance gravitational separation of floating and settling materials from stormwater flows. The system was developed in Scarborough, Maine and is described in greater detail later in this report. Through research and field application, the technology has been refined to capture total suspended solids (TSS), sediments, oil and grease, and trash and debris (including floatables and negatively buoyant debris). The request (after pre-screening by NJCAT staff personnel in accordance with the technology assessment guidelines) was accepted into the verification program. This verification report covers the evaluation based upon the performance claim of the vendor, Stormwater360TM, Inc. (see Section 4). The verification report differs from typical NJCAT verification reports in that final verification of the VortSentry[®] System (and subsequent NJDEP certification of the technology) awaits completed field testing that meets the full requirements of the Technology Acceptance and Reciprocity Partnership (TARP) - Stormwater Best Management Practice Tier II Protocol for Interstate Reciprocity for stormwater treatment technology. This verification report is intended to evaluate the Stormwater360TM, Inc. initial performance claim for the technology based primarily on carefully conducted laboratory studies. This claim is expected to be modified and expanded following completion of the TARP required field-testing.

This project included the evaluation of assembled reports, company manuals, and laboratory testing reports to verify that the VortSentry[®] System meets the performance claim of Stormwater360TM, Inc.

1.3 Technology Description

1.3.1 Technology Status

In 1990 Congress established deadlines and priorities for USEPA to require permits for discharges of stormwater that are not mixed or contaminated with household or industrial wastewater. Phase I regulations established that a NPDES (National Pollutant Discharge Elimination System) permit is required for stormwater discharge from municipalities with a separate storm sewer system that serves a population greater than 100,000 and certain defined industrial activities. To receive a NPDES permit, the municipality or specific industry has to develop a stormwater management plan and identify best management practices for stormwater treatment and discharge. Best management practices (BMPs) are measures, systems, processes or controls that reduce pollutants at the source to prevent the pollution of stormwater runoff discharge from the site. Phase II stormwater discharges include all discharges composed entirely of stormwater, except those specifically classified as Phase I discharge.

The nature of pollutants emanating from differing land uses are very diverse. Stormwater360TM, Inc. has developed a technology for separating and retaining floating and sinking pollutants including sediment, hydrocarbons and debris under rapid flow conditions using a hydrodynamic separator. The system is designed with a circular treatment chamber that promotes a gentle

swirling motion to encourage settling pollutants to migrate to the center of the chamber where they are deposited. Floating pollutants are elevated above the bottom of the baffle wall where they collect over time. Between maintenance events, pollutants accumulate within the system and are therefore removed from the natural environment. These pollutants may otherwise become a human health hazard, an aesthetic issue or may be cycled within the food chain or water table even if trapped in a land based treatment system. Maintenance is performed from above by a vacuum truck and without interference from internal components.

General

The VortSentry[®] Stormwater Treatment System is a hydrodynamic separator designed to enhance gravitational separation of floating and settling materials from stormwater flows (See Figure 1). Stormwater flows enter the unit tangentially to the treatment chamber, which promotes a gentle swirling motion. As stormwater circles the treatment chamber, pollutants migrate toward the center of the unit where velocities are the lowest. Over time a conical pile tends to accumulate in the bottom of the treatment chamber containing sediment and associated metals, nutrients, hydrocarbons and other pollutants. Floating debris, oil and grease form a floating layer trapped in front of the treatment chamber baffle. These accumulated pollutants can be easily accessed through manholes conveniently located over the treatment chamber. Maintenance is typically performed through the manhole over the treatment chamber.

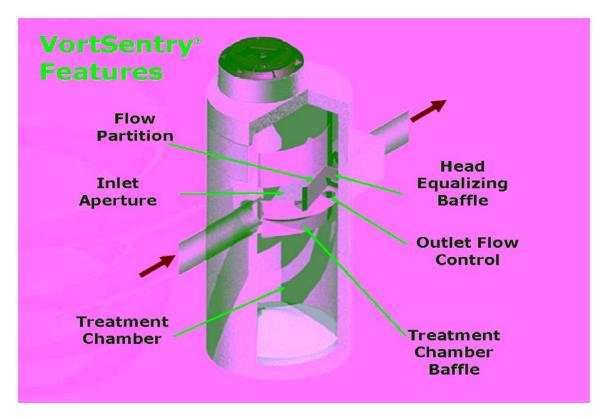


Figure 1. VortSentry[®] Features

1.3.2 Specific Applicability

The VortSentry[®] System is well suited to urban stormwater applications due to the following features:

- Laboratory testing has demonstrated that the system is capable of meeting stormwater treatment requirements;
- Below grade installation allows multiple land uses;
- Each system is custom designed to meet the hydraulic demands of site;
- Spill storage and sediment storage volumes can be increased as necessary;
- Technical support is available at no cost before and after the sale;
- There are no expendable or moving parts and a low cleanout volume minimizes operating costs.

The VortSentry[®] System is a compact, below grade system that is fabricated near the jobsite from concrete and marine grade aluminum. There are six standard precast models available, ranging from three to eight feet in diameter. In some regions VortSentry[®] systems are available in diameters up to 12 feet, but this is dependent on the capabilities of local precasters. Standard VortSentry[®] model sizes and dimensions are provided in Table 1.

VortSentry [®] Model	Treatment Chamber Diameter		Der (below)		Recommended Maximum Inlet / Outlet Pipe Size		
WIGUEI	(ft)	(m)	(ft)	(m)	(in)	(mm)	
VS30	3	0.9	5.4	1.7	12	300	
VS40	4	1.2	6.5	2.0	18	450	
VS50	5	1.5	7.4	2.3	18	450	
VS60	6	1.8	8.3	2.5	24	600	
VS70	7	2.1	9.1	2.8	30	762	
VS80	8	2.4	10.1	3.0	30	762	

Table 1. Standard VortSentry[®] Model Sizes and Dimensions

1.3.3 Range of Contaminant Characteristics

VortSentry[®] Systems have been shown to capture a wide range of pollutants of concern. These include: trash and debris (including floatables and negatively buoyant debris); total suspended solids; sediments; and oil and grease.

1.3.4 Range of Site Characteristics

Routine operation

Runoff from low intensity precipitation makes up the vast majority of the total annual flow volume from all sites. During low intensity precipitation events, all flow is diverted into the treatment chamber by the flow partition. The flow partition is designed to work in combination with the outlet flow control orifice to submerge the influent pipe during the water quality design storm. The effect of submerging the inlet pipe is to reduce inlet velocity and turbulence by increasing the cross sectional area of the flow path. Removal rates of sediment and floating pollutants are very high during routine operation since turbulence and internal velocities are very low, and residence times are relatively high. See Figure 2 for an illustration of routine VortSentry[®] operation.

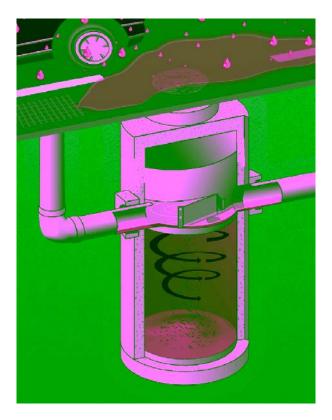


Figure 2. Routine VortSentry[®] Operation

Moderate intensity operation

As storm intensities and flow rates increase, the operating rate (gpm/ft3) in the VortSentry[®] also increases proportionally. At flow rates typical of moderate intensity storm events, a portion of flow begins to spill over the flow partition. Partitioning a portion of flow around the treatment chamber keeps velocities low in the treatment chamber. This allows the VortSentry[®] to continue to remove a high percentage of the pollutants from the runoff flowing through the treatment chamber. Maintaining low velocities in the treatment chamber also prevents scour of previously captured pollutants. The rising water surface elevation within the treatment chamber carries

floating contaminants such as trash and oil and grease away from the inlet and above the bottom of the baffle wall. This effectively prevents re-entrainment by separating contaminants from the higher velocity zones within the system. The swirling action increases, which promotes the migration of particles toward the center of the treatment chamber where the particles then form a stable conical pile. See Figure 3 for an illustration of moderate intensity VortSentry[®] operation.

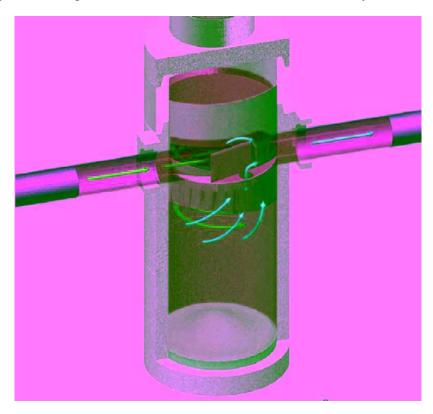


Figure 3. Moderate Intensity VortSentry[®] Operation

High Intensity Operation

At peak hydraulic capacity, the water surface elevation within the VortSentry[®] System increases and a substantial portion of the total flow passes over the flow partition submerging the head equalizing baffle. VortSentry[®] Systems are designed so that peak conveyance rates are representative of storm events such as the 5-yr or 10-yr rain event. Sediment and hydrocarbon removal rates are low, but previously captured materials remain trapped. This is accomplished by increasing the water surface elevation in the treatment chamber to isolate previously captured floatables and by maintaining low flow velocities in the treatment chamber. To accommodate large, infrequent storms, Stormwater360TM, Inc. can also assist with the design of an external bypass to route peak-flows around the treatment unit.

Storm subsidence

As a storm subsides, treated runoff continues to flow out of the VortSentry[®] System through the outlet orifice until the water level returns to the dry-weather volume. This process typically takes several minutes after runoff has ceased.

1.3.5 Material Overview, Handling and Safety

Accumulated pollutants can easily be accessed through the manhole located above the treatment chamber. To clean out the VortSentry[®] System with a vacuum truck, it is generally most convenient and efficient to clean all captured pollutants including sediment, oil and grease, and floating debris through the manhole over the treatment chamber. Access to the treatment chamber is unrestricted making the vactor operation a simple task. Once the treatment chamber and captured pollutants have been vacuumed from the unit, the manhole cover is simply replaced to complete the maintenance event.

Solids recovered from the VortSentry[®] System can typically be land filled or disposed of at a wastewater treatment plant. It is possible that there may be some specific land use activities that create contaminated solids, which will be captured in the system. Such material would have to be handled and disposed of in accordance with hazardous waste management requirements.

1.4 Project Description

This project included the evaluation of assembled reports, company manuals, and laboratory testing reports to verify that VortSentry[®] Systems meet the performance claim of Stormwater360TM, Inc.

1.5 Key Contacts

Rhea Weinberg Brekke Executive Director New Jersey Corporation for Advanced Technology c/o New Jersey Eco Complex 1200 Florence Columbus Road Bordentown, NJ 08505 609 499 3600 ext. 227 **rwbrekke@njcat.org**

Derek Berg Research and Development Specialist Stormwater360TM, Inc. 200 Enterprise Drive Scarborough, ME 04074 207-885-9830 **dberg@stormwater360.com**

Richard S. Magee, Sc.D., P.E., DEE Technical Director New Jersey Corporation for Advanced Technology c/o Carmagen Engineering Inc. 4 West Main Street Rockaway, NJ 07866 973-627-4455 ext. 24 Adam Sapp Regional Sales Manager Stormwater360TM, Inc. 7020 Troy Hill Drive Elkridge, MD 21075 610.998.0537 asapp@stormwater360.com

Ravi Patraju Bureau of Sustainable Communities and Innovative Technologies NJ Department of Environmental Protection 401 East State Street Trenton, NJ 08625-0409 609-292-0125 ravi.patraju@dep.state.nj.us

Christopher C. Obropta, Ph.D., P.E. Assistant Professor Rutgers, The State University of New Jersey Department of Environmental Sciences 14 College Farm Road New Brunswick, NJ 08901-8551 732-932-4917 obropta@envsci.rutgers.edu

2. Evaluation of the Applicant

2.1 Corporate History

Stormwater Management, Inc. and Vortechnics, Inc. united as Stormwater360TM, Inc. in April 2005. The two companies share over 25 years of experience in the stormwater industry. As a combined entity, their goal continues to be preserving and protecting water resources worldwide.

The joint company treats stormwater runoff from commercial, municipal and industrial sites, applying various technologies to address regulatory and customer requirements. Founded in 1988 and based in Scarborough, Maine, Vortechnics built their business on the development of hydrodynamic separation technology. Based in Portland Oregon, Stormwater Management led in the development of filtration technology, introducing a horizontal bed configuration with CSF leaf compost media in 1995.

In state-of-the-art laboratories at both locations, engineers and scientists continue to conduct research to further the understanding of nonpoint source pollution and develop practical product solutions. The parent company of Stormwater360TM, Inc. is Contech Construction Products, Inc., a leading civil engineering site solutions products and services company involved in highway, drainage, sewage, and site-improvement. In 2004, Vortechnics was purchased by Contech; and in April 2005, Contech purchased Stormwater Management.

2.2 Organization and Management

The company Stormwater360TM, Inc. is jointly headquartered in Scarborough, Maine, and Portland, Oregon with 19 regional sales offices throughout the United States and Canada. The management team consists of: David Miley, president and CEO; David Pollock, COO and VP of Sales; Jim Lenhart, Chief Technology Officer; Eric Roach, Chief Financial Officer; Fran Tighe, VP of Marketing; and Tom Gorrivan, National Sales Manager. The company has 23 regional sales managers, who report to Tom Gorrivan and work out of regional offices based in Maine, Maryland, Georgia, Texas, Ohio, California, Washington, Oregon, Wisconsin, Pennsylvania, Massachusetts, Nova Scotia, and Ontario.

2.3 Operating Experience with the Proposed Technology

Stormwater360TM, Inc. has more than 15 years of experience with stormwater technology, and after several years of research and development the VortSentry® was released in 2003. Currently there are more than 300 installations throughout the United States and Canada. Most importantly, the technology is backed by years of full scale laboratory testing and rigorous field testing is ongoing, including third party studies from several universities and organizations.

2.4 Patents

Stormwater360[™] has filed for patent protection for the VortSentry[®] System with the US Patent Office, and a patent is currently pending.

2.5 Technical Resources, Staff and Capital Equipment

Stormwater360TM completes all design work at its corporate headquarters in Scarborough, Maine and Portland, Oregon. Once a system design is complete, shop drawings are issued to a precast concrete contractor local to the installation site. Representatives from each precast company are trained in VortSentry[®] construction to ensure the details of construction are properly executed. Different contractors may elect to cast the system differently depending on their equipment and construction capabilities. For example, a precaster would have input regarding the details of construction such as how many pieces per system. They would also determine how the joints are formed and what type of lifting equipment is cast in. Stormwater360TM, Inc. ultimately reviews all construction and installation decisions made by the precaster.

The VortSentry[®] System is delivered to the site by the precaster on the day of installation. VortSentry[®] systems typically arrive on site in three or more pieces and require some assembly. VortSentry[®] models VS30-VS50 typically do not require the use of a crane for installation. Once delivered to the site by the precaster the contractor is responsible for assembling and sealing the VortSentry[®] sections. VortSentry[®] models VS60 and larger typically require a crane for installation and additional sealing of the aluminum components onsite. The site contractor is responsible for making arrangements to have a crane on site, completing excavation prior to delivery and setting the system into the ground. The contractor is also responsible for grouting the inlet and outlet pipe into the VortSentry[®] System, backfilling around the system and bringing the manhole frames and covers up to grade. Any work required on components inside the system is typically the responsibility of the Stormwater360TM precast contractor. Installation for all model sizes can typically be completed in two to four hours. Heaviest pick weight will be confirmed by Stormwater360TM staff and communicated to the contractor prior to delivery.

Specific installation instructions and requirements are provided. Stormwater360[™] tries to have a representative onsite during installation, but occasionally this is not possible. However, support representatives are always available to address questions that may arise during installation.

When the system arrives on site, it is inspected by the contractor. Any damage due to shipping and handling up to that point must be corrected by the precaster. Once the contractor takes delivery of the unit, it is their responsibility to lift it from the truck, place it in the ground, and connect the inlet and outlet pipes and backfill around it. The contractor will perform a final check against the VortSentry[®] Specification and the site plan before backfilling is initiated. If there are any installation errors at that point, the contractor will fix them and the system will be back filled.

Adjustments for buoyancy issues, calculation of pick weights, and other custom design items are confirmed before delivery. The inlet and outlet are clearly marked to avoid improper

installation. It is especially important that the system be set in such a way that the inlet pipe is at a 90 degree angle to the side of the tank to encourage proper treatment chamber flow dynamics. This orientation is checked prior to backfilling the unit since a significantly different influent pipe angle may increase inlet turbulence or cause short-circuiting of the treatment chamber.

VortSentry[®] Systems are typically available within four to six weeks of shop drawing approval.

3. Treatment System Description

The VortSentry[®] Stormwater Treatment System was designed to capture a wide range of pollutants from stormwater including: trash and debris (including floatables and negatively buoyant debris); total suspended solids; sediments; and oil and grease. Figure 1 displays a simple schematic of the VortSentry[®] System. The VortSentry[®] is a compact, below grade stormwater treatment system that employs vortex technology to enhance gravitational separation of floating and settling pollutants from stormwater flows. The device has no moving parts and is fabricated from concrete and marine grade aluminum. The main components of the system are a flow partition, inlet aperture, head equalizing baffle, treatment chamber, outlet flow control orifice, and treatment chamber baffle. The system is also equipped with a manhole for easy inspection and maintenance access.

During operation, stormwater runoff enters the unit tangentially to promote a gentle swirling motion in the treatment chamber. As polluted water circles within the chamber, settleable solids fall into the sump and are retained. Buoyant debris and oil and grease rise to the surface and are separated from the water as it flows under the baffle wall. Finally, treated water exits the treatment chamber through a flow control orifice located behind the baffle wall.

During low-flow conditions, all runoff is diverted into the treatment chamber by the flow partition. At higher flow rates, a portion of the runoff spills over the flow partition and is diverted around the treatment chamber to prevent re-suspension and washout of previously trapped pollutants. Water that spills over the partition flows into the head equalization chamber above the treatment chamber outlet. As the head equalization chamber fills, the head differential driving flow through the treatment chamber collapses. The result is that flow rates in the treatment chamber remain relatively constant even as total flow rates increase substantially. This configuration further reduces the potential for re-suspension or washout.

There are typically six (6) precast VortSentry[®] System models available to meet the hydraulic and water quality needs of large and small projects (See Table 1). The VortSentry[®] Systems have the ability to treat a wide range of flows. In certain regions, larger systems are available to accommodate higher flow rates.

4. Technical Performance Claim

Claim - The VortSentry[®] Stormwater Treatment System, Model VS40, sized at a loading rate of 9.8 gpm/ft³ (0.022cfs/ft³) of treatment volume, has been shown to have a 69% total suspended solids (TSS) removal efficiency, as measured as suspended solids concentration (SSC) (as per the NJDEP methodology for calculation of treatment efficiency) for F-95 silica sand with an

average d_{50} particle size of 120 microns, an average influent concentration of 209 mg/L and 50% initial sediment loading in laboratory studies using simulated stormwater.

5. Treatment System Performance

The VortSentry[®] System has been tested at the Stormwater360TM, Inc. full-scale hydraulic laboratory. The laboratory tests were completed using F-95, a commercially available silica sand gradation. The particle size distribution is shown in Figure 4. Tests were performed with sediment influent concentrations ranging from 88 to 521 mg/l at operating rates from 0.27 to 1.35 cfs. In addition to specific testing, Stormwater360TM, Inc. has developed the Rational Rainfall MethodTM, a model that estimates long term field performance based on site information, local precipitation patterns and laboratory performance data. The VortSentry[®] System is currently being tested in the field by Stormwater360TM, Inc. staff as well as by independent researchers.

Figure 4. US Silica F-95 Particle Size Distribution

5.1 NJDEP Recommended TSS Laboratory Testing Procedure

Stormwater360TM, Inc. designed their laboratory testing to comply with NJDEP's recommended TSS Laboratory Testing Procedure; the NJDEP testing procedure is presented herein. The NJDEP has prepared a Total Suspended Solids Laboratory Testing Procedure to help guide vendors as they prepare to test their stormwater treatment systems prior to applying for NJCAT verification.

The Testing Procedure has three components:

1. Particle size distribution

- 2. Full scale laboratory testing requirements
- 3. Measuring treatment efficiency
- 1. Particle size distribution:

The following particle size distribution was utilized to evaluate a manufactured treatment system (See Table 2). A natural/commercial soil representing the USDA definition of a sandy loam material was used. This hypothetical distribution was selected as it represents the various particles that would be associated with typical stormwater runoff from a post construction site.

Specifically, the following distribution can be utilized:

Particle Size (microns)	Sandy loam (percent by mass)
500-1000 (coarse sand)	5.0
250-500 (medium sand)	5.0
100-250 (fine sand)	30.0
50-100 (very fine sand)	15.0
2-50 (silt)	(8-50 um, 25%) (2-8 um, 15%)*
1-2 (clay)	5.0

Table 2. Particle Size Distribution

Notes:

1. Recommended density of particles ≤ 2.65 g/cm3

*The 8 um diameter is the boundary between very fine silt and fine silt according to the definition of American Geophysical Union. The reference for this division/classification is: Lane, E. W., et al. (1947), "Report of the Subcommittee on Sediment Terminology," Transactions of the American Geophysical Union, Vol. 28, No. 6, pp. 936-938.

- 2. Full scale lab test requirements
 - A. At a minimum, complete a total of 15 test runs including three (3) tests each at a constant flow rate of 25, 50, 75, 100, and 125 percent of the treatment flow rate. These tests should be operated with initial sediment loading of 50% of the unit's capture capacity.
 - B. The three tests for each treatment flow rate will be conducted for influent concentrations of 100, 200, and 300 mg/L.
 - C. For an online system, complete two tests at the maximum hydraulic operating rate. Utilizing clean water, the tests will be operated with initial sediment loading at 50% and 100% of the unit's capture capacity. These tests will be utilized to check the potential for TSS resuspension and washout.
 - D. The test runs should be conducted at a temperature between 73-79 degrees Fahrenheit or colder.
- 3. <u>Measuring treatment efficiency</u>
 - A. Calculate the individual removal efficiency for the 15 test runs.
 - B. Average the three test runs for each operating rate.

- C. The average percent removal efficiency will then be multiplied by a specified weight factor (see Table 3) for that particular operating rate.
- D. The results of the five numbers will then be summed to obtain the theoretical annual TSS load removal efficiency of the system.

Treatment operating rate	Weight factor
25%	.25
50%	.30
75%	.20
100%	.15
125%	.10

Table 3. Treatment Operating Rates and Weight Factors

Notes:

Weight factors were based upon the average annual distribution of runoff volumes in New Jersey and the assumed similarity with the distribution of runoff peaks. This runoff volume distribution was based upon accepted computation methods for small storm hydrology and a statistical analysis of 52 years of daily rainfall data at 92 rainfall gages.

5.2 Laboratory Studies

In June of 2005, Stormwater360TM initiated a VortSentry[®] laboratory testing program in accordance with the New Jersey Department of Environmental Protection's (NJDEP) Total Suspended Solids Laboratory Test Procedure. All testing was conducted in the Stormwater360TM laboratory in Scarborough, ME on a full scale 4-ft diameter VortSentry[®] model VS40. The ultimate objective of the testing program was to provide a sufficient body of performance data to warrant an interim certification from the NJDEP. In order to comply with the requirements of the NJDEP testing protocol and to provide a data set that is comparable to the data sets of other stormwater treatment technologies that have completed the Tier I testing program, Stormwater360TM modeled its VortSentry[®] test plan to be consistent with the test plans for other technologies that have participated in the Tier I testing program.

All testing was conducted using F-95, a commercially available silica sand gradation (See Figure 4). Sediment was mixed with tap water in a 55-gallon recirculating slurry bin. A peristaltic pump was utilized to meter the slurry mixture into the influent line upstream of the test apparatus at a known rate.

Influent samples were collected at a 6-inch gate valve located upstream of the VortSentry[®] System. Effluent samples were collected by sweeping a sample bottle through the free discharge of a down-turned 90° PVC elbow, which discharges into a catch tank downstream of the VortSentry[®] System. All samples were collected in 500 ml HDPE sample bottles. Once the system was stabilized at the desired flow rate the metering pump was activated, starting the delivery of sediment to the VortSentry[®] System. Once sediment introduction was initiated, the

system was run for a period of time equal to three times the detention time of the system before the first samples were collected. This allows the system to reach equilibrium. After three detention times have passed, a series of ten paired influent and effluent samples were taken at one minute intervals. Effluent samples were staggered from influent samples by the detention time of the test unit. Once ten influent and effluent samples were collected, the system was shut down. Sediment was not removed from the test system after each test effectively allowing additional sediment to accumulate within the treatment chamber sump.

To reduce recirculation of material within the test system, a silt fence was constructed in the catch tank to filter the effluent before it was pumped back to the water supply tank. Background samples were drawn from the water supply tank using a GLI Automatic Vacuum Sampler to monitor the sediment concentration in the source water. If the mean sediment concentration in the source water supply tank was drained and cleaned, and the test was then repeated.

5.2.1 Performance Testing Procedure

- 1. Prior to the start of each test, the VortSentry[®] System was filled to 50% of its sediment capture depth (1.5ft) with F-95 sediment.
- 2. A sediment/water slurry was prepared in a ratio of 1.25 lb of sediment/gallon of water in the slurry mixer.
- 3. Adequate mixing was ensured by starting the slurry mixture at least five minutes before the start of the sediment metering pump.
- 4. The inlet flow control valve was opened and the flow rate through the VortSentry[®] System was stabilized at the target flow rate. The system was considered stable when the flow rate remained stable for approximately one minute.
- 5. The metering pump was started at the target rpm rate (rate required to produce target influent concentration). This was time 0:00.
- 6. After three detention times, the first background sample was collected. Background samples were collected at a one minute interval for the duration of the test.
- 7. One minute after the first background sample was taken, the first influent sample was collected. Influent samples were collected at one minute intervals until ten samples are taken.

Note: Immediately before each influent sample was taken, the gate valve was flushed by quickly opening and closing it. This cleared any settled material from the mouth of the valve.

- 8. One detention time after the first influent sample was taken, the first effluent sample was collected.
- 9. Effluent samples were collected at a one minute interval until ten samples were taken.
- 10. After ten influent and effluent samples were collected, the metering pump and slurry tank mixer were stopped.
- 11. The background sampler was then stopped.
- 12. The VortSentry[®] System was shut down.

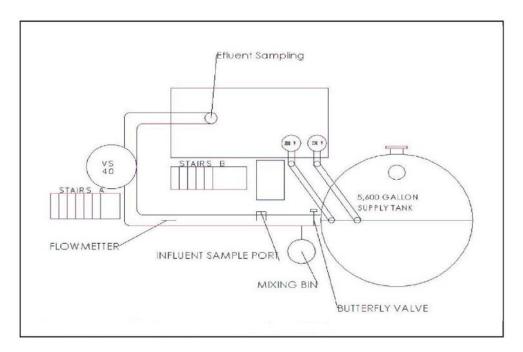
5.2.2 Washout Testing Procedure

Upon completion of the required performance testing, two washout trials were conducted to determine the potential for material to be scoured from the VortSentry[®] System. The first trial

was conducted with the VortSentry[®] model VS40 filled to 50% (19 ft³) of its sediment capture volume with F-95. The second trial was conducted with the VortSentry[®] System filled to 100% (38 ft³) of its sediment capture volume. Both of these trials were conducted at the system's peak hydraulic capacity. Both trials were conducted with clean water. No sediment was injected into the influent stream. Upon start up, the system was brought to its peak operating capacity. Effluent sampling was started as soon as flow was introduced to the unit and continued in 30-second intervals until the conclusion of the test. Sampling before the unit had reached its hydraulic capacity was allowed for documentation of any material that was scoured before the VortSentry[®] System reaches hydraulic capacity. Once the system had reached hydraulic capacity, sampling continued in 30 second intervals for five minutes. Given the relatively short detention time of the unit under peak operating conditions, this was ample time to determine the unit's scour potential.

5.2.3 Sample Analysis

Sample analysis was conducted at the Stormwater360TM, Inc. laboratory by trained laboratory technicians. Samples were analyzed in compliance with ASTM D 3977-97 a whole sample variation of the TSS method, also referred to as the suspended sediment concentration (SSC) method.


5.2.4 Description of Laboratory Testing Facility

All VortSentry[®] System performance testing was conducted at the Stormwater360TM, Inc. research laboratory in Scarborough, Maine. Water was stored in a 5,600 gallon supply tank and delivered to the VortSentry[®] System through a gravity fed 12-inch diameter PVC pipe. Flow through the pipe was regulated by a 12 inch butterfly valve located upstream of the VortSentry[®] System. A 1/3 horse power Dayton split phase motor was used to mix sediment and water into a slurry in a 55 gallon conical bottom mixing bin. The slurry was then metered into the 12 inch PVC pipe just downstream of the butterfly valve with a Watson Marlow peristaltic pump. The conical bottom slurry tank was equipped with an under drain which remained open during the test to allow the slurry to be continuously recirculated within the bin with a Randolph Model 750 peristaltic pump. Influent samples were collected through a 6 inch PVC gate valve located directly downstream of the sediment metering port. Flow was monitored with an ISCO 4250 Area Velocity flow meter that was installed in the influent pipe. Effluent discharged from a down turned 12 inch PVC elbow into an aluminum catch tank. A silt fence, consisting of standard landscaping fabric mounted to a frame, was installed in the catch tank to filter effluent before it was recirculated to the water supply tank. Two ten horsepower Zoeller sewage pumps returned flow from the catch tank to the supply tank. The layout of the VortSentry[®] System test setup is shown in Figure 5.

5.2.5 Laboratory Testing Results

Results of the 15 individual tests conducted in accordance with the NJDEP laboratory testing protocol are summarized in Table 4. The target flow rate for each test was determined assuming the target treatment flow rate was 1.1 cfs. The target treatment flow rate was identified through preliminary testing to gauge system performance. The actual flow rate as reported in Table 4

represents the mean flow rate measured during each test. The removal efficiency reported for each test represents the mean suspended solids load reduction for that test and is calculated using the following equation:

Removal Efficiency = (Influent Conc. – Effluent Conc.) / Influent Conc.

Figure 5. Laboratory Testing Facility for the VortSentry[®] System

Test Number	Percent of Treatment Flow (%)	Target Flow Rate (cfs)	Target Conc. (mg/l)	Actual Flow Rate (cfs)	Influent Conc. (mg/l)	Effluent Conc. (mg/l)	Removal Efficiency (%)
1	25	0.27	100	0.27	88	6	93
2	25	0.27	200	0.27	200	12	94
3	25	0.27	300	0.26	266	13	95
4	50	0.55	100	0.56	92	23	75
5	50	0.55	200	0.54	219	60	73
6	50	0.55	300	0.54	521	121	77
7	75	0.82	100	0.84	130	44	66
8	75	0.82	200	0.83	142	53	63
9	75	0.82	300	0.81	304	122	60
10	100	1.10	100	1.11	95	49	48
11	100	1.10	200	1.10	167	80	52
12	100	1.10	300	1.09	277	164	41
13	125	1.35	100	1.35	137	102	26
14	125	1.35	200	1.24	233	163	30
15	125	1.35	300	1.35	263	179	32

5.2.6 Washout Testing Results

As required by the NJDEP laboratory testing protocol, a washout analysis was conducted at both 50 and 100 percent of the VortSentry[®] System sediment storage capacity. The protocol required each trial to be conducted at the maximum hydraulic operating rate of the unit. Due to the driving head limitations of the water supply tank in the laboratory, the maximum hydraulic operating rate for the model VS40 VortSentry[®] System was approximately 1.8 cfs. A VortSentry[®] model VS40 can be configured with additional hydraulic capacity, but this additional flow was directed over the flow partition and did not significantly impact the flow rate or velocity of flow through the treatment chamber. By limiting the flow rate and velocity through the treatment chamber, resuspension of previously captured material is unlikely.

The mean flow rate for the washout tests at both 50 and 100 percent of sediment storage capacity was 1.77 cfs. Results for both tests are shown in Table 5. During both tests the sediment concentration in the source water was monitored and subtracted from the VortSentry[®] System effluent concentration. Solids in the source water are typically attributable to recirculation of material during previous tests. With the sump filled to 50 percent of the VortSentry[®] System sediment storage capacity (1.5 feet), no washout was observed. The mean effluent concentration for suspended solids was less then the mean background concentration indicating a net removal of solids from the source water as it passed through the VortSentry[®] System. With the sump filled to 100 percent of the VortSentry[®] System sediment storage capacity (three feet), minimal washout was observed. The mean effluent concentration for suspended solids was slightly higher then the mean background concentration indicating a small amount of material was exported from the system. The mean effluent solids concentration after accounting for background solids was 8 mg/l, which is quite low; fine particles were present in the F-95 stock as a result of manufacture and handling. Most of the sediment was manually loaded into the VortSentry[®] System for this testing as opposed to being captured by the unit, so it is likely that residual fine material that would not typically be present in the sump was subsequently lost from the unit.

	Average Background Concentration (mg/l)	Average Effluent Concentration (mg/l)	Mean Adjusted Effluent Concentration (mg/l)
50% of sediment storage capacity (1.5 ft)	8	5	-3
100% of sediment storage capacity (3 ft)	5	14	8

Table 5. Results of Washout Testing at 50% and 100% of the
VortSentry® Sediment Storage Capacity

5.3 Verification Procedures

All the data provided to NJCAT were reviewed to fully understand the capabilities of the VortSentry[®] System. To verify the Stormwater360TM, Inc. claim, the laboratory data were reviewed and compared to the NJDEP Laboratory Testing Protocol. Although Stormwater360TM, Inc. attempted to design their laboratory experiment to satisfy the NJDEP TSS laboratory testing protocol, there are two distinct differences between Stormwater360TM, Inc. laboratory testing and the NJDEP protocol. The NJDEP protocol is for total suspended solids (TSS) laboratory testing, while Stormwater360TM, Inc. analyzed their samples as suspended sediment concentration (SSC). Also, the d₅₀ of the NJDEP recommended sediment is approximately 67 microns, while the d₅₀ of the F-95 silica used in the Stormwater360TM, Inc. laboratory testing was 120 microns.

The NJDEP weighting factors were used with the laboratory data that were presented in Table 4. The resulting overall removal efficiency based upon the NJDEP methodology is presented below in Table 6.

Since the treatment volume of the VS40 system is 50 ft³, the tested flow rate of 1.1 cfs can be converted to 9.8 gpm/ft³(0.022 cfs/ft³). Based upon the data presented in Table 6, the removal efficiency of the system is 69%, thereby verifying the Stormwater360TM, Inc. claim.

Based upon the wash out laboratory data presented by Stormwater360TM, Inc., there is virtually no potential of re-suspension and wash out of sediment contained in the VortSentry[®] System.

Percent of Treatment Flow Rate (%)	Target VS40 Flow Rate (cfs)	Removal Efficiency (%)	Weight factor	Weighted Removal Efficiency (%)
25	0.27	94	0.25	24
50	0.55	75	0.30	22
75	0.82	63	0.20	13
100	1.10	47	0.15	7
125	1.35	29	0.10	3
	Weighted Remo	val Efficiency =		69

Table 6. Weighted Removal Efficiency for the VortSentry[®] System

5.3.1 Verified Treatment Flow

In order to appropriately scale any hydraulic structure, there must be similitude between the proposed model and the tested laboratory prototype. Geometric similitude is achieved by maintaining a constant aspect ratio of 0.9 for all models. For modeling purposes, the treatment depth is considered to be the distance from the top of the flow partition to the top of the 3' deep storage sump.

It has been shown in the laboratory that VortSentry[®] removal rates are dependent on the volumetric operating rate. Therefore, treatment flow rates for models other than the tested unit have been calculated which provide the same volumetric operating rate of 9.8 gpm/ft³ (0.022 cfs/ft³). Table 7 shows these peak treatment flow rate for each VortSentry[®] model.

Model	Diameter	Treatment Volume	Treatment	Flow Rate	Operati	ng Rate
Number	(ft)	(ft ³)	(cfs)	(gpm)	(cfs/ft ³)	(gpm/ft ³)
VS30	3	21	0.46	207	0.022	9.8
VS40	4	50	1.1	494	0.022	9.8
VS50	5	98	2.15	965	0.022	9.8
VS60	6	170	3.71	1,665	0.022	9.8
VS70	7	269	5.90	2,648	0.022	9.8
VS80	8	402	8.80	3,950	0.022	9.8
VS100*	10*	785	17.19	7,715	0.022	9.8
VS120*	12*	1,357	29.70	13,330	0.022	9.8

Table 7. VortSentry Treatment Flows Assuming Volumetric Scaling

* 10 and 12 ft. diameter units are not available in all markets.

5.4 Inspection and Maintenance

The VortSentry[®] System requires minimal routine maintenance. However, it is important that the system be inspected at regular intervals and cleaned when necessary to ensure optimum performance. The rate at which the system collects pollutants will depend more on site activities than the size of the unit (i.e., heavy winter sanding will cause the treatment chamber to fill more quickly but regular sweeping will slow accumulation).

5.4.1 Inspection

Inspection is the key to effective maintenance, and it is easily performed. Stormwater 360^{TM} , Inc. recommends ongoing quarterly inspections of accumulated pollutants. Sediment accumulation may be especially variable during the first year after installation as catch basin sumps are filled and as construction disturbances and landscaping stabilize. Quarterly inspections are typically sufficient to ensure that systems are cleaned out at the appropriate time. Inspections may need to be performed more often in the winter months in climates where sanding operations may lead to

rapid accumulations or in other areas with heavy sediment loading. It is very useful to keep a record of each inspection.

The VortSentry[®] System should be cleaned when inspection reveals that the sediment depth has accumulated to three feet in the treatment chamber sump. This determination can be made by taking two measurements with a stadia rod or similar measuring device. One measurement should be taken from the manhole opening to the top of the sediment pile and the other from the manhole opening to the system should be cleaned out if the difference between the two measurements is three feet or more.

<u>Note</u>: To avoid underestimating the volume of sediment in the chamber, the measuring device must be lowered to the top of the sediment pile carefully. Finer, silty particles at the top of the pile may offer less resistance to the end of the rod than larger particles toward the bottom of the pile.

5.4.2 Maintenance

Maintaining the VortSentry[®] System is easiest when there is no flow entering the system. For this reason it is a good idea to schedule the cleanout during dry weather. Cleanout of the VortSentry[®] System with a vacuum truck is generally the most effective and convenient method of excavating pollutants from the system. If such a truck is not available, a "clamshell" grab may be used, but it is difficult to remove all accumulated pollutants with these devices.

Accumulated sediment is typically evacuated through the manhole over the treatment chamber. Simply remove the cover and insert the vacuum hose into the treatment chamber. All contents of the treatment chamber should be removed with the vacuum hose. The treatment chamber will contain a combination of liquid, sediment, floating debris, and oil and grease.

Motor oil and other hydrocarbons that accumulate on a more routine basis should be removed when an appreciable layer has been captured. To remove these pollutants, it may be preferable to use adsorbent pads since they are usually cheaper to dispose of than the oil water emulsion that may be created by vacuuming the oily layer. In VortSentry[®] System installations where there is little risk of petroleum spills, liquid contaminants may not accumulate as quickly as sediment. However, any oil or gasoline spill should be cleaned out immediately. Trash can be netted out if it needs to be separated from the other pollutants.

Manhole covers should be securely seated following cleaning activities, to ensure that surface runoff does not leak into the unit from above.

5.4.3 Solids Disposal

Solids recovered from the VortSentry[®] System can typically be land filled or disposed of at a wastewater treatment plant, but local regulations will ultimately govern disposal procedures.

5.4.4 Damage Due to Lack of Maintenance

It is unlikely that the VortSentry[®] System will become damaged due to lack of maintenance since there are no fragile internal parts. However, adhering to a regular maintenance plan ensures optimal performance of the system.

6. Technical Evaluation Analysis

6.1 Verification of Performance Claim

Based on the evaluation of the results from laboratory studies, sufficient data is available to support the Stormwater360TM, Inc. claim: The VortSentry[®] Stormwater Treatment System, Model VS40, sized at a loading rate of 9.8 gpm/ft³ (0.022cfs/ft³) of treatment volume, has been shown to have a 69% total suspended solids (TSS) removal efficiency, as measured as suspended solids concentration (SSC) (as per the NJDEP methodology for calculation of treatment efficiency) for F-95 silica sand with an average d₅₀ particle size of 120 microns, an average influent concentration of 209 mg/L and 50% initial sediment loading in laboratory studies using simulated stormwater.

6.2 Limitations

6.2.1 Factors Causing Under-Performance

If the VortSentry[®] System is designed and installed correctly, there is minimal possibility of failure. There are no moving parts to bind or break, nor are there parts that are particularly susceptible to wear or corrosion. Lack of maintenance may cause the system to operate at a reduced efficiency, and it is possible that eventually the system will become totally plugged with sediment.

6.2.2 Pollutant Transformation and Release

The VortSentry[®] System will not increase the net pollutant load to the downstream environment. However, pollutants may be transformed within the unit. For example, organic matter may decompose and release nitrogen in the form of nitrogen gas or nitrate. These processes are similar to those in wetlands but probably occur at slower rates in the VortSentry[®] System due to the absence of light and mixing by wind, thermal inputs and biological activity. Accumulated sediment will not be lost from the system under normal operating conditions.

6.2.3 Sensitivity to Heavy or Fine Sediment Loading

The VortSentry[®] System requires no pretreatment. Heavy loads of sediment will increase the needed maintenance frequency but will not negatively affect overall performance.

6.2.4 Bypass Flow

The VortSentry[®] System is typically designed such that a portion of the total conveyance flow through the system is bypassed around the treatment chamber. Flow rates exceeding the treatment capacity of the system are typically routed around the treatment chamber over the flow partition.

6.2.5 Mosquitoes

The VortSentry[®] System design incorporates standing water in the treatment chamber sump, which can be a breeding site for mosquitoes. To address this potential problem Stormwater360TM sells an optional manhole cover insert that allows outgassing but will prevent mosquitoes from entering the system through the manhole covers. A flap valve can be installed at the terminal end of the outlet pipe to prevent mosquitoes from entering the unit from the downstream side.

7. Net Environmental Benefit

The NJDEP encourages the development of innovative environmental technologies (IET) and has established a performance partnership between their verification/certification process and NJCAT's third party independent technology verification program. The NJDEP, in the IET data and technology verification/certification process, will work with any company that can demonstrate a net beneficial effect (NBE) irrespective of the operational status, class or stage of an IET. The NBE is calculated as a mass balance of the IET in terms of its inputs of raw materials, water and energy use and its outputs of air emissions, wastewater discharges, and solid waste residues. Overall the IET should demonstrate a significant reduction of the impacts to the environment when compared to baseline conditions for the same or equivalent inputs and outputs.

Once VortSentry[®] Systems have been certified for interim use within New Jersey, Stormwater360TM, Inc. will then proceed to install and monitor systems in the field for the purpose of achieving goals set by the Tier II Protocol and final certification. At that time, a net environmental benefit evaluation will be completed. However, it should be noted that the Stormwater360TM, Inc. technology requires no input of raw material, has no moving parts, and therefore, uses no water or energy.

8. References

Patel, M. 2003, *Draft Total Suspended Solids Laboratory Testing Procedures*, December 23, 2003, New Jersey Department of Environmental Protection, Office of Innovative Technology and Market Development.

Stormwater360TM, Inc., October 2005, VortSentry[®] Stormwater Treatment System Technology Report, *Prepared for: New Jersey Corporation for Advanced Technology*.

Stormwater360TM, Inc., October 2005, VortSentry[®] Technical Design Manual.

State of New Jersey

DEPARTMENT OF ENVIRONMENTAL PROTECTION Bureau of Nonpoint Pollution Control Division of Water Quality Post Office Box 029 Trenton, New Jersey 08625-029 609-633-7021 Fax: 609-984-2147 http://www.state.nj.us/dep/dwq/bnpc_home.htm

BOB MARTIN Acting Commissioner

Derek Berg Regulatory Manager – Stormwater CONTECH Engineered Solutions 200 Enterprise Drive Scarborough, ME 04074

Re: Final Certification Continuous Deflective Separator (CDS) by CONTECH Engineered Solutions LLC

Expiration Date: December 1, 2016 TSS Removal Rate: 50%

Dear Mr. Berg:

The Stormwater Management rules under N.J.A.C. 7:8-5.5(b) and 5.7(c) allow the use of manufactured treatment devices (MTDs) for compliance with the design and performance standards at N.J.A.C. 7:8-5 if the pollutant removal rates have been verified by the New Jersey Corporation for Advanced Technology (NJCAT) and have been certified by the New Jersey Department of Environmental Protection (NJDEP). CONTECH Engineered Solutions LLC has requested a Final Certification for the Continuous Deflective Separator (CDS) Stormwater Treatment System.

This project falls under the July 15, 2011 "Transition for Manufactured Treatment Devices," under *C. Manufactured Treatment Devices Seeking Final Certification – In Process* which are MTDs that have commenced field testing on or before August 1, 2011.

NJDEP received the required information and signed statements by the NJCAT Technical Director and the manufacturer indicating that the requirements of the Field Testing Protocols in place at the initiation of testing have been met or exceeded. The NJCAT letter also includes a recommended certified TSS removal rate and the required maintenance plan.

The NJDEP certifies the use of the CONTECH Engineered Solutions LLC CDS Stormwater Treatment System at a TSS removal rate of 50%, subject to the following conditions:

1. The various models and associated water quality flow capacities shall be sized for the peak flow of the New Jersey Water Quality Design Storm per N.J.A.C. 7:8-5, as shown in Table 1 below.

CHRIS CHRISTIE Governor

KIM GUADAGNO Lt. Governor

New Jersey Treatment Rates for CDS Models Based on a Surface Area Secific Loading Rate of 25.16gpm/ft ²		
CDS Model	Manhole Diameter (ft)	Treatment Flow Rate (cfs)
CDS-4	4	0.7
CDS-5	5	1.1
CDS-6	6	1.6
CDS-8	8	2.8
CDS-10	10	4.4
CDS-12	12	6.3

- 2. The CDS Stormwater Treatment System can be used on-line or off-line.
- 3. A hydrodynamic separator, such as the CDS Stormwater Treatment System, cannot be used in series with another hydrodynamic separator to achieve an enhanced removal rate for total suspended solids (TSS) removal under N.J.A.C. 7:8-5.5.
- 4. The maintenance plan for the sites using this device shall incorporate at a minimum, the maintenance requirements for the CDS Stormwater Treatment System shown attached.

In addition to the attached, the detailed maintenance plan must include all of the items identified in Chapter 8: Maintenance of the New Jersey Stormwater Best Management Manual. Such items include, but are not limited to, the list of inspection and maintenance equipment and tools, specific corrective and preventative maintenance tasks, indication of problems in the system, and training of maintenance personnel.

Additional information regarding the implementation of the Stormwater Management rules N.J.A.C. 7:8 are available at <u>www.njstormwater.org</u>. Please contact Sandra Blick of my office at (609) 633-7021 if you have any questions.

Sincerely. James J. Murphy. Chief

Bureau of Nonpoint Pollution Control

c: Chron File Richard Magee, NJCAT Mark Pedersen, DLUR Elizabeth Dragon, BNPC

CDS Maintenance

The CDS system must be inspected at regular intervals and maintained when necessary to ensure optimum performance. The rate at which the system collects pollutants will depend more heavily on site activities than the size of the unit, e.g., unstable soils or heavy winter sanding will cause the grit chamber to fill more quickly but regular sweeping will slow accumulation.

Inspection

Inspection is the key to effective maintenance and is easily performed. Pollutant deposition and transport may vary from year to year and regular inspections will help insure that the system is cleaned out at the appropriate time. At a minimum, inspections must be performed twice per year (i.e. spring and fall) however more frequent inspections may be necessary in climates where winter sanding operations may lead to rapid pollutant accumulations, or in equipment washdown areas. Additionally, installations where excessive amounts of trash are expected should be inspected more frequently.

The visual inspection must ascertain that the system components are in working order and that there are no blockages or obstructions to the inlet and/or separation screen. The inspection must also identify accumulations of hydrocarbons, trash, and sediment in the system. Measuring pollutant accumulation can be done with a calibrated dipstick such as a stadia rod, tape measure or other measuring instrument. If sorbent material is used for enhanced removal of hydrocarbons then the level of discoloration of the sorbent material should also be identified during inspection. Sorbent material must be replaced when it is predominantly dark in color (similar to oil). It is useful and often required as part of a permit to keep a record of each inspection.

Access to the CDS unit is typically achieved through two manhole access covers. One opening allows for inspection and cleanout of the separation chamber (screen/cylinder) and isolated sump. The other allows for inspection and cleanout of sediment captured and retained behind the screen. For units possessing a sizable depth below grade (depth to pipe), a single access point allows for both sump cleanout and access behind the screen.

The CDS system must be cleaned when the level of sediment in the sump has reached a depth of 12 inches or more to avoid exceeding the maximum 24 inch sediment depth and/or when an appreciable level of hydrocarbons and trash has accumulated. If sorbent material is used, it must be replaced when significant discoloration has occurred. Performance will not be impacted until 100% of the sump capacity is exceeded however it is recommended that the system be cleaned prior to that for easier removal of sediment. The level of sediment is easily determined by measuring from finished grade down to the top of the sediment pile. To avoid underestimating the level of sediment in the chamber, the measuring device must be lowered to the top of the sediment pile carefully. Finer, silty particles at the top of the pile typically offer less resistance to the end of the rod than larger particles toward the bottom of the pile. Once this measurement is recorded, it should be compared to the

as-built drawing for the unit to determine if the height of the sediment pile off the bottom of the sump floor exceeds 75% (18 inches) of the total height of isolated sump.

Cleaning

Cleaning of the CDS systems should be done during dry weather conditions when no flow is entering the system. Cleanout of the CDS with a vacuum truck is generally the most effective and convenient method of excavating pollutants from the system. Simply remove the manhole covers and insert the vacuum hose into the sump. The system should be completely drained down and the sump fully evacuated of sediment. The area outside the screen should also be pumped out if pollutant build-up exists in this area.

In installations where the risk of petroleum spills is small, liquid contaminants may not accumulate as quickly as sediment. However, an oil or gasoline spill should be cleaned out immediately. Motor oil and other hydrocarbons that accumulate on a more routine basis must be removed when an appreciable layer has been captured. To remove these pollutants, it may be preferable to use adsorbent pads since they are usually less expensive to dispose of than the oil/water emulsion that may be created by vacuuming the oily layer. Trash can be netted out if you wish to separate it from the other pollutants. The screen should be power washed to ensure it is free of trash and debris.

Manhole covers should be securely seated following cleaning activities to prevent leakage of runoff into the system from above and also to ensure proper safety precautions. Confined Space Entry procedures need to be followed.

Disposal of all material removed from the CDS system must be done is accordance with local regulations. In many locations, disposal of evacuated sediments may be handled in the same manner as disposal of sediments removed from catch basins or deep sump manholes. Check your local regulations for specific requirements on disposal.

Illicit Discharge Compliance Statement

Responsibility:

The Owner is responsible for ultimate compliance with all provisions of the Massachusetts Stormwater Management Policy, the USEPA NPDES Construction General Permit and responsible for identifying and eliminating illicit discharges (as defined by the USEPA).

OWNER NAME:	SLV School Street, LLC.
ADDRESS:	257 Hillside Avenue
	Needham, MA 02494
TEL. NUMBER:	(617) 276-7261

Engineer's Compliance Statement:

To the best of my knowledge, the attached plans, computations and specifications meet the requirements of Standard 10 of the Massachusetts Stormwater Handbook regarding illicit discharges to the stormwater management system and that no detectable illicit discharges exist on the site. All documents and attachments were prepared under my direction and qualified personnel properly gathered and evaluated the information submitted, to the best of my knowledge.

Included with this statement are site plans, drawn to scale, that identify the location of systems for conveying stormwater on the site and show that these systems do not allow the entry of any illicit discharges into the stormwater management system. The plans also show any systems for conveying wastewater and/or groundwater on the site and show that there are no connections between the stormwater and wastewater systems.

For a redevelopment project (if applicable), all actions taken to identify and remove illicit discharges, including without limitation, visual screening, dye or smoke testing, and the removal of any sources of illicit discharges to the stormwater management system are documented and included with this statement.

Notwithstanding the foregoing, an illicit discharge does not include discharges from the following activities or facilities: firefighting, water line flushing, landscape irrigation, uncontaminated groundwater, potable water sources, foundation drains, air conditioning condensation, footing drains, individual resident car washing, flows from riparian habitats and wetlands, dechlorinated water from swimming pools, water used for street washing, and water used to clean residential buildings without detergents.