Task 3: Sediment Characterization and Flushing Studies -Sawmill Brook Flood Mitigation and Restoration Project

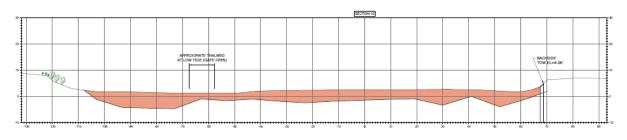
To: Mary Reilly, Manchester-by-the-Sea Grants Administrator
FROM: Gabrielle Belfit, CFM; Gary Hedman, LSP; David Azinheira, CFM, P.E.
COPY: David A. Murphy, P.E.

DATE: June 18, 2018

1 Introduction

This memorandum describes the field methods, data analysis, and recommendations for sediment management under Task 3 "Sediment Characterization and Sediment Transport for the Sawmill Brook Tide Gate Removal and Restoration Feasibility Study". The memo includes a discussion of the sediment depth profiling, sediment physical and chemical characteristics, sediment sources, sediment transport modeling to evaluate the consequences of the Central Street Bridge tide gate removal, and recommendations for sediment management during the restoration of Central Pond and Lower Sawmill Brook.

Georgeann Keer, Division of Ecological Restoration (DER) and Eric Hutchins, NOAA Restoration Center (NOAA) served as technical advisors for this project. The technical advisors reviewed the field methodology providing helpful suggestions to refine the approach, were onsite during the initial sediment depth profile assessment and reviewed draft and final deliverables.


2 Sediment Characterization

2.1 Sediment Depth Profiling

Sediment profiling was conducted in the Central Pond portion of the project area to develop a baseline assessment of sediment depth. A total of nine sediment depth profiles were completed on November 28, 2017 and January 23, 2018, in the same location as the existing conditions plan surveyed cross sections shown in **Figure 1**. Sediment depths were collected by manually advancing a six-foot-long, half inch diameter steel probe to refusal, and recording the measurement. Sediment depths were profiled every 10 feet across each cross section and are summarized in Appendix A, along with sediment profile cross sections, depicted with the existing conditions survey cross section profile.

The sediment depth profiling of Central Pond indicated that accumulations of fine grained sediment and organic muck range from less than one foot to greater than six feet in depth, with the thickest areas of sediment located at Transect 6 and Transect 10. Sediment thickness along these transects was significantly variable, transitioning from approximately two feet to greater than six feet over the course of one profile interval (10 feet). **Inset 1** shows the sediment profiles for Transect 10, stretching out across the widest point of Central Pond. Deposition of sediment in Central Pond is the result of several contributing factors, most notably the dissipation of flow velocity when the Central Street tide gate is closed, impounding water across the Central Pond, and untreated stormwater runoff from the surrounding areas.

Inset 1: Sediment Profile at Transect 10

Areas upstream and downstream of Central Pond are subject to higher stream flow velocities, and were observed to have limited areas of finer grained sediment (i.e. coarse sand) deposits. Sediment depth profiling was not conducted in these areas as the stream channel bottoms are comprised primarily of rock, gravel, and cobble that could not be penetrated by the manual probe.

The volume of sediment present in Central Pond was calculated using CAD area geometry provided by the survey elevation of the pond bathymetry and depth profiling, similar to the method used for determining cut and fill volumes. Based on data collected to date, approximately 5,350 cubic yards of sediment are present within the Central Pond portion of the project area, between Transect 4 (downstream) and Transect 13.

Photo 1: Conducting the sediment depth survey at Transect 11 (January 23, 2018).

2.2 Sediment Quality Analysis

Based on the data collected during the sediment depth profiling, visual observations of areas upstream and downstream of Central Pond, and potential restoration alternatives identified by project stakeholders, Tighe & Bond conducted a limited assessment of sediment quality in the Central Pond portion of the project area. Sediment sampling locations were designated based on the premise that the preferred restoration alternative would minimize mechanical dredging of sediment deposits within Central Pond and instead allow for natural transport of sediment through restoration of unimpeded flow conditions.

On January 23, 2018, Tighe & Bond collected three sediment samples from shallow sediment in Central Pond (Upstream, Downstream, and Pond). Samples were collected at low tide with the Central Street tide gate open to allow for access. These conditions also allowed for the identification of the current course of water flow through the Central Pond area at low tide. Two of the sediment samples (Upstream and Downstream) were collected from the center thalweg of the observed course of water flow. The third sediment sample ("Pond") was collected from the area of sediment that has accumulated in the eastern portion of Central Pond that is exposed during low tide when the Central Street tide gate remains open. The stream channel and sediment sampling locations are shown on **Figure 2**.

Photo 2: Sediment sample collection at Transect 12 (January 23, 2018).

In each of the sample locations, a dedicated, disposable six-foot length of two-inch diameter PVC tubing was manually advanced approximately three feet into the sediment with a rubber mallet. The top of the core tube was then capped with a rubber expansion plug and extracted, and recovered sediment was collected for compositing / sampling¹. In order to collect sufficient sample volume, two to three cores were collected at each of the locations.

Sediment samples were placed in appropriate sample containers and submitted to ESS Laboratory, Cranston, Rhode Island for laboratory analysis of chemical constituents required under Massachusetts Department of Environmental Protection (MassDEP) 401 Water Quality Certification (310 CMR 9.07), and MassDEP Policy COMM 94-007, which regulates the reuse of sediment at Massachusetts landfills. The sediment sampling activities conducted during this feasibility evaluation were limited in scope.

Additional sediment sampling would be necessary to support a 410 WQC permit application in support of the selected project design / alternative.

¹ US EPA. (2014). Sediment Sampling Operating Procedures- SESDPROC-200-R3. USEPA.

Figure 2 Sediment Sample Locations LOCUS MAP 1 inch equals 150 feet NOTES Sawmill Brook Area Manchester By the Sea, Massachusetts

January 2018

Sediment samples were analyzed for:

- Extractable petroleum hydrocarbons (EPH) with polycyclic aromatic hydrocarbons • (PAHs);
- Polychlorinated biphenyls (PCBs) National Oceanic and Atmospheric Administration • (NOAA) 18 Congeners;
- Volatile organic compounds (VOCs) by Environmental Protection Agency (EPA) • method 8270 SIM;
- Total organic carbon (TOC) by EPA Method 9060; •
- Total petroleum hydrocarbons (TPH) by Method 8100 M; •
- Resource Conservation and Recovery Act (RCRA) 8 metals •
- Percent Moisture / Percent Solids by EPA Method 2540G;
- Grain size distribution by American Society for Testing and Materials (ASTM) D422. •

As summarized Table 1, laboratory analysis of the sediment samples indicated the presence of low levels of metals, PAHs, and PCBs.

Table 1 - Sedimen	t Results S	ummary									
Central Pond Manchester-by-the-Sea, MA											
Analytes	No. Samples Detected	MA RCS-1	TECs	Sawmill Brook Maximum Concentration	NAE -2012- 322						
	Г	Metals (mg/kg)									
Arsenic	3 of 3	20	33	13.1	10						
Cadmium	3 of 3	70	5	0.67	1.4						
Chromium	3 of 3	100	110	15.3	250						
Copper	3 of 3	1,000	150	23.9	87						
Lead	3 of 3	200	130	167	110						
Mercury	3 of 3	20	0.18	0.441	0.68						
Nickel	3 of 3	600	49	8.5	19						
Zinc	3 of 3	1,000	460	129.0	140						
	Total PC	CB Congeners (m	ıg∕kg)								
PCBs	3 of 3	1	0.06	0.00756	0.15						
		PAHs (mg/kg)									
Benzo(a)anthracene	3 of 3	7	0.110	2.52	0.88						
Benzo(a)pyrene	3 of 3	2	0.150	2.10	0.69						
Benzo(b)fluoranthene	3 of 3	7	NE	2.67	0.59						
Benzo(g,h,i)perylene	3 of 3	1,000	NE	1.19	0.54						
Chrysene	3 of 3	70	0.170	2.27	0.62						
Fluoranthene	3 of 3	1,000	0.420	6.23	1.70						
Indeno(1,2,3-	3 of 3	7	NE	1.44	0.52						
cd)pyrene											
Phenanthrene	3 of 3	10	0.200	1.26	0.66						
Pyrene	3 of 3	1,000	0.200	4.50	1.50						

Notes:

Mg/kg - milligrams per kilogram

MAE-2012-322 – Bulk Chemical Analysis – Town of Manchester, Manchester Harbor – Tier III Sediment Evaluation Total PCB congeners equals sum of congener numbers 8, 18, 28, 44, 52, 66, 101, 105, 118, 128, 138, 153, 170, 180, 187, 195, 206, and 206. Bold font denotes the listed concentration exceeds the MA RCS-1 or TEC criteria.

TEC - Threshold effects concentrations - Guidance for Disposal Site Risk Characterization - In Support of the Massachusetts Contingency Plan (1996).

Sediment sampling results are compared to two criteria in Table 1:

- MassDEP Reportable Concentrations for Soil (RCS-1), as established in 310 CMR 40.000, the Massachusetts Contingency Plan (MCP).
- Threshold Effects Concentrations (TECs), as established in *Revised Sediment Screening Values*, update to Section 9.0 of *Guidance for Disposal Site Risk Characterization – In Support of the Massachusetts Contingency Plan (1996).*

Sediment sampling results are compared to the RCS-1 values to determine if upland reuse of sediment is an alternative, as dredged material, including sediment, placed on or in the land at an upland location is subject to the release notification requirements and thresholds of 310 CMR 40.0300 and 40.1600 for soil, unless such placement is in accordance with the provisions of 310 CMR 40.0317(10) and 314 CMR 9.07 (4), (6), (9), (10), or (11).

With the exception of benzo(a)pyrene (2.10 mg/kg), lead (167 mg/kg) in the Downstream sediment sample, the detected concentrations of metals, PCBS, and PAH concentrations in the sediment samples collected in support of this feasibility evaluation were below the MassDEP Reportable Concentration (RCS-1) values in 310 CMR 40.000.

TECs are sediment screening values used to evaluate the potential risk of harm to the environment from sediment contamination during a Stage I Ecological Risk assessment conducted in accordance with the MCP. If each detected sediment contaminant concentration is equal to or less than the sediment screening criterion for the contaminant, no further evaluation of the risk of harm from the sediment is required. The current screening criteria for metals are based on the TECs that have been developed as consensus-based sediment quality guidelines by MacDonald et al. (2000).

The maximum concentration of total PCBs is below the RCS-1 values and TECs. In sediment samples collected from the Downstream and Pond sediment samples, lead, mercury, and several PAHs were detected at concentrations above the established TEC.

The grain size distribution results indicated that the Central Pond sediment consists of dark brown, silty sand (Sed-1, 2 and 3). Additional samples were taken at School Street and the Norwood Avenue Culvert. Sediment deposits here were limited to areas behind boulders and woody debris. Sediment was defined as poorly graded sand at Norwood Avenue and poorly graded gravel with sand at School Street. The grain size analysis is provided in Appendix C.

The results of the sediment sampling were confirmatory of visual observations. Central Pond is a shallow impounded system, with variable depth fine silt deposits overlaying bedrock (Cape Ann Granite). Sediment analysis identified several metals and PAHs that were above MassDEP the respective RCS-1 and TEC Screening Values.

2.3 Sediment Management Considerations

In accordance with 314 CMR 9.07(9) of the 401 Water Quality Certification regulations, upland placement of dredged material as fill or for other reuse activities is allowable, provided the concentrations of oil and hazardous material in the dredged material are less than the Method 1 S-1 soil standards as specified in 310 CMR 40.0975: *Identification of Applicable Soil Standards in Method* 1. The Method 1 S-1 standards consider the potential risk of harm to humans resulting from direct exposure to contaminants present in soil, and are applicable as the areas where upland reuse of sediment is feasible would be potentially accessible.

314 CMR 9.07(9) places additional criteria for the upland reuse of sediment, requiring that that the subject material is not otherwise a hazardous waste and will not adversely affect an existing public or private potable water supply, provided that:

The material is not reused at a location(s) where:

- The nature of the contaminants (evaluated as chemical families such as metals, PAHs, petroleum hydrocarbons, halogenated volatile organic compounds, halogenated pesticides, PCBs, and dioxin-like compounds) in the dredged material is different than that at the receiving location; and
- the concentration(s) of oil and hazardous materials in the soil at the receiving location are significantly lower than the levels of those oil and hazardous materials present in the material;

In accordance with 314 CMR 9.07(9), it is necessary to demonstrate that the receiving locations do not contain contaminant concentrations that are "significantly lower" than the levels present in the dredge sediment. In the case of Central Pond, since there were detections of benzo(a)pyrene above the MCP Method 1 soil standard in sediment samples collected from the Downstream location, upland reuse of sediment from this area would not be permitted in accordance with 314 CMR 9.07(9). We anticipate that the reuse of sediment from other areas in the project site for salt-marsh restoration would be acceptable, since contaminant levels would potentially be below the Method 1 S1 soil standards, and consistent with the concentrations identified in the "Pond" sample, collected from the area of accumulated sediment in the eastern portion of Central Pond that is exposed during low tide when the Central Street tide gate remains open. Any reuse of sediment in upland areas is subject to review and approval by MassDEP through the 401 Water Quality Certification permitting process.

While dredging and upland reuse of sediment within the project area could be evaluated as a feasible component to the overall project restoration plan. Tighe & Bonds assessment of sediment in the project area was conducted based on the premise that the preferred restoration alternative would minimize mechanical dredging of sediment deposits within Central Pond, and instead allow for natural transport of sediment through restoration of unimpeded flow conditions.

Historically, the flow of water through Central Pond has been restricted by the closed tide gate for significant portions of the year. It is important to note that the tide gate has been routinely opened during the spring to allow for fish passage, and also during the winter and spring seasons to alleviate upstream flooding during periods of peak runoff. During these periods of unrestricted flow conditions, sediment transport is occurring, with the ultimate discharge location in Central Harbor.

In addition to our evaluation of the potential for upland reuse of sediment, Tighe & Bond reviewed analytical data collected by CLE Engineering, of Marion, Massachusetts, in 2012 in support of a harbor dredging project (NAE-2012-322 – Bulk Chemical Analysis – Town of Manchester, Manchester Harbor – Tier III Sediment Evaluation), the results of which are summarized in Table 1. A complete copy of the Tier II Sediment Evaluation laboratory analytical report is included in Appendix B. Our review indicates that, overall, the nature of sediment quality upstream of the Central Street tide gate is not significantly different with regard to the presence of heavy metals, notably lead and mercury. Levels of total PCBs were slightly higher in the Central Harbor sediment samples collected by CLE, while levels of PAHs were slightly higher in samples collected by Tighe & Bond upstream of the Central Street tide gate.

Our visual observations, supported by the sediment analysis, confirm the feasibility of upland reuse of sediment from portions of the project area to create salt marsh areas along the banks

of Sawmill Brook. Our review of data collected to date also indicate that the restoration of natural flow conditions and sediment transport from Sawmill Brook into Central Harbor is unlikely to result in a deterioration of conditions with regard to concentrations of contaminants present in the sediment.

2.4 Bathymetry Development

The survey data was used to develop a bathymetric map of the Central Pond surface (Photo 3). The Pond is relatively flat, with a shallow gradient from ranging from 3 feet NAVD88 where Sawmill Brook enters Central Pond to 0.2 feet at the Central Street culvert inlet. Two main "islands" are present at low tide, one triangular feature at the entrance to the pond, and one kidney shaped feature centrally located. The surveyed bathymetry correlates well with orthophotos, considering the contour resolution is only one foot. At low tide, Sawmill Brook

Photo 3- Survey Bathymetry of Central Pond

flows into the widened section of the Pond, and then meanders over the first triangular rise, slowing the flow and causing sediment to drop out. The flow splits about 90% flows to the west and the rest flows along the western wall.

The three areas of elevated sediment have been consistent over the past 18 years. Looking at historic images of the Pond in Google Earth from 2001 to 2017 (Photo 4) there has been

some increase in the areas of visible deposition, but it has remained relatively consistent over the past 10 years.

Photo 4: Views of Central Pond 2001-2017

To get better visual approximation of the distribution of sediment, the sediment depth profile data from the transects were linked with the bathymetry to develop a map showing the relative sediment depth throughout the pond (**Figure 3**). Three main areas of sediment deposition are noted in the figure. At the lower extent of the pond, there is an area of deposition just off the shallow shelf, where the stream widens up. In the center, there is a notable area on the eastern shore where there is a shallow bank, and stormwater outfall. A third area to the north is less well defined, there are significant gravel deposits in this location, and it is an area where the stream first hits the pond, and sediment can drop out as the velocity slows.

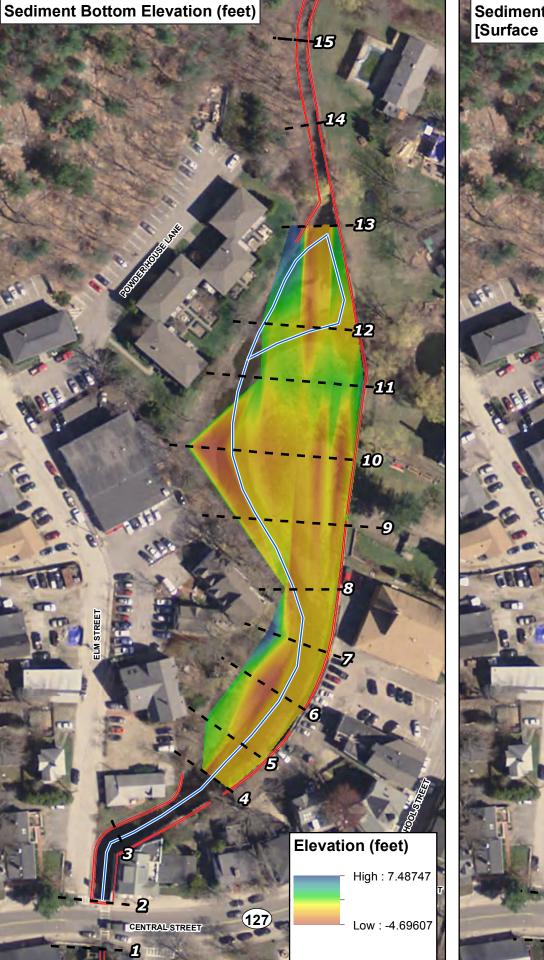
2.5 Stream Bank Survey

On April 18, staff completed a visual stream bank survey from Central Street to Norwood avenue to identify eroded bank reaches along Sawmill Brook. A photo log of the visual survey is provided in Appendix D. A variety of stream bank erosion control matrials are used along the Brook.

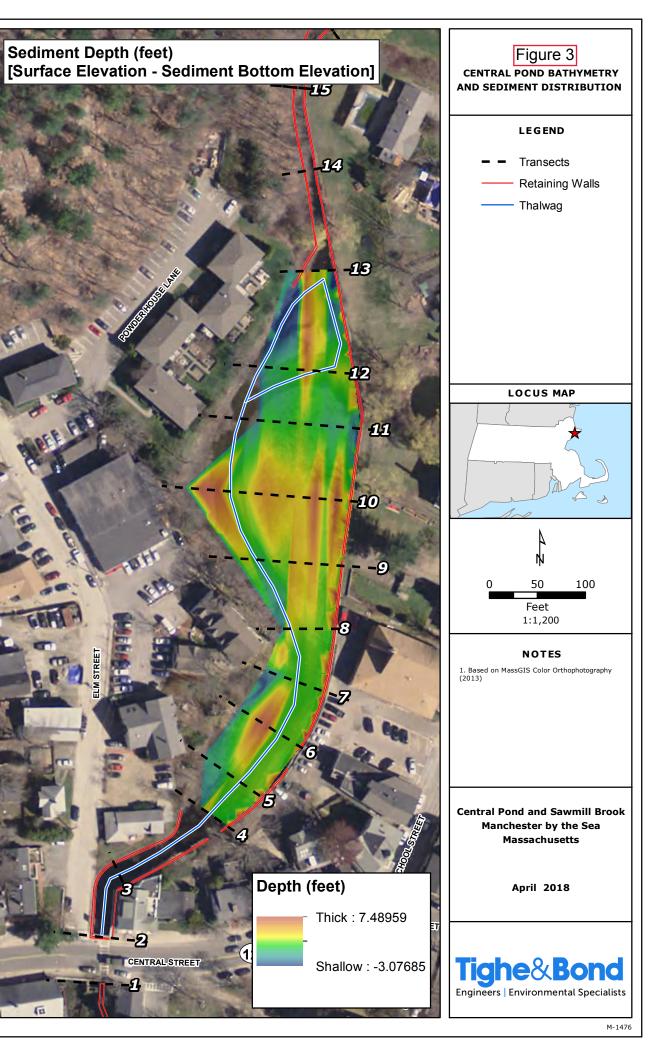
Central Pond Structures (Central Street to Knight's Circle)

This area includes the main area known as Central Pond extending from the Central Street Bridge up to Knights Circle. When the tide gate is closed the pond fluctuates an average of 4.25 to 4.90 feet from low to high tide. When the tide gate is open the depth ranges from 1.01 to 5.04 feet from low to high tide. The survey for Central Pond was conducted at low tide, to gain visual access to the toe of wall, and obtain photos from an in-stream perspective.


Granite block, poured concrete, brick, field stone and shale revetment and combinations of the above are the dominant structures found around Central Pond. The eastern shoreline is cut sharply into the Pond, with the wall defining the eastern bank boundary. The eastern shoreline was completely lined with wall structures ranging from 3-5 feet in height, with the tallest walls adjacent to Central Street along the channel that paralells Elm Street, and the lowest walls found on the south eastern shoreline, that are predominantly privately owned properties.


The western shoreline has a more gradual slope, and includes several shoals formed from finer sediments deposited as Sawmill Brook flows under low water flow, gathering in pockets along the shore. Several stormwater discharge outfalls were noted along the western shore that are also a source of sediment. Walls along the western shoreline varied from loose cobbles, revetment, to low fieldstone. The western shoreline is almost entirely under private ownership with the exception of a town-owned parcel on Elm Street .

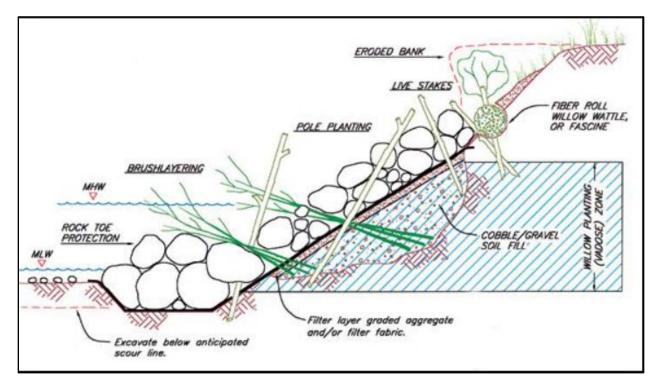
Appendix D incudes the photos taken during the survey and include a Map Key to show the position and directional orientation of the photo. Photos 1 to 19 depict conditions along Central Pond.


The worst wall conditions were observed in the south-easten section of the Pond (extending from behind 19 Central Street to the Fire Station, where two wall sections have entirely collapsed, and approximately 400 feet is in need of extensive repair. The wall sections above the Fire Station to Knights Circle (approximately 400 feet) have areas that need moderate repairs including replacing cap stones and addressing land subsidence behind the wall.

Sections along the western shore could be improved to prevent continued soil erosion, and could benefit from soft erosion solutions including establishing vegetation, contolling public access and potential stormwater outfall improvments. The transition between the wall structure on town owned parcel on Elm Street to the rock rubble on the adjacent privately owned parcel could be improved. This is a high velocity location where the wider channel narrows to the channel above Central Street.

V:\Projects\M\m1476\SawmillBrook_OverviewFigures\SedimentThickness_ManchesterByTheSeaMA_11x17_Final.mxd [Exported By: KJW, 4/17/2018, 5:10:49 PM]

Sawmill Brook Structures (Knight's Circle to Norwood Ave)


This area includes Sawmill Brook extending from the Knights Circle up to Norwood Avenue. Sawmill Brook is narrow, and predominantly channelized with a variety of stone structures, and occasional areas where wetlands border the stream. The walls vary in height from only a few feet to over 6 feet at Norwood Avenue. The Brook is cobble lined and water depth ranged from less than foot in the fall (typical low flow period) to 3 feet in the spring. The survey was completed under higher water conditions. Wall observations were limited to the upper section.

Granite block, field stone and combinations of the above are the dominant structures found along Sawmill Brook. Poured concrete was used in a few locations.

Appendix D incudes the photos taken during the survey and include a map key to show the position and directional orientation of the photo. Photos 20 to 47 depict conditions along Sawmill Brook.

A number of areas were observed to have deteriorating banks, wall structure collapse and direct outfalls that may contribute to sedimentation issues in Sawmill Brook. Beaver activity was noted at two locations below Norwood Avenue and one location above Norwood Avenue. The impoundment along narrow sections causes upstream water to backup and overtop the banks. In areas where low lying banks were left in a natural vegetated state, there were fewer signs of stream bank erosion. Where property owners had developed and landscaped up to the edge of the streambank, the worst erosion was noted.

Stream bank conditions could be improved with a combination of wall stabilization repairs, modifying the bank in some locations to lessen the slope and naturalize it with appropriate plantings (Inset 2). Homeowners should be encouraged to plant buffers along the streambank with vegetation that will absorb strormwater runoff from adjacent lawns, and lessen foot traffic along the edge of the bank. Low growing species can be planted to maintain water views.

Inset 2: Bioengineering stream bank erosion control techniques

Source https://www.ernstseed.com/resources/planting-guides/erosion-control-revegetation-planting-guide/

3 Sediment Transport

Tighe & Bond performed a sediment transport analysis of lower Sawmill Brook to characterize sediment transport dynamics and to assess sediment stability within the stream for existing (tide gate open and closed) and proposed conditions.

3.1 Model Development

The analysis was developed using the HEC-RAS hydraulic model developed as part of Task 2: Hydrologic Monitoring and Flushing Studies and described in the Task 2 technical memorandum. The model included the following three geometry scenarios:

- 1. Existing Conditions with the Tide Gate Closed
- 2. Existing Conditions with the Tide Gate Open
- 3. A Proposed Condition with the Tide Gate Removed and Larger Central Street Culvert

The proposed condition improvements include removing the tide gate and replacing the existing Central Street Culvert with an 18-foot wide Conspan arch culvert. The proposed culvert would maintain the existing upstream and downstream invert elevations (-0.2 feet NAVD88, and -4 feet NAVD88, respectively), and provide a constant low chord elevation of 6 feet NAVD88. If the Town decides to replace the Central Street Bridge it is anticipated that the exact geometry of the proposed culvert would vary from the proposed model following a detailed underground utility survey.

The sediment transport analysis was performed using an approximation for the channel-forming discharge, often referred to as the "bankfull flow". The bankfull flow is on average the 1.5-year frequency storm flow, and was calculated by updating the HEC-HMS model developed as part of the detailed hydrologic analysis performed as part of the February 2016 "Sawmill Brook Culvert and Green Infrastructure Analysis Task 4 Final Report: Evaluation of Locations for Flood Mitigation" prepared by Tighe & Bond. The 24-hour rainfall depth associated with the 1.5-year frequency storm was estimated as 2.99-inch using the Cornell University Northeast Regional Climate Center precipitation data used for the 2016 study. The peak flow computed at Norwood Avenue was 180 cubic feet per second, and the peak flow computed at Central Pond was 200 cubic feet per second.

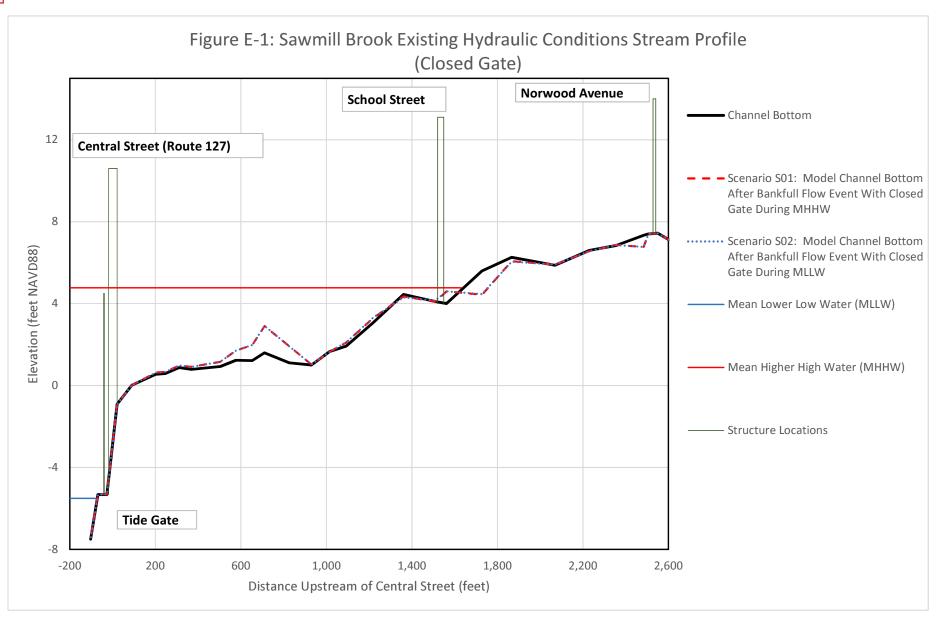
The HEC-RAS sediment transport analysis tool requires grain size distributions to characterize existing sediment within a stream channel. The sediment sample testing, described in Section 2, included the development of grain size distributions (provided in Appendix C) that were used for HEC-RAS sediment transport modeling. These grain size distributions provide the percent of particles (by weight) that pass various size sampling sieves. The smallest sieve used for this type of analysis is the No. 200 sieve, with 0.075 millimeter openings. The sediment passing the No. 200 sieve are silt and clay sized particles, that are often referred to as "fine-grained sediment" for engineering purposes. The proportion of fine-grained sediment in streams has a substantial impact on degradation (removal of sediment) and aggregation (addition of sediment) because fine-grained sediment mobilizes at lower velocities than larger sediment. The amount of fine-grained soils observed from the sediment samples along Sawmill Brook from Norwood Avenue to Central Avenue are describe below:

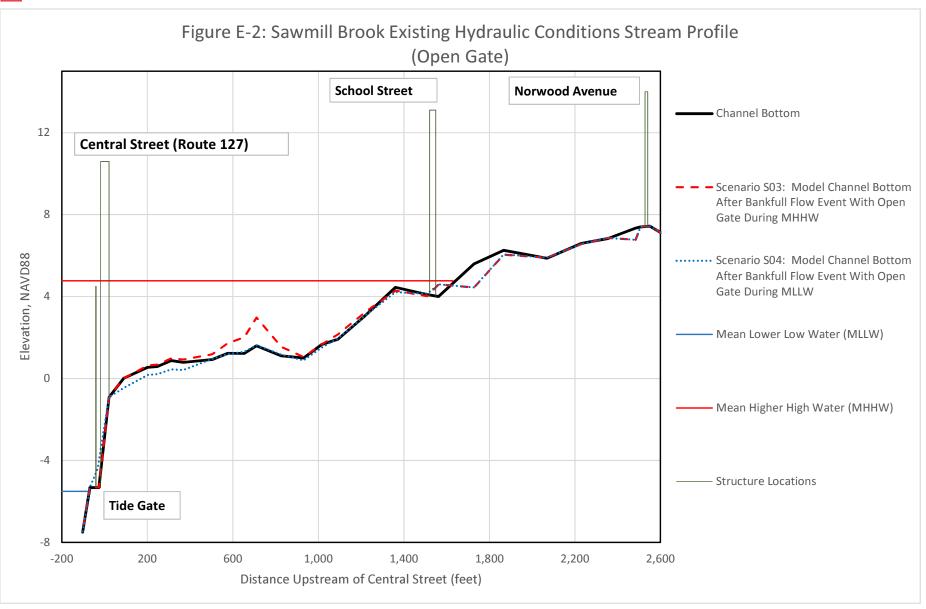
- Sediment samples at School Street and Norwood Ave were composed of less than 1% fine-grained sediment.
- Samples in the stream channel upstream of Central Pond were composed of approximately 40% fine-grained sediment.

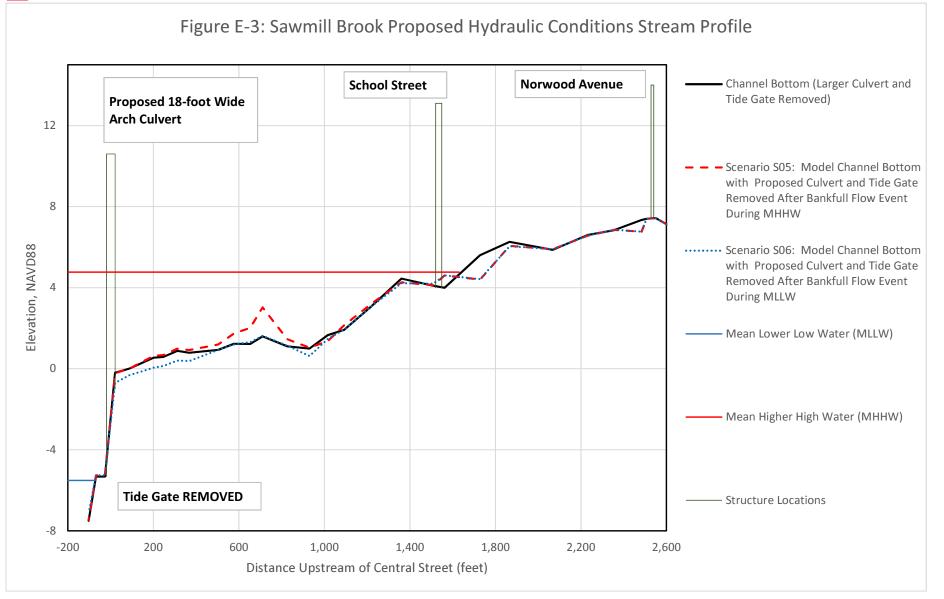
- Samples within Central Pond were composed of over 50% fine-grained sediment.
- Samples in the stream channel downstream of Central Pond were composed of approximately 25% fine-grained sediment.

The sediment transport analysis was performed using a quasi-unsteady flow, the Ackers-White Transport Function, the Thomas (Ex5) Sorting Method, and the Ruby Fall Velocity Method. Detailed descriptions of these methods are available in the HEC-RAS User's Manual². The analysis was performed for existing conditions with the tide gate closed, existing conditions with the tide gate open, and for proposed conditions. To provide a reasonable range of tailwater conditions the models were run with both Mean Lower Low Water (MLLW) and Mean Higher High Water (MHHW) downstream boundary conditions. The modeled MHHW elevation was 4.77 feet NAVD88 and the MLLW elevation was -5.51 feet NAVD88 based on the NOAA Long Term Tide Water Level Monitoring Station ID: 8443970. Realistically, some variation in tides would be anticipated during a storm event; however, by looking at MHHW and MLLW a range of reasonable outcomes can be considered.

3.2 Evaluation of Sediment Transport Dynamics


The results of the sediment transport analysis for Sawmill Brook are shown in **Figures 4**, **5 and 6**. Aggradation (soil deposition) of fine sediments is anticipated within Central Pond if a bankfull event occurred during MHHW for existing conditions (tide gate closed and open) and proposed conditions. This aggradation is caused by a decrease in velocity as water flows from Sawmill Brook upstream of Central Pond to the tidal backwater area at Central Pond during MHHW. For existing conditions when the tide gate is closed, aggradation would also be anticipated if a bankfull event occurred during MLLW, because the tide gate crest elevation would control the minimum water surface elevation within Central Pond. For existing conditions with the tide gate open and for proposed conditions, it is anticipated that degradation (soil loss) would occur if a bankfull event occurred during MLLW toward the downstream limit of Central Pond and the downstream channel. This degradation would remove previously settled fine-grained sediment due to higher velocities associated with flow freely leaving the pond during low tide without tidal backwater.


The process of aggradation of fine particles for a bankfull event during high tide when velocities are backwater limited and degradation of fine particles for a bankfull event during low tides when higher exit velocities are obtained more closely resemble natural sediment dynamics in tidal systems. It is anticipated that actual bankfull flood events would likely either occur during:


- 1. A range of tides limiting the extent of aggradation and degradation, or,
- 2. Occur during a storm surge, resulting in a higher probability for aggregation.

The existing tide gate when closed has created a condition where fine sediment settle during large flow events during both low and high tides, instead of allowing sediment to travel downstream during low tides as would have occurred if the tide gate was not in place. The existing system is in disequilibrium while the prevalence of fine-grained sediment within Central Pond is also indicative of a supply of fine sediment within the watershed. The proposed culvert replacement and tide gate removal at Central Street would restore a tidal ebb-and-flow similar to existing conditions observed during periods when the tide gate is left

² US Army Corps of Engineers. (2016). *HEC-RAS River Analysis System User's Manual Version 5.0.* Hydrologic Engineering Center.

TECHNICAL MEMORANDUM

open. While the natural tidal ebb-and flow may help reduce sedimentation within Central Pond, stormwater best management practices (BMPs) should be considered in the watershed to reduce the sediment supply (discussed in Section 4). Reestablishing a tidal ebb-and-flow may increase the probability for degradation of previously settled fine-grained sediment. The potential for degradation when high flows occur during low tides can be reduced by installing channel in-stream controls (e.g., stone features) and/or by removing fine-grained sediment from the channel bottom. Methods to reduce degradation are discussed in in Section 4.

4 Sediment Management for Restoration

Bottom substrate conditions in Sawmill Brook were observed from Central Street to Norwood Avenue, concentrating on characterizing the soft sediments within the Central Pond area. The location of soft sediment in center of the Pond flanked by areas of cobble and gravel above and below the Pond are consistent with the history of dredging and impoundment of Central Pond in the late 19th and early 20th century. Historic accounts have described the area as once being salt marsh. More recently the Pond has been periodically opened to release high flows during storm and seasonal openings to promote fish passage for Rainbow smelt. The following section discusses the sediment management issues at Central Pond and how this frames the selection of restoration alternatives.

4.1 Results of Sediment Characterization

The results of sediment characterization study found that approximately 5,350 cubic yards of sediment are present within the Central Pond area, between Transect 4 and Transect 13. The sediment depth ranged from 1 to over 6 feet in depth (beyond the limit of the probe). Based on the sieve analysis the material was predominantly dark brown silty sand in the pond area. The substrate in Sawmill Brook, from Norwood Avenue to the entrance of the Central Pond, was predominantly cobble, with gravel and sand in lesser amounts. The channel below the Pond, for 100 -200 feet upstream of the Central Street Bridge has a stony bottom, with cobbles, boulders and areas of gravel. The sediment sample taken at the Norwood Avenue culvert was classified as brown poorly graded gravel with sand.

Sediment accumulation was noted along the shoreline on the western bank of the Pond and to the north of the Pond. Eroded banks were noted predominantly along the eastern bank of the pond, due to collapse of retaining walls. Sources of erosion on the western shore and further up the pond area likely due to runoff, and direct outfalls entering the Brook and Pond area. Further up Sawmill Brook, deposits of sediment were primarily found upstream of Beaver impoundments or large boulders due to the disruption in stream velocity allowing sediment carried by water to settle out as the velocity slowed down upstream of the isolated impoundment.

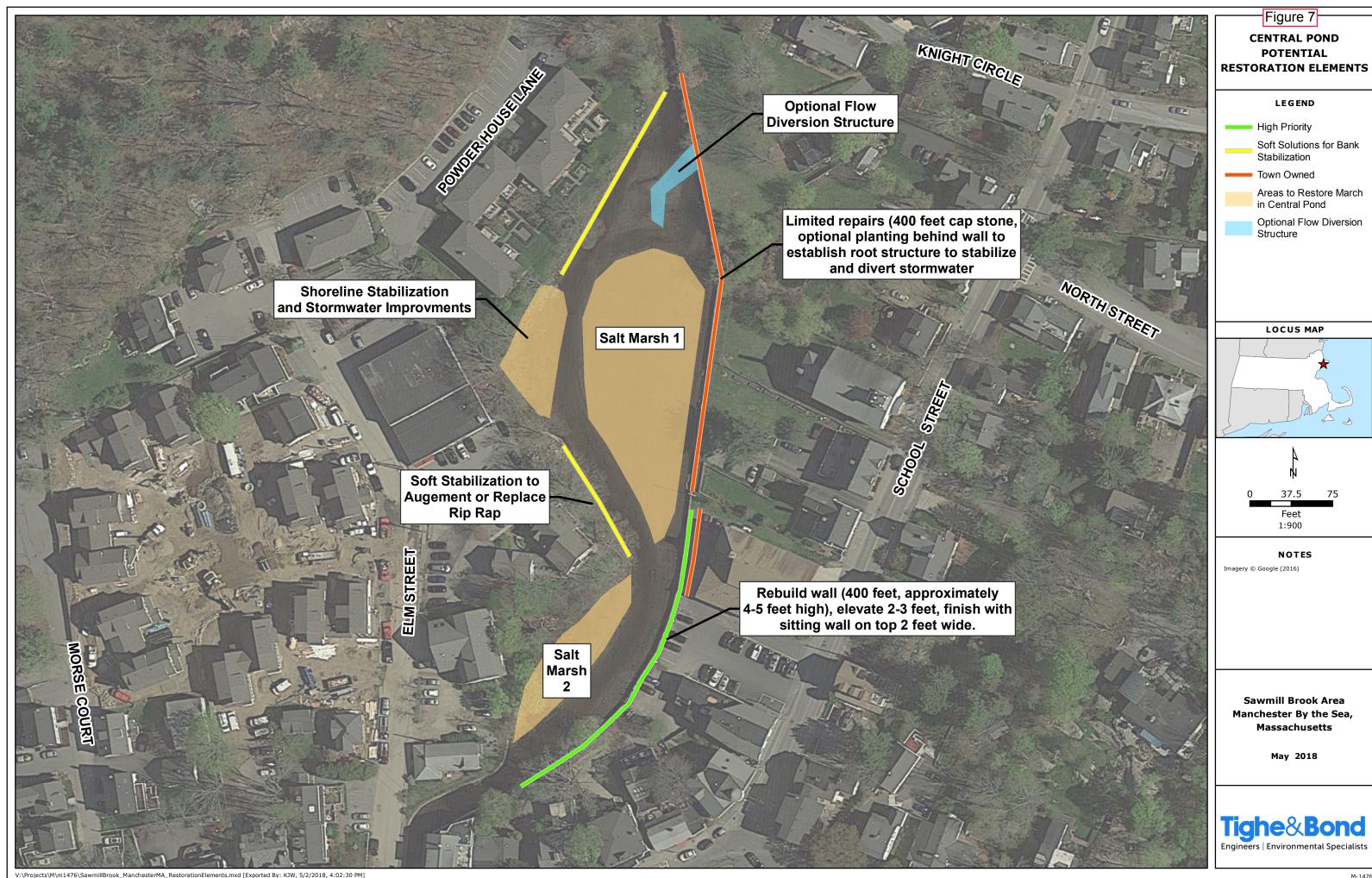
The sediment transport evaluation was consistent with observed conditions that fine sediment has settled out in Central Pond during large flow events during both low and high tides, instead of allowing sediment to travel downstream during low tides as would have occurred if the tide gate was not in place.

4.2 Recommendations for Restoration

Currently the restoration of Central Pond is focused on two main goals. The first goal is maintaining the flood storage capacity of the area by repairing and preventing further stream bank erosion. The second goal is to improve the habitat value of the area and promote fish passage, especially for rainbow smelt.

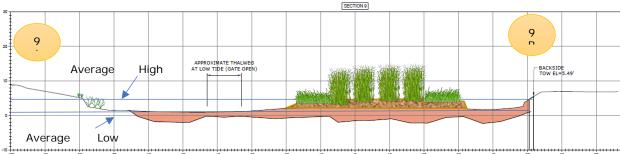
The best restoration element for reducing erosion would be to repair and replace sections of the granite retaining wall along the eastern bank of Central Pond. Areas along the western shore also contribute to sedimentation, particularly the large stormwater outfall. Solutions for reducing erosion range from soft stabilization including bio-engineered planting techniques, controlling public access and a stormwater outfall retrofit to eliminate the direct discharge. Options for habitat improvements include instream channel modifications and potential instream planting on the raised areas that would further stabilize soft sediments and create habitat. Instream modifications may include dredging, rock veins and other forms of flow augmentation. **Figure 7** presents some of the physical conceptual elements for restoration.

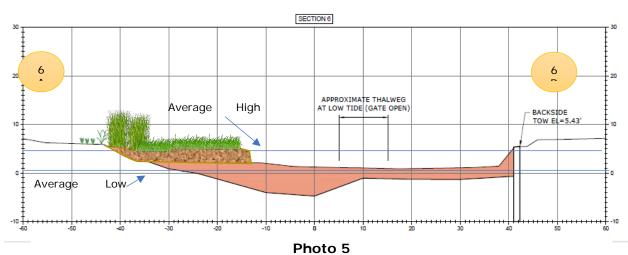
An important component of the mitigation plan is to restore wetland and riparian ecosystems to the stream banks. After hydrologic restoration, freshwater is expected to override a weak saltwater wedge, meaning that freshwater and some minimally brackish-tolerant plants will be incorporated into the wetland restoration. One approach to consider would be to restore the wetland in two phases, the first phase would be populating experimental plots at areas representing variations in sediment size, organic matter content, and salinity. Observations from the plots would be used to populate the entire site in the second phase to improve wetland restoration success.


To establish marsh in this area planting areas may require moderate elevated so plant roots area closer to average high tide elevation. **Photo 5 and 6** provides a plan and cross section view of areas between Transect 6 and 12 and what the elevations would look like with potential salt marsh restoration. The cross sections indicate average high and low water elevations along with potential elevation of substrate to support suitable species.

Planting techniques using nursery grown plants in bio-mats would be ideal for this location, however additional evaluation is needed to support this alternative including obtaining additional salinity measurements, evaluation of suitable species, planting techniques, and maintenance requirements. Most of the planting work would likely be done manually. Substrate augmentation would require a light track vehicle within the pond area and could be mobilized from the shallow slope on the western bank. If desired, limited channel dredging could be accomplished using mechanical dredge to remove soft sediments, allowing the dredge material to settle, dewater and mixing in organic substrate before replacing as augmented soil to raise plating areas. Suitable fill would be covered by biodegradable geotextile material, and nursery plants would be staked on top of the geotextile. **Photo 7** and 8 provides a before and after photo rendering of the potential marsh restoration.

Options to maintain the area as a fresh water system would require a low rock structure downstream of the center of the pond to maintain elevations up to 3 feet upstream. The drawback to this would be continued maintenance to remove sediment that will be trapped behind the structure and limitations placed on fish passage, not unlike the existing tide gate. Rock riffles could be used no matter what option is done, creating additional water movement, aeration and scour pools will improve habitat value. Additional habitat improvements for smelt and Sea Run Brook Trout spawning could be provided further upstream.


The Town should first address the erosion along the stream banks while allowing the stream channel to flush naturally for a period before finalizing the renovation design. Removing sediment deposits and granite blocks from collapsed retaining walls would offset loss of storage resulting from the additional substrate required for salt marsh restoration. The opening of the Central Street Culvert will improve flushing and sediment volumes in the Pond would be expected to diminish over time. Sediment sources from Manchester Harbor on the high tide are expected to be insignificant compared to upstream sources. The Town should continue to investigate and reduce upstream sediment sources as identified in the Stream Bank Survey in Section 2.4 including eliminating direct outfalls, addressing issues caused by beaver dams, and repairing collapsed retaining walls. Providing public education for stream bank stabilization methods will be recommended in the next phase of the Sawmill Brook restoration project.


The alternatives for restoration will be ultimately be decided based on whether dredging is advisable to augment the islands, what type of habitat can be supported in a freshwater predominant estuarine system with up to 7 feet of tidal range and what alternatives can be

permitted and what the restoration costs are. The goals should be aimed at maximizing flood storage and habitat value within the context of what improvements are most acceptable to the abutters. The next steps that are needed to advance the restoration project include addressing the private land ownership issues along eroding stream banks by establishing easements or developing memorandums of agreement for wall improvements, geotechnical studies needed for the wall design, a publicly vetted alternatives analysis and full permitting design of the recommendation alternative.

Conceptual Profile for Marsh Restoration- Transect 6 and 9

TECHNICAL MEMORANDUM

Average

Low

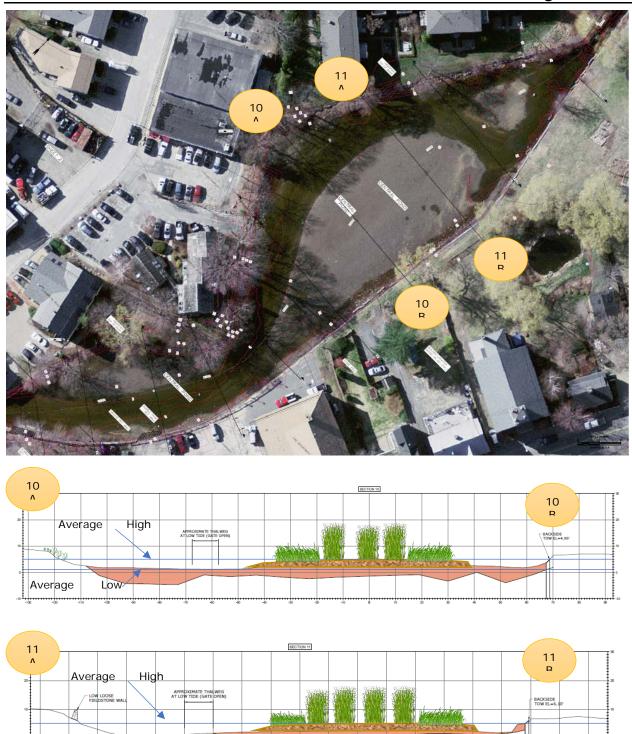


Photo 6 Conceptual Profile for Marsh Restoration- Transect 10 and 11

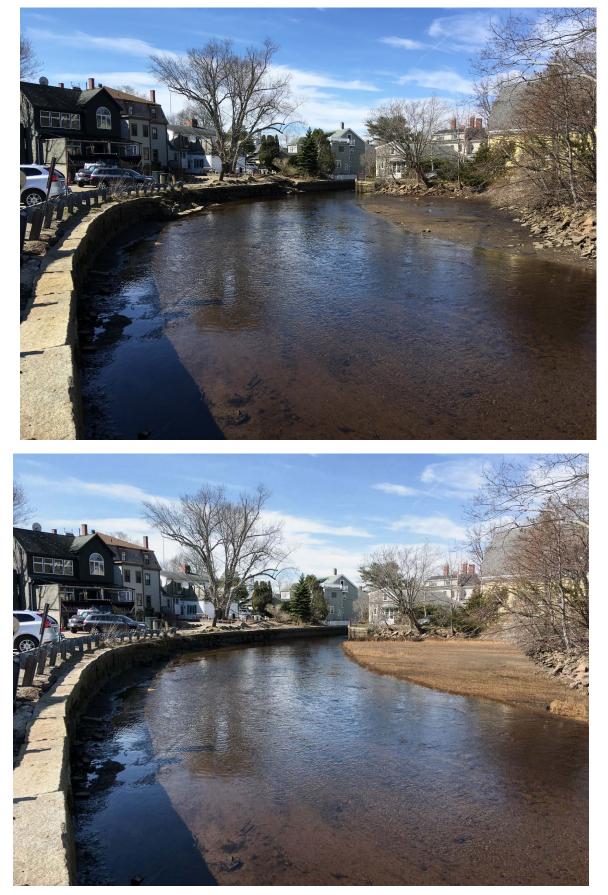


Photo 7 Before and After Restoration- South View

Photo 8 Before and After Restoration-North View

5 Conclusions

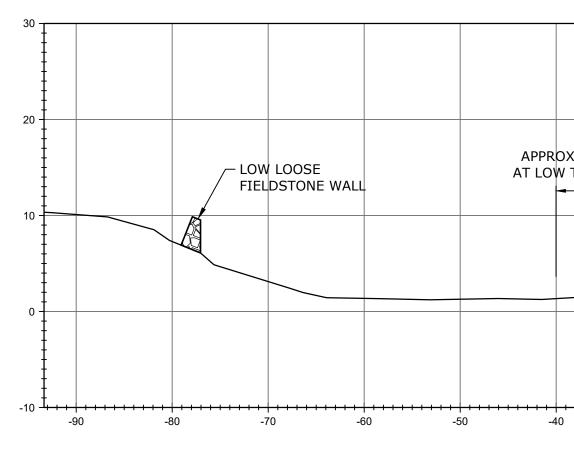
The sediment characterization and sediment transport modeling show and predict that sediment aggregates in Central Pond when the tide gate is closed. The existing tide gate when closed has created a condition where fine sediment settle during large flow events during both low and high tides, instead of allowing sediment to travel downstream during low tides as would have occurred if the tide gate was not in place. This disequilibrium has increased the prevalence of fine-grained sediment within Central Pond and is also indicative of a supply of fine sediment within the watershed.

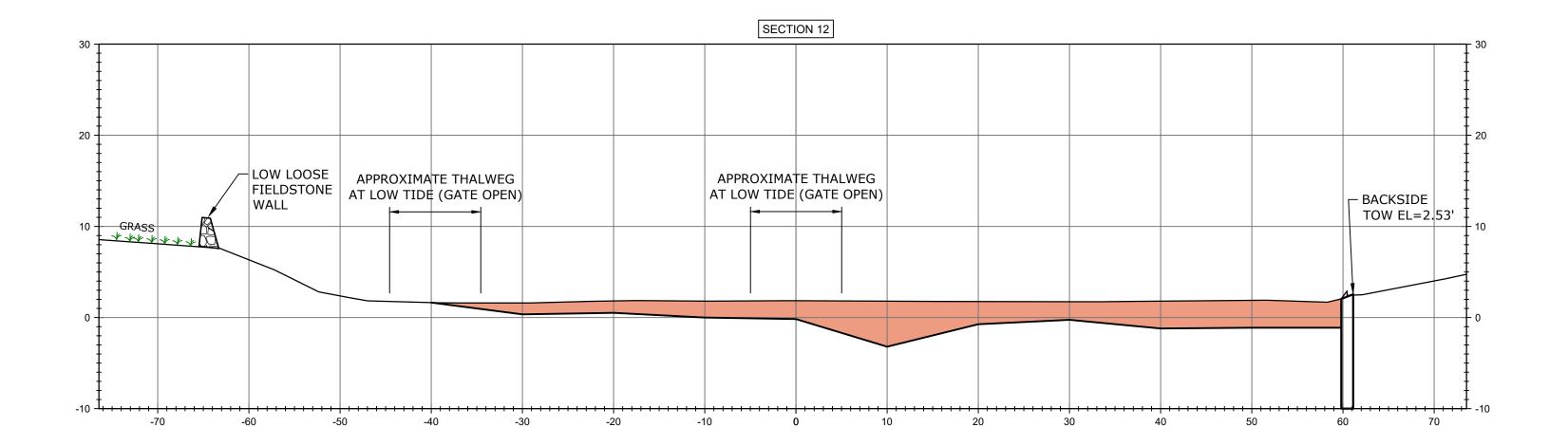
The proposed culvert replacement and tide gate removal at Central Street would restore a tidal ebb-and-flow similar to existing conditions observed during periods when the tide gate is left open. Channel in-stream controls (e.g., stone features), eliminating sources of stream bank erosion and/or removing fine-grained sediment from the channel bottom can reduce the potential for degradation when high flows occur during low tides after restoration of a tidal ebb-and-flow.

Our visual observations, supported by the sediment analysis, confirm the feasibility of upland reuse of sediment from portions of the project area to create marsh areas along the banks of Sawmill Brook. Our review of data collected to date also indicate that the restoration of natural flow conditions and sediment transport from Sawmill Brook into Central Harbor is unlikely to result in a deterioration of conditions with regard to concentrations of contaminants present in the sediment.

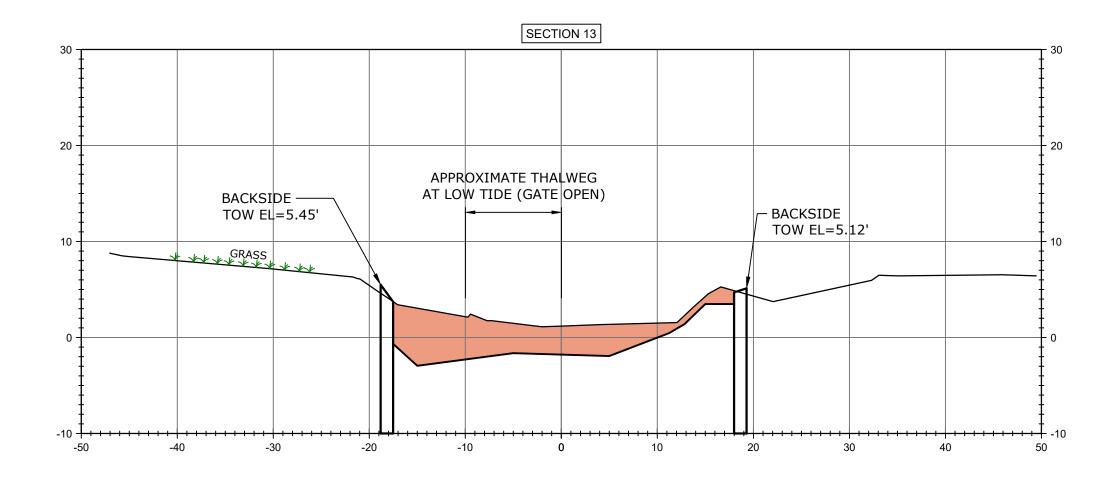
Sediment Management Restoration Recommendations

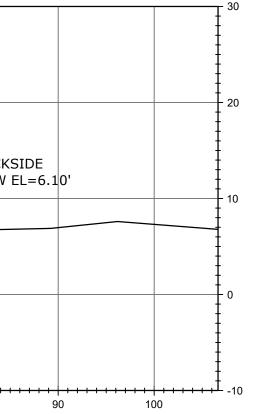
- Develop permit level designs for retaining wall repairs, create additional instream storage by cleaning up wall debris. Remove sources of erosion due to failing retaining walls.
- Let the channel flush for a while before decision on dredging.
- If dredging is recommended, restrict it to instream reuse.


Next Steps


- Establish Memorandum of Understanding with private owner along the southwestern portion of Central Pond to complete Geotech and develop wall repair alternative designs.
- Conduct public outreach on bank stabilization techniques for other private abutters on the western shore of Central Pond and along Sawmill Brook.
- Fully involve the public in the alternatives analysis and selection of a preferred plan to maintain flood storage, address habitat improvements and fish passage.
- Depending on the restoration approach, an implementation plan and schedule will be developed including long-term monitoring efforts.
- Continue to monitor stream levels below and above the pond to documents any changes in elevations.

J:\M\M1476 Manchester MA Hydro Study\009_MET_Sawmill Feasibility\Task 3 - Sediment\Deliverables-Draft\Sawmill Brook Feasibility Sediment Technical Report 6.16.18.docx


APPENDIX A


ast Saved: 4/12/2018 lotted On:Apr 12, 2018-2:53pm By: CFY ighe & Bond: J:\M\M1476 Manchester MA Hydro Study\009_MET_Sawmill Feasibility\Drawings_Figures\AutoCAD\Sheet\Sed CrossSects.

			S	ECTION 11							
OXIMATE TI W TIDE (GA	HALWEG TE OPEN)										- BACKSI TOW EL
40	-30	-20	-10	0	10	20	30	50	60 7	70	80

LEGEND:

GRANITE WALL (DEPTH UNKNOWN)

VEGETATED EMBANKMENT

LOW FIELDSTONE WALL (LOOSE)

SCALE: 1 INCH = 10FT.

CENTRAL POND SEDIMENT PROFILES CROSS SECTION VIEWS March 2018

BRIDGE STREET TO NORWOOD AVE. MANCHESTER-BY-THE-SEA, MASSACHUSETTS

.2/2018 12, 201

Sediment Depth Data

	Transect 4 Transect 5					Transect 6 Transect 7				Transect 8										
Distance from West bank (ft)	Station	LS Elevation (ft)	Bottom Elevation (ft)	Observed Sediment Depth (ft)	Station	LS Elevation (ft)	Bottom Elevation (ft)	Observed Sediment Depth (ft)	Station	LS Elevation (ft)	Bottom Elevation (ft)	Observed Sediment Depth (ft)	Station	LS Elevation (ft)	Bottom Elevation (ft)	Observed Sediment Depth (ft)	Station	LS Elevation (ft)	Bottom Elevation (ft)	Observed Sediment Depth (ft)
0	-10	0.7		0	-40	2.8		0	-35	2.6		0	-25	5.7		0	-23	0.6	5	0
5	-5	0.7	-3.3	>4	-35	2.3	1.3	1	-30	2.4	0.9	1.5	-20	2.3	1.6	0.7	-18	0.7	-2.8	3.5
15	5	0.7	-1.1	1.8	-25	1.9	0.9	1	-20	2.2	-0.1	2.3	-10	1.3	-0.8	2.1	-8	1.1	-1.8	2.9
25	15	0.9	-1.0	1.9	-15	1.7	0.5	1.25	-10	2.0	-4.0	>6	0	0.9	-1.0	1.9	2	1.6	-1.0	2.65
35	25	1.3	0.8	0.5	-5	1.1	-1.2	2.25	0	1.2	-4.8	>6	10	1.0	-1.1	2.15	12	1.5	-1.1	2.6
45	25	6.5	TOW EL	WALL	5	0.8	-1.7	2.5	10	1.0	-1.1	2.1	20	1.2	-0.9	2.1	22	1.7	-0.7	2.4
55					15	0.6	-1.7	2.3	20	0.9	-1.3	2.2	30	1.9	-0.6	2.5	32	2.8	0.3	2.5
65					25	1.0	-1.5	2.5	30	1.1	-1.3	2.4	32	5.4	TOW EL	WALL	35	7.0	TOW EL	WALL
75					35	2.0	-0.5	2.5	38	2.1	-0.7	2.8								
85					35	6.9	TOW EL	WALL	40	5.4	TOW EL	WALL								

		Trar	nsect 10			Tran	isect 11		Transect 12				Transect 13				
Distance from West bank (ft)	Station	LS Elevation (ft)	Bottom Elevation (ft)	Observed Sediment Depth (ft)	Station	LS Elevation (ft)	Bottom Elevation (ft)	Observed Sediment Depth (ft)	Station	LS Elevation (ft)	Bottom Elevation (ft)	Observed Sediment Depth (ft)	Station	LS Elevation (ft)	Bottom Elevation (ft)	Observed Sediment Depth (ft)	
0	-108	2.442		0	-30	1.8		0	-40	1.6		0	-35	7.6		0	
5	-103	1.819	-1.181	3	-25	2.0	0.2	1.8	-30	1.6	0.4	1.25	-25	6.6	6.1	0.5	
15	-93	1.742	-4.258	6	-15	2.3	0.5	1.8	-20	1.8	0.5	1.3	-15	3.1	-3.0	6	
25	-83	1.541	-4.459	6	-5	2.3	0.8	1.5	-10	1.8	0.0	1.8	-5	1.5	-1.6	3.1	
35	-73	1.306	-4.694	6	5	2.5	0.8	1.7	0	1.8	-0.2	2	5	1.4	-1.9	3.3	
45	-63	1.244	-1.006	2.25	15	2.6	0.2	2.4	10	1.8	-3.2	5	15	4.3	3.5	0.8	
55	-53	1.276	-1.624	2.9	25	2.6	0.9	1.7	20	1.8	-0.7	2.5	18	5.1	3.5	WALL	
65	-43	1.848	-1.052	2.9	35	2.7	1.2	1.5	30	1.7	-0.3	2					
75	-33	2.254	-1.846	4.1	45	2.6	1.6	1	40	1.8	-1.2	3					
85	-23	2.361	-2.439	4.8	55	2.5	1.5	1	50	1.9	-1.1	3					
95	-13	2.418	-1.882	4.3	65	2.1	1.0	1.1	60	2.5	TOW EL	WALL					
105	-3	2.466	-1.534	4	75	4.2	2.9	1.3									
115	8	2.53	-1.17	3.7	78	6.1	TOW EL	WALL									
125	18	2.601	-0.899	3.5													
135	28	2.663	-3.337	6													
145			-0.001	2.5													
155			-3.958	6													
165			-0.723	3													
175			1.23	2.7													
180	70	4.96	TOW EL	WALL													

APPENDIX B

BAL Laboratory

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Gary Hedman Tighe & Bond 4 Barlows Landing Road, Unit 15 Pocasset, MA 02559

RE: Sawmill Brook - 401WQ (221476) ESS Laboratory Work Order Number: 1801552

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director

Analytical Summary

REVIEWED By ESS Laboratory at 11:16 am, Feb 13, 2018

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

Subcontracted Analyses CTS - Cranston, RI

Grain Size Analysis

BAL Laboratory

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - 401WQ

ESS Laboratory Work Order: 1801552

SAMPLE RECEIPT

The following samples were received on January 30, 2018 for the analyses specified on the enclosed Chain of Custody Record.

Low Level VOA vials were frozen by Client on January 25, 2018 at 10:00.

Lab Number 1801552-01	<u>Sample Name</u> Pond	<u>Matrix</u> Soil	<u>Analvsis</u> §, 2540G, 8082, 8260B Low, EPH8270, EPH8270SIM, LK, MADEP-EPH
1801552-02	Stream Up	Soil	§, 2540G, 8082, 8260B Low, EPH8270, EPH8270SIM, LK, MADEP-EPH
1801552-03	Stream Down	Soil	§, 2540G, 8082, 8260B Low, EPH8270, EPH8270SIM, LK, MADEP-EPH
1801552-04	Pond - air dried	Soil	6010C, 7471B
1801552-05	Stream Up - air dried	Soil	6010C, 7471B
1801552-06	Stream Down - air dried	Soil	6010C, 7471B

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - 401WQ

ESS Laboratory Work Order: 1801552

PROJECT NARRATIVE

8082 Polychlorinated Biphenyls (PCB) / Congeners

1801552-01	Lower value is used due to matrix interferences (LC).
	BZ#101 , BZ#138 , BZ#170 , BZ#187 , BZ#209 [2C] , BZ#28 [2C] , BZ#52 [2C]
1801552-01	Percent difference between primary and confirmation results exceeds 40% (P).
	BZ#101 , BZ#138 , BZ#170 , BZ#187 , BZ#209 [2C] , BZ#28 [2C] , BZ#52 [2C]
1801552-03	Lower value is used due to matrix interferences (LC).
	BZ#138, BZ#170, BZ#18, BZ#209 [2C]
1801552-03	Percent difference between primary and confirmation results exceeds 40% (P).
	BZ#138, BZ#170, BZ#18, BZ#209 [2C]

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - 401WQ

Analytical Methods

ESS Laboratory Work Order: 1801552

CURRENT SW-846 METHODOLOGY VERSIONS

Prep Methods

1010A - Flashpoint 6010C - ICP 6020A - ICP MS 7010 - Graphite Furnace 7196A - Hexavalent Chromium 7470A - Aqueous Mercury 7471B - Solid Mercury 8011 - EDB/DBCP/TCP 8015C - GRO/DRO 8081B - Pesticides 8082A - PCB 8100M - TPH 8151A - Herbicides 8260B - VOA 8270D - SVOA 8270D SIM - SVOA Low Level 9014 - Cyanide 9038 - Sulfate 9040C - Aqueous pH 9045D - Solid pH (Corrosivity) 9050A - Specific Conductance 9056A - Anions (IC) 9060A - TOC 9095B - Paint Filter MADEP 04-1.1 - EPH / VPH

3005A - Aqueous ICP Digestion
3020A - Aqueous Graphite Furnace / ICP MS Digestion
3050B - Solid ICP / Graphite Furnace / ICP MS Digestion
3060A - Solid Hexavalent Chromium Digestion
3510C - Separatory Funnel Extraction
3520C - Liquid / Liquid Extraction
3540C - Manual Soxhlet Extraction
3541 - Automated Soxhlet Extraction
3546 - Microwave Extraction
3580A - Waste Dilution
5030B - Aqueous Purge and Trap
5030C - Aqueous Purge and Trap
5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - 401WQ Client Sample ID: Pond Date Sampled: 01/23/18 13:00 Percent Solids: 56 Initial Volume: 5.2 Final Volume: 10 Extraction Method: 5035

ESS Laboratory Work Order: 1801552 ESS Laboratory Sample ID: 1801552-01 Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

5035/8260B Volatile Organic Compounds / Low Level

Analyte	<u>Results (MRL)</u>	<u>MDL</u>	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
1,1,1,2-Tetrachloroethane	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
1,1,1-Trichloroethane	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
1,1,2,2-Tetrachloroethane	ND (0.0034)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
1,1,2-Trichloroethane	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
1,1-Dichloroethane	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
1,1-Dichloroethene	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
1,1-Dichloropropene	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
1,2,3-Trichlorobenzene	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
1,2,3-Trichloropropane	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
1,2,4-Trichlorobenzene	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
1,2,4-Trimethylbenzene	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
1,2-Dibromo-3-Chloropropane	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
1,2-Dibromoethane	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
1,2-Dichlorobenzene	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
1,2-Dichloroethane	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
1,2-Dichloropropane	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
1,3,5-Trimethylbenzene	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
1,3-Dichlorobenzene	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
1,3-Dichloropropane	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
1,4-Dichlorobenzene	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
1,4-Dioxane	ND (0.172)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
2,2-Dichloropropane	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
2-Butanone	ND (0.0172)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
2-Chlorotoluene	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
2-Hexanone	ND (0.0172)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
4-Chlorotoluene	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
4-Isopropyltoluene	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
4-Methyl-2-Pentanone	ND (0.0172)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
Acetone	0.0562 (0.0172)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
Benzene	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
Bromobenzene	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
Bromochloromethane	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
	× /							

2211 Tel: 401-461-7181 Dependability • Quality

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - 401WQ Client Sample ID: Pond Date Sampled: 01/23/18 13:00 Percent Solids: 56 Initial Volume: 5.2 Final Volume: 10 Extraction Method: 5035

ESS Laboratory Work Order: 1801552 ESS Laboratory Sample ID: 1801552-01 Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

5035/8260B Volatile Organic Compounds / Low Level

Analyte Bromodichloromethane	<u>Results (MRL)</u> ND (0.0086)	<u>MDL</u>	Method 8260B Low	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 01/31/18 16:01	Sequence C8A0392	Batch CA83109
Bromoform	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
Bromomethane	ND (0.0172)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
Carbon Disulfide	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
Carbon Tetrachloride	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
Chlorobenzene	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
Chloroethane	ND (0.0172)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
Chloroform	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
Chloromethane	ND (0.0172)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
cis-1,2-Dichloroethene	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
cis-1,3-Dichloropropene	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
Dibromochloromethane	. ,		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
Dibromomethane	ND (0.0034)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
Dichlorodifluoromethane	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109 CA83109
Diethyl Ether	ND (0.0172)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
Di-isopropyl ether	ND (0.0086) ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
Ethyl tertiary-butyl ether			8260B Low		1	01/31/18 16:01	C8A0392	CA83109
Ethylbenzene	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392 C8A0392	CA83109 CA83109
Hexachlorobutadiene	ND (0.0086)		8260B Low		1	01/31/18 16:01		CA83109 CA83109
	ND (0.0086)				1		C8A0392	
Isopropylbenzene	ND (0.0086)		8260B Low			01/31/18 16:01	C8A0392	CA83109
Methyl tert-Butyl Ether	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
Methylene Chloride	ND (0.0172)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
Naphthalene	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
n-Butylbenzene	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
n-Propylbenzene	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
sec-Butylbenzene	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
Styrene	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
tert-Butylbenzene	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
Tertiary-amyl methyl ether	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
Tetrachloroethene	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
Tetrahydrofuran	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
Toluene	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109

2211 Tel: 401-461-7181 Dependability • Quality

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - 401WQ Client Sample ID: Pond Date Sampled: 01/23/18 13:00 Percent Solids: 56 Initial Volume: 5.2 Final Volume: 10 Extraction Method: 5035

ESS Laboratory Work Order: 1801552 ESS Laboratory Sample ID: 1801552-01 Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

5035/8260B Volatile Organic Compounds / Low Level

<u>Analyte</u>	<u>Results (MRL)</u>	MDL	Method	Limit	DF	Analyzed	Sequence	Batch
trans-1,2-Dichloroethene	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
trans-1,3-Dichloropropene	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
Trichloroethene	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
Trichlorofluoromethane	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
Vinyl Chloride	ND (0.0172)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
Xylene O	ND (0.0086)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
Xylene P,M	ND (0.0172)		8260B Low		1	01/31/18 16:01	C8A0392	CA83109
Xylenes (Total)	ND (0.0172)		8260B Low		1	01/31/18 16:01		[CALC]
	9	%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		91 %		70-130				
Surrogate: 4-Bromofluorobenzene		91 %		70-130				
Surrogate: Dibromofluoromethane		91 %		70-130				
Surrogate: Toluene-d8		101 %		70-130				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - 401WQ Client Sample ID: Pond Date Sampled: 01/23/18 13:00 Percent Solids: 56 Initial Volume: 30.3 Final Volume: 2 Extraction Method: 3540C

ESS Laboratory Work Order: 1801552 ESS Laboratory Sample ID: 1801552-01 Sample Matrix: Soil Units: mg/kg dry Analyst: TJ Prepared: 1/31/18 16:00

8082 Polychlorinated Biphenyls (PCB) / Congeners

Analyte	Results (MRL) MDL	Method	<u>Limit</u> <u>D</u> F		Sequence Batch
BZ#8	ND (0.00048)	8082	1	02/07/18 4:06	C8B0071 CA83105
BZ#18	ND (0.00048)	8082	1	02/07/18 4:06	C8B0071 CA83105
BZ#28 [2C]	LC, P 0.00228 (0.00048)	8082	1	02/07/18 4:06	C8B0071 CA83105
BZ#44	ND (0.00048)	8082	1	02/07/18 4:06	C8B0071 CA83105
BZ#52 [2C]	LC, P 0.00221 (0.00048)	8082	1	02/07/18 4:06	C8B0071 CA83105
BZ#66	ND (0.00048)	8082	1	02/07/18 4:06	C8B0071 CA83105
BZ#101	LC, P 0.0277 (0.00239)	8082	5	02/08/18 15:05	C8B0071 CA83105
BZ#105	ND (0.00048)	8082	1	02/07/18 4:06	C8B0071 CA83105
BZ#118	0.00440 (0.00048)	8082	1	02/07/18 4:06	C8B0071 CA83105
BZ#128	0.00108 (0.00048)	8082	1	02/07/18 4:06	C8B0071 CA83105
BZ#138	LC, P 0.00524 (0.00048)	8082	1	02/07/18 4:06	C8B0071 CA83105
BZ#153	0.00500 (0.00048)	8082	1	02/07/18 4:06	C8B0071 CA83105
BZ#170	LC, P 0.00246 (0.00048)	8082	1	02/07/18 4:06	C8B0071 CA83105
BZ#180	0.00435 (0.00048)	8082	1	02/07/18 4:06	C8B0071 CA83105
BZ#187	LC, P 0.00286 (0.00048)	8082	1	02/07/18 4:06	C8B0071 CA83105
BZ#195	ND (0.00048)	8082	1	02/07/18 4:06	C8B0071 CA83105
BZ#206 [2C]	0.00095 (0.00048)	8082	1	02/07/18 4:06	C8B0071 CA83105
BZ#209 [2C]	LC, P 0.00124 (0.00048)	8082	1	02/07/18 4:06	C8B0071 CA83105
	%Recovery	Qualifier	Limits		
Surrogate: Tetrachloro-m-xylene	77 %		30-150		
Surrogate: Tetrachloro-m-xylene [2C]	80 %		30-150		

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - 401WQ Client Sample ID: Pond Date Sampled: 01/23/18 13:00

ESS Laboratory Work Order: 1801552 ESS Laboratory Sample ID: 1801552-01 Sample Matrix: Soil

Classical Chemistry

<u>Analyte</u> Grain Size	<u>Results (MRL)</u> See Attached (N/A)	<u>MDL</u>	Method	<u>Limit</u>	<u>DF</u>	<u>Analys</u>	t <u>Analyzed</u>	<u>Units</u>	<u>Batch</u>
Percent Moisture	44 (1)		2540G		1	CCP	01/30/18 18:06	%	CA83028
Total Organic Carbon (Average)	40300 (92.7)		LK		1	NAR	02/02/18 21:33	mg/kg	[CALC]

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - 401WQ Client Sample ID: Pond Date Sampled: 01/23/18 13:00 Percent Solids: 56 Initial Volume: 24.1 Final Volume: 1 Extraction Method: 3546

Surrogate: O-Terphenyl

ESS Laboratory Work Order: 1801552 ESS Laboratory Sample ID: 1801552-01 Sample Matrix: Soil Units: mg/kg dry

Prepared: 2/1/18 15:02

MADEP-EPH Extractable Petroleum Hydrocarbons

Analyte	Results (MRL)	MDL	Method	Limit	DF	Analys	t Analyzed	Sequence	Batch
C9-C18 Aliphatics1	ND (22.2)		MADEP-EPH		1	ZLC	02/01/18 19:00	C8B0005	CB80106
C19-C36 Aliphatics1	26.9 (22.2)		MADEP-EPH		1	ZLC	02/01/18 19:00	C8B0005	CB80106
C11-C22 Unadjusted Aromatics1	26.6 (22.2)		EPH8270		1	ZLC	02/02/18 3:06	C8B0006	CB80106
C11-C22 Aromatics1,2	ND (22.8)		EPH8270			VSC	02/02/18 17:02		[CALC]
2-Methylnaphthalene	ND (0.037)		EPH8270SIM		1	VSC	02/02/18 17:02	C8B0029	CB80106
Acenaphthene	ND (0.037)		EPH8270SIM		1	VSC	02/02/18 17:02	C8B0029	CB80106
Naphthalene	0.039 (0.037)		EPH8270SIM		1	VSC	02/02/18 17:02	C8B0029	CB80106
Phenanthrene	0.493 (0.037)		EPH8270SIM		1	VSC	02/02/18 17:02	C8B0029	CB80106
Acenaphthylene	0.116 (0.037)		EPH8270SIM		1	VSC	02/02/18 17:02	C8B0029	CB80106
Anthracene	0.120 (0.015)		EPH8270SIM		1	VSC	02/02/18 17:02	C8B0029	CB80106
Benzo(a)anthracene	0.399 (0.015)		EPH8270SIM		1	VSC	02/02/18 17:02	C8B0029	CB80106
Benzo(a)pyrene	0.465 (0.015)		EPH8270SIM		1	VSC	02/02/18 17:02	C8B0029	CB80106
Benzo(b)fluoranthene	0.560 (0.037)		EPH8270SIM		1	VSC	02/02/18 17:02	C8B0029	CB80106
Benzo(g,h,i)perylene	0.321 (0.037)		EPH8270SIM		1	VSC	02/02/18 17:02	C8B0029	CB80106
Benzo(k)fluoranthene	0.176 (0.037)		EPH8270SIM		1	VSC	02/02/18 17:02	C8B0029	CB80106
Chrysene	0.456 (0.037)		EPH8270SIM		1	VSC	02/02/18 17:02	C8B0029	CB80106
Dibenzo(a,h)Anthracene	0.080 (0.015)		EPH8270SIM		1	VSC	02/02/18 17:02	C8B0029	CB80106
Fluoranthene	0.986 (0.037)		EPH8270SIM		1	VSC	02/02/18 17:02	C8B0029	CB80106
Fluorene	0.036 (0.015)		EPH8270SIM		1	VSC	02/02/18 17:02	C8B0029	CB80106
Indeno(1,2,3-cd)Pyrene	0.357 (0.037)		EPH8270SIM		1	VSC	02/02/18 17:02	C8B0029	CB80106
Pyrene	0.808 (0.037)		EPH8270SIM		1	VSC	02/02/18 17:02	C8B0029	CB80106
		%Recovery	Qualifier	Limits					
Surrogate: 1-Chlorooctadecane		75 %		40-140					
Surrogate: 2-Bromonaphthalene		105 %		40-140					
Surrogate: 2-Fluorobiphenyl		93 %		40-140					

40-140

80 %

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - 401WQ Client Sample ID: Stream Up Date Sampled: 01/23/18 13:30 Percent Solids: 63 Initial Volume: 5.8 Final Volume: 10 Extraction Method: 5035

ESS Laboratory Work Order: 1801552 ESS Laboratory Sample ID: 1801552-02 Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

5035/8260B Volatile Organic Compounds / Low Level

Analyte	<u>Results (MRL)</u>	<u>MDL</u>	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
1,1,1,2-Tetrachloroethane	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
1,1,1-Trichloroethane	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
1,1,2,2-Tetrachloroethane	ND (0.0027)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
1,1,2-Trichloroethane	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
1,1-Dichloroethane	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
1,1-Dichloroethene	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
1,1-Dichloropropene	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
1,2,3-Trichlorobenzene	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
1,2,3-Trichloropropane	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
1,2,4-Trichlorobenzene	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
1,2,4-Trimethylbenzene	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
1,2-Dibromo-3-Chloropropane	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
1,2-Dibromoethane	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
1,2-Dichlorobenzene	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
1,2-Dichloroethane	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
1,2-Dichloropropane	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
1,3,5-Trimethylbenzene	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
1,3-Dichlorobenzene	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
1,3-Dichloropropane	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
1,4-Dichlorobenzene	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
1,4-Dioxane	ND (0.137)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
2,2-Dichloropropane	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
2-Butanone	ND (0.0137)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
2-Chlorotoluene	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
2-Hexanone	ND (0.0137)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
4-Chlorotoluene	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
4-Isopropyltoluene	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
4-Methyl-2-Pentanone	ND (0.0137)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
Acetone	0.0233 (0.0137)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
Benzene	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
Bromobenzene	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
Bromochloromethane	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109

2211 Tel: 401-461-7181 Dependability • Quality

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - 401WQ Client Sample ID: Stream Up Date Sampled: 01/23/18 13:30 Percent Solids: 63 Initial Volume: 5.8 Final Volume: 10 Extraction Method: 5035

ESS Laboratory Work Order: 1801552 ESS Laboratory Sample ID: 1801552-02 Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

5035/8260B Volatile Organic Compounds / Low Level

<u>Analyte</u> Bromodichloromethane	<u>Results (MRL)</u> ND (0.0069)	<u>MDL</u>	Method 8260B Low	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 01/31/18 16:26	Sequence C8A0392	Batch CA83109
Bromoform	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392 C8A0392	CA83109
Bromomethane	ND (0.003)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
Carbon Disulfide	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
Carbon Tetrachloride	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
Chlorobenzene	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
Chloroethane	ND (0.0137)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
Chloroform	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
Chloromethane	ND (0.0137)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
cis-1,2-Dichloroethene	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
cis-1,3-Dichloropropene	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
Dibromochloromethane	ND (0.0027)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
Dibromomethane	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
Dichlorodifluoromethane	ND (0.0137)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
Diethyl Ether	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
Di-isopropyl ether	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
Ethyl tertiary-butyl ether	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
Ethylbenzene	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
Hexachlorobutadiene	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
Isopropylbenzene	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
Methyl tert-Butyl Ether	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
Methylene Chloride	ND (0.0137)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
Naphthalene	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
n-Butylbenzene	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
n-Propylbenzene	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
sec-Butylbenzene	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
Styrene	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
tert-Butylbenzene	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
Tertiary-amyl methyl ether	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
Tetrachloroethene	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
Tetrahydrofuran	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
Toluene	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
- Statene	110 (0.0007)		5200D E0W		1	51,51/10 10.20	00110372	01103107

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - 401WQ Client Sample ID: Stream Up Date Sampled: 01/23/18 13:30 Percent Solids: 63 Initial Volume: 5.8 Final Volume: 10 Extraction Method: 5035

ESS Laboratory Work Order: 1801552 ESS Laboratory Sample ID: 1801552-02 Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

5035/8260B Volatile Organic Compounds / Low Level

Analyte	Results (MRL)	MDL	Method	Limit	DF	Analyzed	Sequence	Batch
trans-1,2-Dichloroethene	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
trans-1,3-Dichloropropene	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
Trichloroethene	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
Trichlorofluoromethane	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
Vinyl Chloride	ND (0.0137)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
Xylene O	ND (0.0069)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
Xylene P,M	ND (0.0137)		8260B Low		1	01/31/18 16:26	C8A0392	CA83109
Xylenes (Total)	ND (0.0137)		8260B Low		1	01/31/18 16:26		[CALC]
	9	%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		90 %		70-130				
Surrogate: 4-Bromofluorobenzene		<i>92 %</i>		70-130				
Surrogate: Dibromofluoromethane		91 %		70-130				
Surrogate: Toluene-d8		101 %		70-130				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - 401WQ Client Sample ID: Stream Up Date Sampled: 01/23/18 13:30 Percent Solids: 63 Initial Volume: 30.8 Final Volume: 2 Extraction Method: 3540C

ESS Laboratory Work Order: 1801552 ESS Laboratory Sample ID: 1801552-02 Sample Matrix: Soil Units: mg/kg dry Analyst: TJ Prepared: 1/31/18 16:00

8082 Polychlorinated Biphenyls (PCB) / Congeners

Analyte	<u>Results (MRL)</u>	<u>MDL</u>	Method	<u>Limit</u>	<u>DF</u>	Analyzed	<u>Sequence</u>	<u>Batch</u>
BZ#8	ND (0.00042)		8082		1	02/07/18 4:40	C8B0071	CA83105
BZ#18	ND (0.00042)		8082		1	02/07/18 4:40	C8B0071	CA83105
BZ#28	ND (0.00042)		8082		1	02/07/18 4:40	C8B0071	CA83105
BZ#44	ND (0.00042)		8082		1	02/07/18 4:40	C8B0071	CA83105
BZ#52	ND (0.00042)		8082		1	02/07/18 4:40	C8B0071	CA83105
BZ#66	ND (0.00042)		8082		1	02/07/18 4:40	C8B0071	CA83105
BZ#101	ND (0.00042)		8082		1	02/07/18 4:40	C8B0071	CA83105
BZ#105	ND (0.00042)		8082		1	02/07/18 4:40	C8B0071	CA83105
BZ#118	ND (0.00042)		8082		1	02/07/18 4:40	C8B0071	CA83105
BZ#128	ND (0.00042)		8082		1	02/07/18 4:40	C8B0071	CA83105
BZ#138	ND (0.00042)		8082		1	02/07/18 4:40	C8B0071	CA83105
BZ#153	ND (0.00042)		8082		1	02/07/18 4:40	C8B0071	CA83105
BZ#170	ND (0.00042)		8082		1	02/07/18 4:40	C8B0071	CA83105
BZ#180 [2C]	ND (0.00042)		8082		1	02/07/18 4:40	C8B0071	CA83105
BZ#187	ND (0.00042)		8082		1	02/07/18 4:40	C8B0071	CA83105
BZ#195	ND (0.00042)		8082		1	02/07/18 4:40	C8B0071	CA83105
BZ#206	ND (0.00042)		8082		1	02/07/18 4:40	C8B0071	CA83105
BZ#209	ND (0.00042)		8082		1	02/07/18 4:40	C8B0071	CA83105
	%	Recovery	Qualifier	Limits				
Surrogate: Tetrachloro-m-xylene		75 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		78 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - 401WQ Client Sample ID: Stream Up Date Sampled: 01/23/18 13:30

ESS Laboratory Work Order: 1801552 ESS Laboratory Sample ID: 1801552-02 Sample Matrix: Soil

Classical Chemistry

<u>Analyte</u> Grain Size	<u>Results (MRL)</u> See Attached (N/A)	<u>MDL</u>	<u>Method</u>	<u>Limit</u>	<u>DF</u>	<u>Analys</u>	t <u>Analyzed</u>	<u>Units</u>	<u>Batch</u>
Percent Moisture	37 (1)		2540G		1	CCP	01/30/18 18:06	%	CA83028
Total Organic Carbon (Average)	32800 (81.4)		LK		1	NAR	02/02/18 22:23	mg/kg	[CALC]

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - 401WQ Client Sample ID: Stream Up Date Sampled: 01/23/18 13:30 Percent Solids: 63 Initial Volume: 24.9 Final Volume: 1 Extraction Method: 3546

ESS Laboratory Work Order: 1801552 ESS Laboratory Sample ID: 1801552-02 Sample Matrix: Soil Units: mg/kg dry

Prepared: 2/1/18 15:02

MADEP-EPH Extractable Petroleum Hydrocarbons

<u>Analyte</u>	Results (MRL)	MDL	<u>Method</u>	<u>Limit</u>	DF	Analyst	Analyzed	Sequence	Batch
C9-C18 Aliphatics1	ND (24.0)		MADEP-EPH		1	ZLC	02/01/18 19:48	C8B0005	CB80106
C19-C36 Aliphatics1	ND (24.0)		MADEP-EPH		1	ZLC	02/01/18 19:48	C8B0005	CB80106
C11-C22 Unadjusted Aromatics1	ND (24.0)		EPH8270		1	ZLC	02/02/18 3:43	C8B0006	CB80106
C11-C22 Aromatics1,2	ND (24.5)		EPH8270			VSC	02/02/18 17:50		[CALC]
2-Methylnaphthalene	ND (0.032)		EPH8270SIM		1	VSC	02/02/18 17:50	C8B0029	CB80106
Acenaphthene	ND (0.032)		EPH8270SIM		1	VSC	02/02/18 17:50	C8B0029	CB80106
Naphthalene	ND (0.032)		EPH8270SIM		1	VSC	02/02/18 17:50	C8B0029	CB80106
Phenanthrene	0.062 (0.032)		EPH8270SIM		1	VSC	02/02/18 17:50	C8B0029	CB80106
Acenaphthylene	ND (0.032)		EPH8270SIM		1	VSC	02/02/18 17:50	C8B0029	CB80106
Anthracene	0.016 (0.013)		EPH8270SIM		1	VSC	02/02/18 17:50	C8B0029	CB80106
Benzo(a)anthracene	0.112 (0.013)		EPH8270SIM		1	VSC	02/02/18 17:50	C8B0029	CB80106
Benzo(a)pyrene	0.156 (0.013)		EPH8270SIM		1	VSC	02/02/18 17:50	C8B0029	CB80106
Benzo(b)fluoranthene	0.205 (0.032)		EPH8270SIM		1	VSC	02/02/18 17:50	C8B0029	CB80106
Benzo(g,h,i)perylene	0.111 (0.032)		EPH8270SIM		1	VSC	02/02/18 17:50	C8B0029	CB80106
Benzo(k)fluoranthene	0.061 (0.032)		EPH8270SIM		1	VSC	02/02/18 17:50	C8B0029	CB80106
Chrysene	0.168 (0.032)		EPH8270SIM		1	VSC	02/02/18 17:50	C8B0029	CB80106
Dibenzo(a,h)Anthracene	0.026 (0.013)		EPH8270SIM		1	VSC	02/02/18 17:50	C8B0029	CB80106
Fluoranthene	0.277 (0.032)		EPH8270SIM		1	VSC	02/02/18 17:50	C8B0029	CB80106
Fluorene	ND (0.013)		EPH8270SIM		1	VSC	02/02/18 17:50	C8B0029	CB80106
Indeno(1,2,3-cd)Pyrene	0.134 (0.032)		EPH8270SIM		1	VSC	02/02/18 17:50	C8B0029	CB80106
Pyrene	0.221 (0.032)		EPH8270SIM		1	VSC	02/02/18 17:50	C8B0029	CB80106
		%Recovery	Qualifier	Limits					
Surrogate: 1-Chlorooctadecane		67 %		40-140					
Surrogate: 2-Bromonaphthalene		113 %		40-140					
Surrogate: 2-Fluorobiphenyl		<i>98 %</i>		40-140					
Surrogate: O-Terphenyl		85 %		40-140					

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - 401WQ Client Sample ID: Stream Down Date Sampled: 01/23/18 14:00 Percent Solids: 63 Initial Volume: 5.3 Final Volume: 10 Extraction Method: 5035

ESS Laboratory Work Order: 1801552 ESS Laboratory Sample ID: 1801552-03 Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

5035/8260B Volatile Organic Compounds / Low Level

Analyte	<u>Results (MRL)</u>	<u>MDL</u>	Method	<u>Limit</u>	<u>DF</u>	Analyzed	<u>Sequence</u>	Batch
1,1,1,2-Tetrachloroethane	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
1,1,1-Trichloroethane	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
1,1,2,2-Tetrachloroethane	ND (0.0030)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
1,1,2-Trichloroethane	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
1,1-Dichloroethane	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
1,1-Dichloroethene	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
1,1-Dichloropropene	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
1,2,3-Trichlorobenzene	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
1,2,3-Trichloropropane	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
1,2,4-Trichlorobenzene	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
1,2,4-Trimethylbenzene	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
1,2-Dibromo-3-Chloropropane	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
1,2-Dibromoethane	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
1,2-Dichlorobenzene	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
1,2-Dichloroethane	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
1,2-Dichloropropane	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
1,3,5-Trimethylbenzene	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
1,3-Dichlorobenzene	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
1,3-Dichloropropane	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
1,4-Dichlorobenzene	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
1,4-Dioxane	ND (0.149)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
2,2-Dichloropropane	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
2-Butanone	ND (0.0149)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
2-Chlorotoluene	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
2-Hexanone	ND (0.0149)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
4-Chlorotoluene	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
4-Isopropyltoluene	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
4-Methyl-2-Pentanone	ND (0.0149)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
Acetone	0.0340 (0.0149)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
Benzene	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
Bromobenzene	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
Bromochloromethane	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109

Tel: 401-461-7181 Dependability • Quality Fax: 401-461-4486 Service

٠

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - 401WQ Client Sample ID: Stream Down Date Sampled: 01/23/18 14:00 Percent Solids: 63 Initial Volume: 5.3 Final Volume: 10 Extraction Method: 5035

ESS Laboratory Work Order: 1801552 ESS Laboratory Sample ID: 1801552-03 Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

5035/8260B Volatile Organic Compounds / Low Level

Analyte Bromodichloromethane	<u>Results (MRL)</u> ND (0.0075)	<u>MDL</u>	Method 8260B Low	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 01/31/18 16:52	Sequence C8A0392	<u>Batch</u> CA83109
Bromoform	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
Bromomethane	ND (0.0149)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
Carbon Disulfide	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
Carbon Tetrachloride	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
Chlorobenzene	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
Chloroethane	ND (0.0149)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
Chloroform	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
Chloromethane	ND (0.0149)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
cis-1,2-Dichloroethene	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
cis-1,3-Dichloropropene	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
Dibromochloromethane			8260B Low		1	01/31/18 16:52	C8A0392	CA83109
Dibromomethane	ND (0.0030)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109 CA83109
Dichlorodifluoromethane	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
Diethyl Ether	ND (0.0149)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
Di-isopropyl ether	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392 C8A0392	CA83109 CA83109
	ND (0.0075)				1			
Ethyl tertiary-butyl ether	ND (0.0075)		8260B Low			01/31/18 16:52	C8A0392	CA83109
Ethylbenzene	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
Hexachlorobutadiene	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
Isopropylbenzene	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
Methyl tert-Butyl Ether	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
Methylene Chloride	ND (0.0149)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
Naphthalene	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
n-Butylbenzene	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
n-Propylbenzene	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
sec-Butylbenzene	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
Styrene	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
tert-Butylbenzene	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
Tertiary-amyl methyl ether	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
Tetrachloroethene	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
Tetrahydrofuran	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
Toluene	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109

2211 Tel: 401-461-7181 Dependability • Quality

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - 401WQ Client Sample ID: Stream Down Date Sampled: 01/23/18 14:00 Percent Solids: 63 Initial Volume: 5.3 Final Volume: 10 Extraction Method: 5035

ESS Laboratory Work Order: 1801552 ESS Laboratory Sample ID: 1801552-03 Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

5035/8260B Volatile Organic Compounds / Low Level

<u>Analyte</u>	<u>Results (MRL)</u>	MDL	Method	<u>Limit</u>	DF	Analyzed	Sequence	Batch
trans-1,2-Dichloroethene	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
trans-1,3-Dichloropropene	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
Trichloroethene	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
Trichlorofluoromethane	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
Vinyl Chloride	ND (0.0149)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
Xylene O	ND (0.0075)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
Xylene P,M	ND (0.0149)		8260B Low		1	01/31/18 16:52	C8A0392	CA83109
Xylenes (Total)	ND (0.0149)		8260B Low		1	01/31/18 16:52		[CALC]
	%	6Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		<i>95 %</i>		70-130				
Surrogate: 4-Bromofluorobenzene		92 %		70-130				
Surrogate: Dibromofluoromethane		93 %		70-130				
Surrogate: Toluene-d8		100 %		70-130				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - 401WQ Client Sample ID: Stream Down Date Sampled: 01/23/18 14:00 Percent Solids: 63 Initial Volume: 30.1 Final Volume: 2 Extraction Method: 3540C

ESS Laboratory Work Order: 1801552 ESS Laboratory Sample ID: 1801552-03 Sample Matrix: Soil Units: mg/kg dry Analyst: TJ Prepared: 1/31/18 16:00

8082 Polychlorinated Biphenyls (PCB) / Congeners

Analyte	Results (MRL) MDL	Method	<u>Limit</u>	DF	Analyzed	Sequence	Batch
BZ#8	ND (0.00043)	8082		1	02/07/18 5:15	C8B0071	CA83105
BZ#18	LC, P 0.00453 (0.00043)	8082		1	02/07/18 5:15	C8B0071	CA83105
BZ#28	ND (0.00043)	8082		1	02/07/18 5:15	C8B0071	CA83105
BZ#44	ND (0.00043)	8082		1	02/07/18 5:15	C8B0071	CA83105
BZ#52	ND (0.00043)	8082		1	02/07/18 5:15	C8B0071	CA83105
BZ#66	ND (0.00043)	8082		1	02/07/18 5:15	C8B0071	CA83105
BZ#101 [2C]	0.0101 (0.00043)	8082		1	02/07/18 5:15	C8B0071	CA83105
BZ#105	ND (0.00043)	8082		1	02/07/18 5:15	C8B0071	CA83105
BZ#118	ND (0.00043)	8082		1	02/07/18 5:15	C8B0071	CA83105
BZ#128	ND (0.00043)	8082		1	02/07/18 5:15	C8B0071	CA83105
BZ#138	LC, P 0.00162 (0.00043)	8082		1	02/07/18 5:15	C8B0071	CA83105
BZ#153	ND (0.00043)	8082		1	02/07/18 5:15	C8B0071	CA83105
BZ#170	LC, P 0.00283 (0.00043)	8082		1	02/07/18 5:15	C8B0071	CA83105
BZ#180	ND (0.00043)	8082		1	02/07/18 5:15	C8B0071	CA83105
BZ#187	0.00084 (0.00043)	8082		1	02/07/18 5:15	C8B0071	CA83105
BZ#195	ND (0.00043)	8082		1	02/07/18 5:15	C8B0071	CA83105
BZ#206 [2C]	0.00104 (0.00043)	8082		1	02/07/18 5:15	C8B0071	CA83105
BZ#209 [2C]	LC, P 0.00095 (0.00043)	8082		1	02/07/18 5:15	C8B0071	CA83105
	%Recovery	Qualifier	Limits				
Surrogate: Tetrachloro-m-xylene	68 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]	<i>89 %</i>		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - 401WQ Client Sample ID: Stream Down Date Sampled: 01/23/18 14:00

ESS Laboratory Work Order: 1801552 ESS Laboratory Sample ID: 1801552-03 Sample Matrix: Soil

Classical Chemistry

<u>Analyte</u> Grain Size	<u>Results (MRL)</u> See Attached (N/A)	<u>MDL</u>	<u>Method</u>	<u>Limit</u>	<u>DF</u>	<u>Analys</u>	t <u>Analyzed</u>	<u>Units</u>	<u>Batch</u>
Percent Moisture	37 (1)		2540G		1	CCP	01/30/18 18:06	%	CA83028
Total Organic Carbon (Average)	28100 (88.4)		LK		1	NAR	02/02/18 22:39	mg/kg	[CALC]

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - 401WQ Client Sample ID: Stream Down Date Sampled: 01/23/18 14:00 Percent Solids: 63 Initial Volume: 24.4 Final Volume: 1 Extraction Method: 3546

Surrogate: O-Terphenyl

ESS Laboratory Work Order: 1801552 ESS Laboratory Sample ID: 1801552-03 Sample Matrix: Soil Units: mg/kg dry

Prepared: 2/1/18 15:02

MADEP-EPH Extractable Petroleum Hydrocarbons

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	DF	Analys	t Analyzed	Sequence	Batch
C9-C18 Aliphatics1	ND (24.3)		MADEP-EPH		1	ZLC	02/01/18 20:35	C8B0005	CB80106
C19-C36 Aliphatics1	32.1 (24.3)		MADEP-EPH		1	ZLC	02/01/18 20:35	C8B0005	CB80106
C11-C22 Unadjusted Aromatics1	112 (24.3)		EPH8270		1	ZLC	02/02/18 4:19	C8B0006	CB80106
C11-C22 Aromatics1,2	85.5 (25.4)		EPH8270			VSC	02/05/18 14:33		[CALC]
2-Methylnaphthalene	0.058 (0.032)		EPH8270SIM		1	VSC	02/02/18 18:39	C8B0029	CB80106
Acenaphthene	0.046 (0.032)		EPH8270SIM		1	VSC	02/02/18 18:39	C8B0029	CB80106
Naphthalene	0.095 (0.032)		EPH8270SIM		1	VSC	02/02/18 18:39	C8B0029	CB80106
Phenanthrene	1.26 (0.032)		EPH8270SIM		1	VSC	02/02/18 18:39	C8B0029	CB80106
Acenaphthylene	0.516 (0.032)		EPH8270SIM		1	VSC	02/02/18 18:39	C8B0029	CB80106
Anthracene	0.677 (0.013)		EPH8270SIM		1	VSC	02/02/18 18:39	C8B0029	CB80106
Benzo(a)anthracene	2.52 (0.013)		EPH8270SIM		1	VSC	02/02/18 18:39	C8B0029	CB80106
Benzo(a)pyrene	2.10 (0.013)		EPH8270SIM		1	VSC	02/02/18 18:39	C8B0029	CB80106
Benzo(b)fluoranthene	2.67 (0.032)		EPH8270SIM		1	VSC	02/02/18 18:39	C8B0029	CB80106
Benzo(g,h,i)perylene	1.19 (0.032)		EPH8270SIM		1	VSC	02/02/18 18:39	C8B0029	CB80106
Benzo(k)fluoranthene	0.735 (0.032)		EPH8270SIM		1	VSC	02/02/18 18:39	C8B0029	CB80106
Chrysene	2.27 (0.032)		EPH8270SIM		1	VSC	02/02/18 18:39	C8B0029	CB80106
Dibenzo(a,h)Anthracene	0.414 (0.013)		EPH8270SIM		1	VSC	02/02/18 18:39	C8B0029	CB80106
Fluoranthene	6.23 (0.324)		EPH8270SIM		10	VSC	02/05/18 14:33	C8B0029	CB80106
Fluorene	0.029 (0.013)		EPH8270SIM		1	VSC	02/02/18 18:39	C8B0029	CB80106
Indeno(1,2,3-cd)Pyrene	1.44 (0.032)		EPH8270SIM		1	VSC	02/02/18 18:39	C8B0029	CB80106
Pyrene	4.50 (0.324)		EPH8270SIM		10	VSC	02/05/18 14:33	C8B0029	CB80106
		%Recovery	Qualifier	Limits					
Surrogate: 1-Chlorooctadecane			<i>2001110</i>						
Surrogate: 2-Bromonaphthalene		70 %		40-140					
		101 %		40-140					
Surrogate: 2-Fluorobiphenyl		91 %		40-140					

40-140

82 %

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - 401WQ Client Sample ID: Pond - air dried Date Sampled: 01/23/18 13:00 Percent Solids: 100

ESS Laboratory Work Order: 1801552 ESS Laboratory Sample ID: 1801552-04 Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

<u>Analyte</u> Arsenic	<u>Results (MRL)</u> 13.1 (1.95)	<u>MDL</u>	<u>Method</u> 6010C	<u>Limit</u>	<u>DF</u> 2	Analys KJK	t <u>Analyzed</u> 02/02/18 14:35	<u>I/V</u> 5.12	<u>F/V</u> 100	<u>Batch</u> CB80131
Cadmium	0.67 (0.39)		6010C		2	KJK	02/02/18 14:35	5.12	100	CB80131
Chromium	15.3 (0.78)		6010C		2	KJK	02/02/18 14:35	5.12	100	CB80131
Copper	23.9 (1.95)		6010C		2	KJK	02/02/18 14:35	5.12	100	CB80131
Lead	167 (3.91)		6010C		2	KJK	02/02/18 14:35	5.12	100	CB80131
Mercury	0.441 (0.049)		7471B		5	BJV	02/02/18 14:59	2.01	40	CB80133
Nickel	8.50 (1.95)		6010C		2	KJK	02/02/18 14:35	5.12	100	CB80131
Zinc	129 (1.95)		6010C		2	KJK	02/02/18 14:35	5.12	100	CB80131

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - 401WQ Client Sample ID: Stream Up - air dried Date Sampled: 01/23/18 13:30 Percent Solids: 100

ESS Laboratory Work Order: 1801552 ESS Laboratory Sample ID: 1801552-05 Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

<u>Analyte</u> Arsenic	<u>Results (MRL)</u> 5.02 (0.98)	<u>MDL</u>	<u>Method</u> 6010C	<u>Limit</u>	<u>DF</u> 1	Analys KJK	t <u>Analyzed</u> 02/02/18 14:27	<u>I/V</u> 5.09	<u>F/V</u> 100	<u>Batch</u> CB80131
Cadmium	0.21 (0.20)		6010C		1	KJK	02/02/18 14:27	5.09	100	CB80131
Chromium	7.92 (0.39)		6010C		1	KJK	02/02/18 14:27	5.09	100	CB80131
Copper	5.55 (0.98)		6010C		1	KJK	02/02/18 14:27	5.09	100	CB80131
Lead	29.2 (1.96)		6010C		1	KJK	02/02/18 14:27	5.09	100	CB80131
Mercury	0.113 (0.008)		7471B		1	BJV	02/02/18 14:24	2.44	40	CB80133
Nickel	3.64 (0.98)		6010C		1	KJK	02/02/18 14:27	5.09	100	CB80131
Zinc	39.2 (0.98)		6010C		1	KJK	02/02/18 14:27	5.09	100	CB80131

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - 401WQ Client Sample ID: Stream Down - air dried Date Sampled: 01/23/18 14:00 Percent Solids: 100

ESS Laboratory Work Order: 1801552 ESS Laboratory Sample ID: 1801552-06 Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

<u>Analyte</u> Arsenic	<u>Results (MRL)</u> 9.17 (1.00)	<u>MDL</u>	<u>Method</u> 6010C	<u>Limit</u>	<u>DF</u> 1	Analyst KJK	t <u>Analyzed</u> 02/02/18 14:32	<u>I/V</u> 5.02	<u>F/V</u> 100	Batch CB80131
Cadmium	0.35 (0.20)		6010C		1	KJK	02/02/18 14:32	5.02	100	CB80131
Chromium	8.35 (0.40)		6010C		1	KJK	02/02/18 14:32	5.02	100	CB80131
Copper	12.2 (1.00)		6010C		1	KJK	02/02/18 14:32	5.02	100	CB80131
Lead	90.6 (1.99)		6010C		1	KJK	02/02/18 14:32	5.02	100	CB80131
Mercury	0.262 (0.042)		7471B		5	BJV	02/02/18 15:03	2.37	40	CB80133
Nickel	3.64 (1.00)		6010C		1	KJK	02/02/18 14:32	5.02	100	CB80131
Zinc	70.8 (1.00)		6010C		1	KJK	02/02/18 14:32	5.02	100	CB80131

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

1,1,2,2-Tetrachloroethane

1,1,2-Trichloroethane

Client Project ID: Sawmill Brook - 401WQ

ESS Laboratory Work Order: 1801552

Quality Control Data

Г										
				Spike	Source	0/5-5	%REC	85-	RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
			Total Meta	ls						
Batch CB80131 - 3050B										
Blank										
Arsenic	ND	2.50	mg/kg wet							
Chromium	ND	1.00	mg/kg wet							
Copper	ND	2.50	mg/kg wet							
Lead	ND	5.00	mg/kg wet							
Nickel	ND	2.50	mg/kg wet							
Zinc	ND	2.50	mg/kg wet							
.cs										
Arsenic	106	7.04	mg/kg wet	123.0		86	80-120			
Cadmium	199	1.41	mg/kg wet	224.0		89	80-120			
Chromium	156	2.82	mg/kg wet	179.0		87	80-120			
Copper	69.7	7.04	mg/kg wet	78.90		88	80-120			
Lead	125	14.1	mg/kg wet	145.0		86	80-120			
Nickel	117	7.04	mg/kg wet	143.0		82	80-120			
.cs										
linc	202	7.25	mg/kg wet	256.0		79	71-102			
.CS Dup										
Arsenic	114	7.14	mg/kg wet	123.0		93	80-120	8	20	
Cadmium	186	1.43	mg/kg wet	224.0		83	80-120	7	20	
Chromium	164	2.86	mg/kg wet	179.0		92	80-120	5	20	
Copper	74.5	7.14	mg/kg wet	78.90		94	80-120	7	20	
Lead	131	14.3	mg/kg wet	145.0		90	80-120	5	20	
Nickel	123	7.14	mg/kg wet	143.0		86	80-120	5	20	
-CS Dup										
Zinc	197	7.04	mg/kg wet	256.0		77	71-102	3	20	
Batch CB80133 - 7471A										
Blank										
Mercury	ND	0.033	mg/kg wet							
LCS										
Mercury	11.3	1.48	mg/kg wet	18.60		61	41-94			
LCS Dup										
Mercury	11.7	1.55	mg/kg wet	18.60		63	41-94	3	20	
Reference										
Mercury	0.955	0.152	mg/kg wet	1000		0.1	0-200			
	5035/8	260B Volati	ile Organic Co	ompound	ls / Low L	evel				
Batch CA83109 - 5035										
Blank										
,1,1,2-Tetrachloroethane	ND	0.0050	mg/kg wet							
I,1,1-Trichloroethane	ND	0.0050	mg/kg wet							
			2. 0							

Dependability

mg/kg wet

٠

Quality

٠

Service

0.0020

ND

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - 401WQ

ESS Laboratory Work Order: 1801552

Quality Control Data

A 1.	. .			Spike	Source	0/550	%REC	000	RPD	0 ""
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	5035/8	3260B Volati	le Organic Co	ompound	ls / Low L	evel				
atch CA83109 - 5035										
,1-Dichloroethane	ND	0.0050	mg/kg wet							
,1-Dichloroethene	ND	0.0050	mg/kg wet							
,1-Dichloropropene	ND	0.0050	mg/kg wet							
2,3-Trichlorobenzene	ND	0.0050	mg/kg wet							
2,3-Trichloropropane	ND	0.0050	mg/kg wet							
2,4-Trichlorobenzene	ND	0.0050	mg/kg wet							
2,4-Trimethylbenzene	ND	0.0050	mg/kg wet							
2-Dibromo-3-Chloropropane	ND	0.0050	mg/kg wet							
2-Dibromoethane	ND	0.0050	mg/kg wet							
2-Dichlorobenzene	ND	0.0050	mg/kg wet							
2-Dichloroethane	ND	0.0050	mg/kg wet							
2-Dichloropropane	ND	0.0050	mg/kg wet							
3,5-Trimethylbenzene	ND	0.0050	mg/kg wet							
3-Dichlorobenzene	ND	0.0050	mg/kg wet							
3-Dichloropropane	ND	0.0050	mg/kg wet							
4-Dichlorobenzene	ND	0.0050	mg/kg wet							
4-Dioxane	ND	0.100	mg/kg wet							
2-Dichloropropane	ND	0.0050	mg/kg wet							
Butanone	ND	0.0100	mg/kg wet							
Chlorotoluene	ND	0.0050	mg/kg wet							
Hexanone	ND	0.0100	mg/kg wet							
Chlorotoluene	ND	0.0050	mg/kg wet							
Isopropyltoluene	ND	0.0050	mg/kg wet							
Methyl-2-Pentanone	ND	0.0100	mg/kg wet							
etone	ND	0.0100	mg/kg wet							
enzene	ND	0.0050	mg/kg wet							
omobenzene	ND	0.0050	mg/kg wet							
omochloromethane	ND	0.0050	mg/kg wet							
omodichloromethane	ND	0.0050	mg/kg wet							
omoform	ND	0.0050	mg/kg wet							
romomethane	ND	0.0100	mg/kg wet							
arbon Disulfide	ND	0.0050	mg/kg wet							
rbon Tetrachloride	ND	0.0050	mg/kg wet							
lorobenzene	ND	0.0050	mg/kg wet							
loroethane	ND	0.0100	mg/kg wet							
loroform	ND	0.0050	mg/kg wet							
loromethane	ND	0.0100	mg/kg wet							
;-1,2-Dichloroethene	ND	0.0050	mg/kg wet							
-1,3-Dichloropropene	ND	0.0050	mg/kg wet							
bromochloromethane	ND	0.0020	mg/kg wet							
bromomethane	ND	0.0050	mg/kg wet							
chlorodifluoromethane	ND	0.0100	mg/kg wet							
ethyl Ether	ND	0.0050	mg/kg wet							
-isopropyl ether	ND	0.0050	mg/kg wet							
hyl tertiary-butyl ether	ND	0.0050	mg/kg wet							

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - 401WQ

ESS Laboratory Work Order: 1801552

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
Analyte							LIITIILS	KPD	LIIIIL	Qualifie
	5035/8	3260B Volati	le Organic C	ompound	IS / LOW L	evel				
atch CA83109 - 5035										
thylbenzene	ND	0.0050	mg/kg wet							
lexachlorobutadiene	ND	0.0050	mg/kg wet							
sopropylbenzene	ND	0.0050	mg/kg wet							
ethyl tert-Butyl Ether	ND	0.0050	mg/kg wet							
ethylene Chloride	ND	0.0100	mg/kg wet							
aphthalene	ND	0.0050	mg/kg wet							
Butylbenzene	ND	0.0050	mg/kg wet							
Propylbenzene	ND	0.0050	mg/kg wet							
c-Butylbenzene	ND	0.0050	mg/kg wet							
yrene	ND	0.0050	mg/kg wet							
rt-Butylbenzene	ND	0.0050	mg/kg wet							
ertiary-amyl methyl ether	ND	0.0050	mg/kg wet							
etrachloroethene	ND	0.0050	mg/kg wet							
etrahydrofuran	ND	0.0050	mg/kg wet							
bluene	ND	0.0050	mg/kg wet							
ans-1,2-Dichloroethene	ND	0.0050	mg/kg wet							
ans-1,3-Dichloropropene	ND	0.0050	mg/kg wet							
ichloroethene	ND	0.0050	mg/kg wet							
ichlorofluoromethane	ND	0.0050	mg/kg wet							
nyl Chloride	ND	0.0100	mg/kg wet							
/lene O	ND	0.0050	mg/kg wet							
lene P,M	ND	0.0100	mg/kg wet							
lenes (Total)	ND	0.0100	mg/kg wet							
ırrogate: 1,2-Dichloroethane-d4	0.0451		mg/kg wet	0.05000		90	70-130			
urrogate: 4-Bromofluorobenzene	0.0467		mg/kg wet	0.05000		93	70-130			
rrogate: Dibromofluoromethane	0.0452		mg/kg wet	0.05000		90	70-130			
urrogate: Toluene-d8	0.0505		mg/kg wet	0.05000		101	70-130			
S										
I,1,2-Tetrachloroethane	0.0494	0.0050	mg/kg wet	0.05000		99	70-130			
1,1-Trichloroethane	0.0531	0.0050	mg/kg wet	0.05000		106	70-130			
1,2,2-Tetrachloroethane	0.0583	0.0020	mg/kg wet	0.05000		117	70-130			
1,2-Trichloroethane	0.0566	0.0050	mg/kg wet	0.05000		113	70-130			
1-Dichloroethane	0.0519	0.0050	mg/kg wet	0.05000		104	70-130			
1-Dichloroethene	0.0538	0.0050	mg/kg wet	0.05000		108	70-130			
1-Dichloropropene	0.0543	0.0050	mg/kg wet	0.05000		109	70-130			
2,3-Trichlorobenzene	0.0551	0.0050	mg/kg wet	0.05000		110	70-130			
2,3-Trichloropropane	0.0552	0.0050	mg/kg wet	0.05000		110	70-130			
2,4-Trichlorobenzene	0.0544	0.0050	mg/kg wet	0.05000		109	70-130			
2,4-Trimethylbenzene	0.0550	0.0050	mg/kg wet	0.05000		110	70-130			
2-Dibromo-3-Chloropropane	0.0490	0.0050	mg/kg wet	0.05000		98	70-130			
2-Dibromoethane	0.0565	0.0050	mg/kg wet	0.05000		113	70-130			
2-Dichlorobenzene	0.0539	0.0050	mg/kg wet	0.05000		108	70-130			
2-Dichloroethane	0.0549	0.0050	mg/kg wet	0.05000		110	70-130			
2-Dichloropropane	0.0551	0.0050	mg/kg wet	0.05000		110	70-130			
3,5-Trimethylbenzene	0.0538	0.0050	mg/kg wet	0.05000		108	70-130			

Dependability

+

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - 401WQ

ESS Laboratory Work Order: 1801552

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
,			le Organic C					-		
	5055/c			ompound	IS / LOW L					
Batch CA83109 - 5035										
1,3-Dichlorobenzene	0.0525	0.0050	mg/kg wet	0.05000		105	70-130			
1,3-Dichloropropane	0.0589	0.0050	mg/kg wet	0.05000		118	70-130			
1,4-Dichlorobenzene	0.0539	0.0050	mg/kg wet	0.05000		108	70-130			
1,4-Dioxane	1.02	0.100	mg/kg wet	1.000		102	70-130			
2,2-Dichloropropane	0.0505	0.0050	mg/kg wet	0.05000		101	70-130			
2-Butanone	0.286	0.0100	mg/kg wet	0.2500		114	70-130			
2-Chlorotoluene	0.0534	0.0050	mg/kg wet	0.05000		107	70-130			
2-Hexanone	0.280	0.0100	mg/kg wet	0.2500		112	70-130			
4-Chlorotoluene	0.0536	0.0050	mg/kg wet	0.05000		107	70-130			
4-Isopropyltoluene	0.0528	0.0050	mg/kg wet	0.05000		106	70-130			
4-Methyl-2-Pentanone	0.265	0.0100	mg/kg wet	0.2500		106	70-130			
Acetone	0.274	0.0100	mg/kg wet	0.2500		110	70-130			
Benzene	0.0540	0.0050	mg/kg wet	0.05000		108	70-130			
Bromobenzene	0.0523	0.0050	mg/kg wet	0.05000		105	70-130			
Bromochloromethane	0.0536	0.0050	mg/kg wet	0.05000		107	70-130			
Bromodichloromethane	0.0492	0.0050	mg/kg wet	0.05000		98	70-130			
Bromoform	0.0474	0.0050	mg/kg wet	0.05000		95	70-130			
Bromomethane	0.0544	0.0100	mg/kg wet	0.05000		109	70-130			
Carbon Disulfide	0.0564	0.0050	mg/kg wet	0.05000		113	70-130			
Carbon Tetrachloride	0.0465	0.0050	mg/kg wet	0.05000		93	70-130			
Chlorobenzene	0.0539	0.0050	mg/kg wet	0.05000		108	70-130			
Chloroethane	0.0528	0.0100	mg/kg wet	0.05000		106	70-130			
Chloroform	0.0535	0.0050	mg/kg wet	0.05000		107	70-130			
Chloromethane	0.0557	0.0100	mg/kg wet	0.05000		111	70-130			
cis-1,2-Dichloroethene	0.0535	0.0050	mg/kg wet	0.05000		107	70-130			
cis-1,3-Dichloropropene	0.0486	0.0050	mg/kg wet	0.05000		97	70-130			
Dibromochloromethane	0.0499	0.0020	mg/kg wet	0.05000		100	70-130			
Dibromomethane	0.0544	0.0050	mg/kg wet	0.05000		109	70-130			
Dichlorodifluoromethane	0.0522	0.0100	mg/kg wet	0.05000		104	70-130			
Diethyl Ether	0.0587	0.0050	mg/kg wet	0.05000		117	70-130			
Di-isopropyl ether	0.0557	0.0050	mg/kg wet	0.05000		111	70-130			
Ethyl tertiary-butyl ether	0.0486	0.0050	mg/kg wet	0.05000		97	70-130			
Ethylbenzene	0.0546	0.0050	mg/kg wet	0.05000		109	70-130			
Hexachlorobutadiene	0.0528	0.0050	mg/kg wet	0.05000		106	70-130			
Isopropylbenzene	0.0507	0.0050	mg/kg wet	0.05000		101	70-130			
Methyl tert-Butyl Ether	0.0553	0.0050	mg/kg wet	0.05000		111	70-130			
Methylene Chloride	0.0514	0.0100	mg/kg wet	0.05000		103	70-130			
Naphthalene	0.0500	0.0050	mg/kg wet	0.05000		100	70-130			
n-Butylbenzene	0.0544	0.0050	mg/kg wet	0.05000		109	70-130			
n-Propylbenzene	0.0542	0.0050	mg/kg wet	0.05000		108	70-130			
sec-Butylbenzene	0.0528	0.0050	mg/kg wet	0.05000		106	70-130			
Styrene	0.0499	0.0050	mg/kg wet	0.05000		100	70-130			
tert-Butylbenzene	0.0535	0.0050	mg/kg wet	0.05000		107	70-130			
Tertiary-amyl methyl ether	0.0463	0.0050	mg/kg wet	0.05000		93	70-130			
Tetrachloroethene	0.0506	0.0050	mg/kg wet	0.05000		101	70-130			
	0.0000		5, 5,							

2211 Tel: 401-461-7181 Dependability + Quality

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - 401WQ

ESS Laboratory Work Order: 1801552

Quality Control Data

A	D	MD	11.2	Spike	Source	0/ 550	%REC	000	RPD	0. 10
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	5035/8	3260B Volati	le Organic C	ompound	s / Low L	evel				
atch CA83109 - 5035										
Fetrahydrofuran	0.0516	0.0050	mg/kg wet	0.05000		103	70-130			
oluene	0.0542	0.0050	mg/kg wet	0.05000		108	70-130			
rans-1,2-Dichloroethene	0.0533	0.0050	mg/kg wet	0.05000		107	70-130			
rans-1,3-Dichloropropene	0.0477	0.0050	mg/kg wet	0.05000		95	70-130			
richloroethene	0.0530	0.0050	mg/kg wet	0.05000		106	70-130			
richlorofluoromethane	0.0519	0.0050	mg/kg wet	0.05000		104	70-130			
'inyl Chloride	0.0570	0.0100	mg/kg wet	0.05000		114	70-130			
ylene O	0.0562	0.0050	mg/kg wet	0.05000		112	70-130			
ylene P,M	0.111	0.0100	mg/kg wet	0.1000		111	70-130			
ylenes (Total)	0.168	0.0100	mg/kg wet							
Surrogate: 1,2-Dichloroethane-d4	0.0491		mg/kg wet	0.05000		98	70-130			
Surrogate: 4-Bromofluorobenzene	0.0511		mg/kg wet	0.05000		102	70-130			
Surrogate: Dibromofluoromethane	0.0502		mg/kg wet	0.05000		100	70-130			
Surrogate: Toluene-d8	0.0512		mg/kg wet	0.05000		102	70-130			
.CS Dup										
,1,1,2-Tetrachloroethane	0.0486	0.0050	mg/kg wet	0.05000		97	70-130	2	20	
,1,1-Trichloroethane	0.0531	0.0050	mg/kg wet	0.05000		106	70-130	0.1	20	
1,2,2-Tetrachloroethane	0.0587	0.0020	mg/kg wet	0.05000		117	70-130	0.7	20	
1,2-Trichloroethane	0.0554	0.0050	mg/kg wet	0.05000		111	70-130	2	20	
,1-Dichloroethane	0.0516	0.0050	mg/kg wet	0.05000		103	70-130	0.7	20	
,1-Dichloroethene	0.0541	0.0050	mg/kg wet	0.05000		108	70-130	0.6	20	
,1-Dichloropropene	0.0544	0.0050	mg/kg wet	0.05000		109	70-130	0.3	20	
,2,3-Trichlorobenzene	0.0543	0.0050	mg/kg wet	0.05000		109	70-130	1	20	
,2,3-Trichloropropane	0.0555	0.0050	mg/kg wet	0.05000		111	70-130	0.6	20	
,2,4-Trichlorobenzene	0.0533	0.0050	mg/kg wet	0.05000		107	70-130	2	20	
,2,4-Trimethylbenzene	0.0550	0.0050	mg/kg wet	0.05000		110	70-130	0.1	20	
,2-Dibromo-3-Chloropropane	0.0500	0.0050	mg/kg wet	0.05000		100	70-130	2	20	
,2-Dibromoethane	0.0544	0.0050	mg/kg wet	0.05000		109	70-130	4	20	
,2-Dichlorobenzene	0.0537	0.0050	mg/kg wet	0.05000		107	70-130	0.3	20	
,2-Dichloroethane	0.0541	0.0050	mg/kg wet	0.05000		108	70-130	1	20	
,2-Dichloropropane	0.0555	0.0050	mg/kg wet	0.05000		111	70-130	0.7	20	
,3,5-Trimethylbenzene	0.0542	0.0050	mg/kg wet	0.05000		108	70-130	0.6	20	
,3-Dichlorobenzene	0.0521	0.0050	mg/kg wet	0.05000		104	70-130	0.8	20	
,3-Dichloropropane	0.0569	0.0050	mg/kg wet	0.05000		114	70-130	3	20	
,4-Dichlorobenzene	0.0538	0.0050	mg/kg wet	0.05000		108	70-130	0.3	20	
,4-Dioxane	1.02	0.100	mg/kg wet	1.000		102	70-130	0.2	20	
, - Diokure , 2-Dichloropropane	0.0503	0.0050	mg/kg wet	0.05000		101	70-130	0.5	20	
-Butanone	0.284	0.0100	mg/kg wet	0.2500		113	70-130	0.7	20	
-Chlorotoluene	0.0535	0.0050	mg/kg wet	0.05000		115	70-130	0.3	20	
-Hexanone	0.271	0.0100	mg/kg wet	0.2500		107	70-130	3	20	
-Chlorotoluene	0.0539	0.0100	mg/kg wet	0.05000		108	70-130	0.6	20	
-Chlorotoluene	0.0539	0.0050	mg/kg wet	0.05000		108	70-130	0.6	20 20	
-Isopropylloluene -Methyl-2-Pentanone		0.0050	mg/kg wet	0.05000		105	70-130	1	20 20	
-Metnyi-2-Pentanone	0.263	0.0100		0.2500		105	70-130 70-130	0.5	20 20	
lenzene	0.273 0.0535	0.0100	mg/kg wet mg/kg wet	0.2500		109	70-130 70-130	0.5	20 20	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - 401WQ

ESS Laboratory Work Order: 1801552

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	5035/8	3260B Volatil	e Organic Co	ompound	s / Low I	evel				
					_ ,					
Batch CA83109 - 5035										
Bromobenzene	0.0531	0.0050	mg/kg wet	0.05000		106	70-130	1	20	
Bromochloromethane	0.0529	0.0050	mg/kg wet	0.05000		106	70-130	1	20	
Bromodichloromethane	0.0487	0.0050	mg/kg wet	0.05000		97	70-130	1	20	
Bromoform	0.0468	0.0050	mg/kg wet	0.05000		94	70-130	1	20	
Bromomethane	0.0532	0.0100	mg/kg wet	0.05000		106	70-130	2	20	
Carbon Disulfide	0.0563	0.0050	mg/kg wet	0.05000		113	70-130	0.2	20	
Carbon Tetrachloride	0.0464	0.0050	mg/kg wet	0.05000		93	70-130	0.2	20	
Chlorobenzene	0.0520	0.0050	mg/kg wet	0.05000		104	70-130	4	20	
Chloroethane	0.0527	0.0100	mg/kg wet	0.05000		105	70-130	0.2	20	
Chloroform	0.0529	0.0050	mg/kg wet	0.05000		106	70-130	1	20	
Chloromethane	0.0542	0.0100	mg/kg wet	0.05000		108	70-130	3	20	
cis-1,2-Dichloroethene	0.0532	0.0050	mg/kg wet	0.05000		106	70-130	0.6	20	
cis-1,3-Dichloropropene	0.0486	0.0050	mg/kg wet	0.05000		97	70-130	0.08	20	
Dibromochloromethane	0.0484	0.0020	mg/kg wet	0.05000		97	70-130	3	20	
Dibromomethane	0.0532	0.0050	mg/kg wet	0.05000		106	70-130	2	20	
Dichlorodifluoromethane	0.0513	0.0100	mg/kg wet	0.05000		103	70-130	2	20	
Diethyl Ether	0.0589	0.0050	mg/kg wet	0.05000		118	70-130	0.4	20	
Di-isopropyl ether	0.0557	0.0050	mg/kg wet	0.05000		111	70-130	0.07	20	
Ethyl tertiary-butyl ether	0.0484	0.0050	mg/kg wet	0.05000		97	70-130	0.6	20	
Ethylbenzene	0.0534	0.0050	mg/kg wet	0.05000		107	70-130	2	20	
Hexachlorobutadiene	0.0514	0.0050	mg/kg wet	0.05000		103	70-130	3	20	
Isopropylbenzene	0.0516	0.0050	mg/kg wet	0.05000		103	70-130	2	20	
Methyl tert-Butyl Ether	0.0552	0.0050	mg/kg wet	0.05000		110	70-130	0.2	20	
Methylene Chloride	0.0509	0.0100	mg/kg wet	0.05000		102	70-130	0.9	20	
Naphthalene	0.0509	0.0050	mg/kg wet	0.05000		102	70-130	2	20	
n-Butylbenzene	0.0541	0.0050	mg/kg wet	0.05000		108	70-130	0.5	20	
n-Propylbenzene	0.0548	0.0050	mg/kg wet	0.05000		110	70-130	1	20	
sec-Butylbenzene	0.0533	0.0050	mg/kg wet	0.05000		107	70-130	1	20	
Styrene	0.0489	0.0050	mg/kg wet	0.05000		98	70-130	2	20	
tert-Butylbenzene	0.0539	0.0050	mg/kg wet	0.05000		108	70-130	0.7	20	
Tertiary-amyl methyl ether	0.0461	0.0050	mg/kg wet	0.05000		92	70-130	0.4	20	
Tetrachloroethene	0.0490	0.0050	mg/kg wet	0.05000		98	70-130	3	20	
Tetrahydrofuran	0.0512	0.0050	mg/kg wet	0.05000		102	70-130	0.8	20	
Toluene	0.0533	0.0050	mg/kg wet	0.05000		107	70-130	2	20	
trans-1,2-Dichloroethene	0.0535	0.0050	mg/kg wet	0.05000		107	70-130	0.4	20	
trans-1,3-Dichloropropene	0.0479	0.0050	mg/kg wet	0.05000		96	70-130	0.5	20	
Trichloroethene	0.0520	0.0050	mg/kg wet	0.05000		104	70-130	2	20	
Trichlorofluoromethane	0.0514	0.0050	mg/kg wet	0.05000		103	70-130	0.9	20	
Vinyl Chloride	0.0554	0.0100	mg/kg wet	0.05000		111	70-130	3	20	
Xylene O	0.0550	0.0050	mg/kg wet	0.05000		110	70-130	2	20	
Xylene P,M	0.108	0.0100	mg/kg wet	0.1000		108	70-130	3	20	
Xylenes (Total)	0.163	0.0100	mg/kg wet							
Surrogate: 1,2-Dichloroethane-d4	0.0489		mg/kg wet	0.05000		98	70-130			
Surrogate: 4-Bromofluorobenzene	0.0493		mg/kg wet	0.05000		99	70-130			
Surrogate: Dibromofluoromethane	0.0500		mg/kg wet	0.05000		100	70-130			

2211 Tel: 401-461-7181 Dependability • Quality

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - 401WQ

ESS Laboratory Work Order: 1801552

Quality Control Data

Batch CA83109 - 5035 Surrogate: Toluene-d8 Batch CA83105 - 3540C Blank BZ#101 BZ#101 BZ#105 BZ#105 BZ#105 BZ#105 BZ#118	0.0507	Polychlorina	mg/kg wet	0.05000		101	70-130		
Surrogate: Toluene-d8 Satch CA83105 - 3540C Slank IZ#101 IZ#101 [2C] IZ#105 IZ#105 [2C]	8082 	0.00027			' Congene		70-130	 	
Batch CA83105 - 3540C Blank 32#101 32#101 [2C] 32#105 32#105 [2C]	8082 	0.00027			Congene		70-130		
Blank 3Z#101 3Z#101 [2C] 3Z#105 3Z#105 [2C]	ND ND	0.00027	ited Bipheny	rls (PCB) /	Congene	ers			
Blank BZ#101 BZ#101 [2C] BZ#105 BZ#105 [2C]	ND								
BZ#101 BZ#101 [2C] BZ#105 BZ#105 [2C]	ND								
3Z#101 [2C] 3Z#105 3Z#105 [2C]	ND								
BZ#105 BZ#105 [2C]			mg/kg wet						
BZ#105 [2C]	ND	0.00027	mg/kg wet						
		0.00027	mg/kg wet						
BZ#118	ND	0.00027	mg/kg wet						
	ND	0.00027	mg/kg wet						
BZ#118 [2C]	ND	0.00027	mg/kg wet						
3Z#128	ND	0.00027	mg/kg wet						
3Z#128 [2C]	ND	0.00027	mg/kg wet						
3Z#138	ND	0.00027	mg/kg wet						
3Z#138 [2C]	ND	0.00027	mg/kg wet						
3Z#153	ND	0.00027	mg/kg wet						
3Z#153 [2C]	ND	0.00027	mg/kg wet						
3Z#170	ND	0.00027	mg/kg wet						
3Z#170 [2C]	ND	0.00027	mg/kg wet						
3Z#18	ND	0.00027	mg/kg wet						
3Z#18 [2C]	ND	0.00027	mg/kg wet						
3Z#180	ND	0.00027	mg/kg wet						
3Z#180 [2C]	ND	0.00027	mg/kg wet						
3Z#187	ND	0.00027	mg/kg wet						
3Z#187 [2C]	ND	0.00027	mg/kg wet						
BZ#195	ND	0.00027	mg/kg wet						
3Z#195 [2C]	ND	0.00027	mg/kg wet						
3Z#206	ND	0.00027	mg/kg wet						
BZ#206 [2C]	ND	0.00027	mg/kg wet						
BZ#209	ND	0.00027	mg/kg wet						
BZ#209 [2C]	ND	0.00027	mg/kg wet						
BZ#28	ND	0.00027	mg/kg wet						
BZ#28 [2C]	ND	0.00027	mg/kg wet						
BZ#44	ND	0.00027	mg/kg wet						
BZ#44 [2C]	ND	0.00027	mg/kg wet						
3Z#52	ND	0.00027	mg/kg wet						
3Z#52 [2C]	ND	0.00027	mg/kg wet						
3Z#66	ND	0.00027	mg/kg wet						
BZ#66 [2C]	ND	0.00027	mg/kg wet						
BZ#8	ND	0.00027	mg/kg wet						
BZ#8 [2C]	ND	0.00027	mg/kg wet						
Surrogate: Tetrachloro-m-xylene	0.00269		mg/kg wet	0.003333		81	30-150		
Surrogate: Tetrachloro-m-xylene [2C]	0.00263		mg/kg wet	0.003333		79	30-150		

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - 401WQ

ESS Laboratory Work Order: 1801552

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
· · ·	8082	Polychlorina	ited Bipheny	vls (PCB) ,	/ Congene	ers				-
Batch CA83105 - 3540C										
.cs										
BZ#101	0.00314	0.00027	mg/kg wet	0.003333		94	40-140			
3Z#101 [2C]	0.00290	0.00027	mg/kg wet	0.003333		87	40-140			
3Z#105	0.00295	0.00027	mg/kg wet	0.003333		89	40-140			
3Z#105 [2C]	0.00300	0.00027	mg/kg wet	0.003333		90	40-140			
3Z#118	0.00308	0.00027	mg/kg wet	0.003333		93	40-140			
3Z#118 [2C]	0.00286	0.00027	mg/kg wet	0.003333		86	40-140			
3Z#128	0.00326	0.00027	mg/kg wet	0.003333		98	40-140			
3Z#128 [2C]	0.00306	0.00027	mg/kg wet	0.003333		92	40-140			
3Z#138	0.00309	0.00027	mg/kg wet	0.003333		93	40-140			
3Z#138 [2C]	0.00295	0.00027	mg/kg wet	0.003333		89	40-140			
3Z#153	0.00317	0.00027	mg/kg wet	0.003333		95	40-140			
3Z#153 [2C]	0.00291	0.00027	mg/kg wet	0.003333		87	40-140			
3Z#170	0.00317	0.00027	mg/kg wet	0.003333		95	40-140			
3Z#170 [2C]	0.00317	0.00027	mg/kg wet	0.003333		95	40-140			
3Z#18	0.00302	0.00027	mg/kg wet	0.003333		91	40-140			
3Z#18 [2C]	0.00278	0.00027	mg/kg wet	0.003333		83	40-140			
3Z#180	0.00323	0.00027	mg/kg wet	0.003333		97	40-140			
3Z#180 [2C]	0.00318	0.00027	mg/kg wet	0.003333		96	40-140			
Z#187	0.00313	0.00027	mg/kg wet	0.003333		94	40-140			
3Z#187 [2C]	0.00292	0.00027	mg/kg wet	0.003333		88	40-140			
3Z#195	0.00324	0.00027	mg/kg wet	0.003333		97	40-140			
3Z#195 [2C]	0.00322	0.00027	mg/kg wet	0.003333		97	40-140			
3Z#206	0.00325	0.00027	mg/kg wet	0.003333		98	40-140			
3Z#206 [2C]	0.00314	0.00027	mg/kg wet	0.003333		94	40-140			
3Z#209	0.00323	0.00027	mg/kg wet	0.003333		97	40-140			
3Z#209 [2C]	0.00300	0.00027	mg/kg wet	0.003333		90	40-140			
3Z#28	0.00301	0.00027	mg/kg wet	0.003333		90	40-140			
3Z#28 [2C]	0.00274	0.00027	mg/kg wet	0.003333		82	40-140			
3Z#44	0.00276	0.00027	mg/kg wet	0.003333		83	40-140			
3Z#44 [2C]	0.00286	0.00027	mg/kg wet	0.003333		86	40-140			
3Z#52	0.00278	0.00027	mg/kg wet	0.003333		83	40-140			
3Z#52 [2C]	0.00282	0.00027	mg/kg wet	0.003333		85	40-140			
3Z#66	0.00320	0.00027	mg/kg wet	0.003333		96	40-140			
3Z#66 [2C]	0.00293	0.00027	mg/kg wet	0.003333		88	40-140			
3Z#8	0.00323	0.00027	mg/kg wet	0.003333		97	40-140			
3Z#8 [2C]	0.00337	0.00027	mg/kg wet	0.003333		101	40-140			
Surrogate: Tetrachloro-m-xylene	0.00269		mg/kg wet	0.003333		81	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.00265		mg/kg wet	0.003333		79	30-150			
_CS Dup										
3Z#101	0.00319	0.00027	mg/kg wet	0.003333		96	40-140	1	50	
3Z#101 [2C]	0.00282	0.00027	mg/kg wet	0.003333		84	40-140	3	50	
3Z#105	0.00301	0.00027	mg/kg wet	0.003333		90	40-140	2	50	
BZ#105 [2C]	0.00303	0.00027	mg/kg wet	0.003333		91	40-140	0.9	50	

2211 Tel: 401-461-7181 Dependability + Quality

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - 401WQ

ESS Laboratory Work Order: 1801552

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifi
	8082	Polychlorina	ated Bipheny	/ls (PCB) /	Congene	ers				
atch CA83105 - 3540C										
3Z#118	0.00319	0.00027	mg/kg wet	0.003333		96	40-140	3	50	
3Z#118 [2C]	0.00285	0.00027	mg/kg wet	0.003333		85	40-140	0.3	50	
Z#128	0.00330	0.00027	mg/kg wet	0.003333		99	40-140	1	50	
Z#128 [2C]	0.00306	0.00027	mg/kg wet	0.003333		92	40-140	0.08	50	
Z#138	0.00315	0.00027	mg/kg wet	0.003333		94	40-140	2	50	
Z#138 [2C]	0.00294	0.00027	mg/kg wet	0.003333		88	40-140	0.3	50	
Z#153	0.00320	0.00027	mg/kg wet	0.003333		96	40-140	0.9	50	
Z#153 [2C]	0.00290	0.00027	mg/kg wet	0.003333		87	40-140	0.3	50	
Z#170	0.00324	0.00027	mg/kg wet	0.003333		97	40-140	2	50	
Z#170 [2C]	0.00320	0.00027	mg/kg wet	0.003333		96	40-140	0.9	50	
Z#18	0.00302	0.00027	mg/kg wet	0.003333		91	40-140	0.1	50	
Z#18 [2C]	0.00275	0.00027	mg/kg wet	0.003333		83	40-140	1	50	
Z#180	0.00330	0.00027	mg/kg wet	0.003333		99	40-140	2	50	
Z#180 [2C]	0.00318	0.00027	mg/kg wet	0.003333		96	40-140	0.01	50	
Z#187	0.00321	0.00027	mg/kg wet	0.003333		96	40-140	2	50	
Z#187 [2C]	0.00291	0.00027	mg/kg wet	0.003333		87	40-140	0.5	50	
Z#195	0.00326	0.00027	mg/kg wet	0.003333		98	40-140	0.8	50	
Z#195 [2C]	0.00320	0.00027	mg/kg wet	0.003333		96	40-140	0.6	50	
Z#206	0.00333	0.00027	mg/kg wet	0.003333		100	40-140	2	50	
Z#206 [2C]	0.00316	0.00027	mg/kg wet	0.003333		95	40-140	0.7	50	
Z#209	0.00330	0.00027	mg/kg wet	0.003333		99	40-140	2	50	
Z#209 [2C]	0.00301	0.00027	mg/kg wet	0.003333		90	40-140	0.3	50	
Z#28	0.00310	0.00027	mg/kg wet	0.003333		93	40-140	3	50	
Z#28 [2C]	0.00276	0.00027	mg/kg wet	0.003333		83	40-140	0.7	50	
Z#44	0.00282	0.00027	mg/kg wet	0.003333		85	40-140	2	50	
Z#44 [2C]	0.00289	0.00027	mg/kg wet	0.003333		87	40-140	0.9	50	
Z#52	0.00294	0.00027	mg/kg wet	0.003333		88	40-140	5	50	
Z#52 [2C]	0.00286	0.00027	mg/kg wet	0.003333		86	40-140	1	50	
Z#66	0.00328	0.00027	mg/kg wet	0.003333		98	40-140	2	50	
Z#66 [2C]	0.00294	0.00027	mg/kg wet	0.003333		88	40-140	0.6	50	
Z#8	0.00326	0.00027	mg/kg wet	0.003333		98	40-140	0.9	50	
Z#8 [2C]	0.00332	0.00027	mg/kg wet	0.003333		99	40-140	1	50	
urrogate: Tetrachloro-m-xylene	0.00265		mg/kg wet	0.003333		79	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.00256		mg/kg wet	0.003333		77	30-150			
		C	lassical Cher	nistry						
Batch CB80218 - General Preparation										
Blank										
otal Organic Carbon (1)	ND	100	mg/kg							
otal Organic Carbon (2)	ND	100	mg/kg							
otal Organic Carbon (Average)	ND	100	mg/kg							
			5, 5							
CS	10200	100	malka	10000		102	80 120			
otal Organic Carbon (1)	10200	100	mg/kg	10000		102	80-120			
otal Organic Carbon (2)	10300	100	mg/kg	10000		103	80-120			
							http://www			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond

Client Project ID: Sawmill Brook - 401WQ

ESS Laboratory Work Order: 1801552

Quality Control Data

Analuta		MDI	11-2	Spike	Source	0/ 050	%REC	000	RPD	0
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
		C	lassical Cher	nistry						
Batch CB80218 - [CALC]										
Total Organic Carbon (Average)	10300	100	mg/kg							
LCS Dup										
Total Organic Carbon (1)	9940	100	mg/kg	10000		99	80-120	3	200	
Total Organic Carbon (2)	9660	100	mg/kg	10000		97	80-120	7	200	
Total Organic Carbon (Average)	9800	100	mg/kg							
Reference										
Total Organic Carbon (Average)	1.60		mg/kg							
		EP-EPH Extr	actable Petr	oleum Hy	/drocarbo	ns				
Batch CB80106 - 3546										
Blank										
C19-C36 Aliphatics1	ND	12.0	mg/kg wet							
C9-C18 Aliphatics1	ND	12.0	mg/kg wet							
Decane (C10)	ND	0.5	mg/kg wet							
Docosane (C22)	ND	0.5	mg/kg wet							
Dodecane (C12)	ND	0.5	mg/kg wet							
Eicosane (C20)	ND	0.5	mg/kg wet							
Hexacosane (C26)	ND	0.5	mg/kg wet							
Hexadecane (C16)	ND	0.5	mg/kg wet							
Hexatriacontane (C36)	ND	0.5	mg/kg wet							
Nonadecane (C19)	ND	0.5	mg/kg wet							
Nonane (C9)	ND	0.5	mg/kg wet							
Octacosane (C28)	ND	0.5	mg/kg wet							
Octadecane (C18)	ND	0.5	mg/kg wet							
Tetracosane (C24)	ND	0.5	mg/kg wet							
Tetradecane (C14)	ND	0.5	mg/kg wet							
Triacontane (C30)	ND	0.5	mg/kg wet							
Surrogate: 1-Chlorooctadecane	1.49		mg/kg wet	2.000		74	40-140			
Blank										
C11-C22 Aromatics1,2	ND	12.0	mg/kg wet							
C11-C22 Unadjusted Aromatics1	ND	12.0	mg/kg wet							
Surrogate: 2-Bromonaphthalene	1.87		mg/kg wet	2.000		94	40-140			
Surrogate: 2-Fluorobiphenyl	1.77		mg/kg wet	2.000		89	40-140			
Surrogate: O-Terphenyl	1.69		mg/kg wet	2.000		84	40-140			
Blank										
2-Methylnaphthalene	ND	0.020	mg/kg wet							
Acenaphthene	ND	0.020	mg/kg wet							
Acenaphthylene	ND	0.020	mg/kg wet							
Anthracene	ND	0.008	mg/kg wet							
Benzo(a)anthracene	ND	0.008	mg/kg wet							
Benzo(a)pyrene	ND	0.008	mg/kg wet							
Benzo(b)fluoranthene	ND	0.020	mg/kg wet							

2211 Tel: 401-461-7181 Dependability + Quality

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - 401WQ

ESS Laboratory Work Order: 1801552

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
Analyte							LIIIIIS	κrυ	LIITIIL	Qualifie
	MAD	EP-EPH Extr	actable Petro	pleum Hy	/drocarbo	ns				
atch CB80106 - 3546										
Benzo(g,h,i)perylene	ND	0.020	mg/kg wet							
Benzo(k)fluoranthene	ND	0.020	mg/kg wet							
C11-C22 Aromatics1,2	ND	0.280	mg/kg wet							
Chrysene	ND	0.020	mg/kg wet							
Dibenzo(a,h)Anthracene	ND	0.008	mg/kg wet							
luoranthene	ND	0.020	mg/kg wet							
luorene	ND	0.008	mg/kg wet							
ndeno(1,2,3-cd)Pyrene	ND	0.020	mg/kg wet							
laphthalene	ND	0.020	mg/kg wet							
Phenanthrene	ND	0.020	mg/kg wet							
Pyrene	ND	0.020	mg/kg wet							
.cs										
C19-C36 Aliphatics1	15.9	15.0	mg/kg wet	16.00		100	40-140			
C9-C18 Aliphatics1	9.3	15.0	mg/kg wet	12.00		78	40-140			
Decane (C10)	1.1	0.5	mg/kg wet	2.000		57	40-140			
Docosane (C22)	1.7	0.5	mg/kg wet	2.000		86	40-140			
Dodecane (C12)	1.3	0.5	mg/kg wet	2.000		63	40-140			
icosane (C20)	1.7	0.5	mg/kg wet	2.000		85	40-140			
lexacosane (C26)	1.7	0.5	mg/kg wet	2.000		87	40-140			
lexadecane (C16)	1.6	0.5	mg/kg wet	2.000		81	40-140			
Hexatriacontane (C36)	1.7	0.5	mg/kg wet	2.000		87	40-140			
Nonadecane (C19)	1.7	0.5	mg/kg wet	2.000		86	40-140			
Ionane (C9)	0.9	0.5	mg/kg wet	2.000		46	30-140			
Octacosane (C28)	1.7	0.5	mg/kg wet	2.000		87	40-140			
Octadecane (C18)	1.6	0.5	mg/kg wet	2.000		82	40-140			
etracosane (C24)	1.7	0.5	mg/kg wet	2.000		86	40-140			
Fetradecane (C14)	1.4	0.5	mg/kg wet	2.000		70	40-140			
riacontane (C30)	1.8	0.5	mg/kg wet	2.000		89	40-140			
Surrantas 1 Chlaraactadacana	1.74		mg/kg wet	2.000		87	40-140			
Surrogate: 1-Chlorooctadecane										
C11-C22 Aromatics1,2	30.7	15.0	mg/kg wet							
C11-C22 Unadjusted Aromatics1	30.7	15.0	mg/kg wet	34.00		90	40-140			
Surrogate: 2-Bromonaphthalene	2.15		mg/kg wet	2.000		107	40-140			
Surrogate: 2-Fluorobiphenyl	1.86		mg/kg wet	2.000		93	40-140			
Surrogate: O-Terphenyl	1.83		mg/kg wet	2.000		91	40-140			
.cs										
P-Methylnaphthalene Breakthrough	0.0		%				0-5			
aphthalene Breakthrough	0.0		%				0-5			
.cs										
2-Methylnaphthalene	1.52	0.040	mg/kg wet	2.000		76	40-140			
Acenaphthene	1.82	0.040	mg/kg wet	2.000		91	40-140			
Acenaphthylene	1.99	0.040	mg/kg wet	2.000		99	40-140			
nthracene	1.87	0.016	mg/kg wet	2.000		93	40-140			

Fax: 401-461-4486 ٠ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - 401WQ

ESS Laboratory Work Order: 1801552

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
	MAD	EP-EPH Extr	actable Petro	oleum Hy	/drocarbo	ns				
Batch CB80106 - 3546										
Benzo(a)anthracene	1.79	0.016	mg/kg wet	2.000		89	40-140			
Benzo(a)pyrene	1.85	0.016	mg/kg wet	2.000		93	40-140			
Benzo(b)fluoranthene	1.80	0.040	mg/kg wet	2.000		90	40-140			
Benzo(g,h,i)perylene	1.79	0.040	mg/kg wet	2.000		89	40-140			
enzo(k)fluoranthene	1.77	0.040	mg/kg wet	2.000		88	40-140			
11-C22 Aromatics1,2	ND	0.560	mg/kg wet							
hrysene	1.83	0.040	mg/kg wet	2.000		91	40-140			
ibenzo(a,h)Anthracene	1.94	0.016	mg/kg wet	2.000		97	40-140			
luoranthene	1.87	0.040	mg/kg wet	2.000		93	40-140			
luorene	1.92	0.016	mg/kg wet	2.000		96	40-140			
ndeno(1,2,3-cd)Pyrene	2.04	0.040	mg/kg wet	2.000		102	40-140			
aphthalene	1.57	0.040	mg/kg wet	2.000		79	40-140			
henanthrene	1.77	0.040	mg/kg wet	2.000		89	40-140			
yrene	1.77	0.040	mg/kg wet	2.000		88	40-140			
CS Dup										
19-C36 Aliphatics1	16.1	15.0	mg/kg wet	16.00		101	40-140	1	25	
9-C18 Aliphatics1	9.3	15.0	mg/kg wet	12.00		77	40-140	0.7	25	
ecane (C10)	1.2	0.5	mg/kg wet	2.000		58	40-140	1	25	
ocosane (C22)	1.8	0.5	mg/kg wet	2.000		89	40-140	3	25	
odecane (C12)	1.3	0.5	mg/kg wet	2.000		64	40-140	2	25	
icosane (C20)	1.8	0.5	mg/kg wet	2.000		88	40-140	3	25	
lexacosane (C26)	1.8	0.5	mg/kg wet	2.000		90	40-140	4	25	
lexadecane (C16)	1.7	0.5	mg/kg wet	2.000		84	40-140	3	25	
lexatriacontane (C36)	1.8	0.5	mg/kg wet	2.000		90	40-140	4	25	
lonadecane (C19)	1.8	0.5	mg/kg wet	2.000		89	40-140	3	25	
lonane (C9)	0.9	0.5	mg/kg wet	2.000		46	30-140	0.9	25	
octacosane (C28)	1.8	0.5	mg/kg wet	2.000		91	40-140	4	25	
octadecane (C18)	1.7	0.5	mg/kg wet	2.000		84	40-140	3	25	
etracosane (C24)	1.8	0.5	mg/kg wet	2.000		89	40-140	4	25	
etradecane (C14)	1.4	0.5	mg/kg wet	2.000		72	40-140	3	25	
riacontane (C30)	1.9	0.5	mg/kg wet	2.000		93	40-140	4	25	
urrogate: 1-Chlorooctadecane	1.79		mg/kg wet	2.000		89	40-140			
CS Dup										
11-C22 Aromatics1,2	29.9	15.0	mg/kg wet							
C11-C22 Unadjusted Aromatics1	29.9	15.0	mg/kg wet	34.00		88	40-140	3	25	
Surrogate: 2-Bromonaphthalene	1.88		mg/kg wet	2.000		94	40-140			
Surrogate: 2-Fluorobiphenyl	1.72		mg/kg wet	2.000		86	40-140			
Surrogate: O-Terphenyl	1.81		mg/kg wet	2.000		90	40-140			
CS Dup										
-Methylnaphthalene Breakthrough	0.0		%				0-5		200	
laphthalene Breakthrough	0.0		%				0-5		200	
.CS Dup										
-Methylnaphthalene	1.56	0.040	mg/kg wet	2.000		78	40-140	3	30	

Dependability ٠ Quality ٠ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - 401WQ

ESS Laboratory Work Order: 1801552

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	MAD	EP-EPH Extr	actable Petro	oleum Hy	drocarbo	ns				
Batch CB80106 - 3546										
Acenaphthene	1.84	0.040	mg/kg wet	2.000		92	40-140	1	30	
Acenaphthylene	2.01	0.040	mg/kg wet	2.000		101	40-140	1	30	
Anthracene	1.89	0.016	mg/kg wet	2.000		95	40-140	2	30	
Benzo(a)anthracene	1.83	0.016	mg/kg wet	2.000		92	40-140	3	30	
Benzo(a)pyrene	1.88	0.016	mg/kg wet	2.000		94	40-140	1	30	
Benzo(b)fluoranthene	1.88	0.040	mg/kg wet	2.000		94	40-140	4	30	
Benzo(g,h,i)perylene	1.84	0.040	mg/kg wet	2.000		92	40-140	3	30	
Benzo(k)fluoranthene	1.74	0.040	mg/kg wet	2.000		87	40-140	1	30	
C11-C22 Aromatics1,2	ND	0.560	mg/kg wet							
Chrysene	1.86	0.040	mg/kg wet	2.000		93	40-140	2	30	
Dibenzo(a,h)Anthracene	1.92	0.016	mg/kg wet	2.000		96	40-140	0.6	30	
Fluoranthene	1.88	0.040	mg/kg wet	2.000		94	40-140	0.5	30	
Fluorene	1.93	0.016	mg/kg wet	2.000		97	40-140	0.7	30	
ndeno(1,2,3-cd)Pyrene	2.08	0.040	mg/kg wet	2.000		104	40-140	2	30	
laphthalene	1.63	0.040	mg/kg wet	2.000		81	40-140	3	30	
Phenanthrene	1.79	0.040	mg/kg wet	2.000		90	40-140	1	30	
yrene	1.81	0.040	mg/kg wet	2.000		91	40-140	2	30	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - 401WQ

ESS Laboratory Work Order: 1801552

Z-08 See Attached U Analyte included in the analysis, but not detected Р Percent difference between primary and confirmation results exceeds 40% (P). LC Lower value is used due to matrix interferences (LC). D Diluted. ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes dry Sample results reported on a dry weight basis RPD Relative Percent Difference MDL Method Detection Limit MRL Method Reporting Limit LOD Limit of Detection Limit of Quantitation LOQ **Detection Limit** DL Initial Volume I/V F/V Final Volume § Subcontracted analysis; see attached report 1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range. 2 Range result excludes concentrations of target analytes eluting in that range. 3 Range result excludes the concentration of the C9-C10 aromatic range. Avg Results reported as a mathematical average. NR No Recovery Calculated Analyte [CALC] SUB Subcontracted analysis; see attached report RL **Reporting Limit**

Notes and Definitions

EDL Estimated Detection Limit

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - 401WQ

ESS Laboratory Work Order: 1801552

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories/pdf/OutofStateCommercialLaboratories.pdf

> Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

> > Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

SOILS LABORATORY TESTING ASSIGNMENT SHEET

Client Company Tighe & Bond

195 Frances Ave., Cranston, RI 02910 401-467-6454

401-467-6			8	sol.	E.O.P.	D2435											
40			Date Required 2/6/2018	Consol	Stand ard	D2435											
		ed By	quired 2	gth	ciu	D4767					 				 _		
		Collected By	ate Re(Soil Strength	- N	D2850											
			Â	Soi	Un- con- fined	D2166					 			1			
				noi	CBR	D698 D1883										-	
				Compaction	Std.												
		1			Clay Mod. Std. CBR	D1557											
				Permeability	Clay	D5084											
p				Perme	Sand	D2434											
& Bo					Tube Den- sity												
Tighe					ຶ້	D854			_								
pany	imail	ation	gned	ŝ	Hyd -2µ %	2											
Client Company Tighe & Bond	Client Email	Site Location	Date Assigned	Identification Tests	Sieve Hyd -200 -2µ %	D422		х	×	х							
Clien	0	Ś	Dat	tificatic	Bulk												
				Iden	Org. %	D2974											
					۲۲ ۳۲ ۳۲	D4318 D2974											
			λq)		Water Cont. %	D2216											
				F	.oN daJ		<u>u</u>										
ook		renda			ESS Sample ID			1801552-01	1801552-02	1801552-03							
Project Name Sawmill Brook	1801552	Project Manager Michelle Mirenda	Date Received 1/30/2018	Sample Information	Sample date			1/23/18	1/23/18	1/23/18							
sct Name	ESS Project No. 1801552	Manager	Received	Sample Ir	Sample or depth												
Proje	ESS Pro	Project	Date		Boring/ Test Pit No.			Pond	Stream Up	Stream Down							

** * **

#

z o ↔ o ø

** = Sieve # 4,10,40,60,200

Notes:

ESS L	aborator	y		C	HAIN OF CUSTO	DY	ESS La	b #		is	51	5.5	7							
	f Thielsch Eng			Turn Time	5 Days		Report	ina		10	-	00								
185 Franc	es Avenue, Cr	anston RI 029	10	Regulatory State			Limit	-					4	401 W	/ater	Qualit	.y			
		x (401) 461-44	86		is project for any of the follo	•		Electonic 🛛 Data Checker 🖓 Excel												
www.essla	aboratory.com			OCT RCP	e tattier a	RGP	Delivera	bles	Dot	ther (P	lease S	pecify	→)							
		npany Name ghe & Bond		Project # 221476	Project Na Sawmill Br			ater	-	Congeners										
	Co	ntact Person			Address	OOK	<u>.</u>	t W	eve	Iger					(pl					
		ary Hedman			4 Barlows Landing Road	50.4	Analysis	cen	N L	Cor			=		(ho					
	City Pocasset			tate //A	Zip Code 02559	Zip Code PO # 02559				18		10			tals	(p				
1	elephone Nu			lumber	Email Add	-	and Percent Water	PAH Low Level	AA		4		a	14 Metals (hold)	hole					
	508-304-63			r	Ghedman@tighe		SE	1	2 Z	1	: : : : : : : : : : : : : : : : : : :	5 6	1 SIZE	14	Cs (
ESS Lab ID	Collection Date	Collection Time	Sample Type	Sample Matrix	Sar		*Metals	EPH	PCB NOAA	VOC LL	VOC High		TPH	MCP	SVOCs (hold)					
01	1/23/18	1300	Composite	Soil	F	Pond		X	X	х	x	x :	<)	x k						
02	1/23/18	1330	Composite	Soil	Stre	eam Up		x	х	х	×	X I	<)	x k						
03	1/23/18	1400	Composite	Soil	Strea	am Down		ĸ	х	х	х	X	()	× ¥						
04	1/23/18	1300	С	S	Pond - air dried			x						Pa	c ils	18				
05	1/23/18	1330	С	S	Stream Up - air dried			x												
06	1/23/18	1400	С	S	Stream Down - air dried			x												
			ette AG-Amber Gla		C-Cubitainer J-Jar O-Ot		terile V-Vial	AG			V	VA	G	D AG	6					
	iner Volume:		2-2.5 gal 3-250 mL				z 11-Other*	10	10	10	7	7	3 1	1 10						
Prese	vation Code:	1-Non Preserved	2-HCI 3-H2SO4	4-HNO3 5-NaOH 6-M	lethanol 7-Na2S2O3 8-ZnAce, Na		120 11-Other*	1	1	1	10	6	<u> </u>	1 1						
		/				er of Containers p	er Sample:	1	1	1	2	1		1 1						
		Laborator	y Use Only		Sampled by : Gary He	dman								_	_					
Coole	r Present:	\checkmark	ODrop Off		Comments:	Please s	pecify "Othe	r" pr	eser	vativ	e and	d con	aine	ers typ	es in	this s	pace			
Seal	s Intact:		OPickup		* Metals - As, Cd, Cr, Cu, Pb	Ha. Ni. Zn	addeo	d air d	dried	sam	oles f	or me	als.	mkm	2/5/18	3		0	1	AC
and the second se	emperature:	1,9 ic	og P				L	F	102	en	by	G.	H.	0	1000	0 4	25/1 ure, Da	8	u	u
Re	linquished by:	(Signature, Da		Received By:	(Signature, Date & Time)	Relinquished I	By: (Signature	e, Dat	e & '				Red	ceived	By: (Signat	ure, Da	ite & T	ime)	
anu	h little		35	Hunch	13135	11 ing to	Lunter-	-30	-18	14		R	5	t	13	18		15		
Re	elinquished by:	(Signature, Da	ate & Time)	Received By:	(Signature, Date & Time)	Relinquished I	3y: (Signature	, Dat	e & '	Time)		Ree	ceived	By: (Signat	ure, Da		ime)	
			U	/	L	1														

ESS L	aborator	V		C	CHAIN OF CUST	ODY	ESS La	b #		18	01	55	7							
	f Thielsch Eng	•		Turn Time	5 Days		Report	na		10	51	00								
		ranston RI 029	10	Regulatory State			Limit	-						401 V	Vater	r Qua	lity			
		ix (401) 461-44	86		is project for any of the f			Electonic Data Checker DExcel												
www.essla	aboratory.com			OCT RCP		ORGP	Delivera	Deliverables □Other (Please Specify →)												
		mpany Name ighe & Bond		Project # 221476		t Name Il Brook		ater	-	Congeners										
	Co	ntact Person			Address		<u>.</u>	t Wa	PAH Low Level	Jger					(pl	1				
	G	ary Hedman		tate	4 Barlows Landing Ro	Analysis	cen	J MC	Co					(ho	-					
	Pocasset			ΛA	Zip Code 02559	PO #	Ana	Per	HL	18			INAI		etals	(p				
1	elephone Nu		FAX N	lumber		Address		and Percent Water	PA	AAO		-b	- Lioyakann	Size	14 Metals (hold)	(hold)				
ESS Lab	508-304-63 Collection	Collection		1	<u>Ghedman@ti</u>	ghebond.com		tals	/w ł	Z		Ī	-	S _	14	Cs				
ID	Date	Time	Sample Type	Sample Matrix		Sample ID		*Metals	EPH	PCB NOAA	VOC LL	VOC High		Grain TPH	MCP	SVOCs				
01	1/23/18	1300	Composite	Soil		Pond		X	х	x				xk				1	\square	
02	1/23/18	1330	Composite	Soil		Stream Up		X	Х	х	Х	X	×	x k					\square	
03	1/23/18	1400	Composite	Soil	S	tream Down		Х	Х	х	х	X	x	××						
														5	er ci	illent 3:4/18		1	\square	
															- 44	saira -		1	\square	
															1				\square	
_																+		1		
																		-		
Co	ntainer Type:	AC-Air Casse	tte AG-Amber Gla	ass B-BOD Bottle	C-Cubitainer J-Jar C	Other P-Poly S-S	Sterile V-Vial	AG	AG	AG	V	VA	G	O AC	3	+				
Conta	iner Volume:	1-100 mL 2	2-2.5 gal 3-250 mL	4-300 mL 5-500	0 mL 6-1L 7-VOA 8-	2 oz 9-4 oz 10-8 o	z 11-Other*	10	10	10	7	7	8	11 10)					
Prese	vation Code:	1-Non Preserved	2-HCI 3-H2SO4	4-HNO3 5-NaOH 6-M	lethanol 7-Na2S2O3 8-ZnAce		H2O 11-Other*	1	1	1		6	1	1 1						
					1	mber of Containers p	er Sample:	1	1	1	2	1	1	1 1						
		Laborator	y Use Only		Sampled by : Gary	Hedman														
	r Present:		ODrop Off		Comments:	Pleases	specify "Othe													
	s Intact:	1,9 ic	OPickup		* Metals - As, Cd, Cr, Cu,	Pb, Hg, Ni, Zn		C			1	6		0	100		Var	1.~	per	A.C.
	emperature:	(Signature, Da		Received Dur	(Signature, Date & Time)	Delineviehed	Du (Circut		02	en	by	9.	H.	(0)	100	0	105	18		iv-
		1/3c		A Received By.		Relinquished	$\int I$			14		d	Re	ceived	Ву	(Signa	ature, I	Jate &	Time)
Amer	linguished by	(Signature, Da		Received By	(Signature, Date & Time)	Relinquished	By: (Sichature	-30	-18			Å	D R	t		518 (Sign:	ature, I	ISIS	Time	
	quiched by.	, orginaturo, De		ricocy da by.	(eignatare, Date & fille)		by. (Orginature	, Dat	u u	inne,			ive	CEIVEL	Бу	USIGIN	ature, I	Jale d	Time	,

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Gary Hedman Tighe & Bond 4 Barlows Landing Road, Unit 15 Pocasset, MA 02559

RE: Sawmill Brook - MCP (221476) ESS Laboratory Work Order Number: 1801551

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director

Analytical Summary

REVIEWED By ESS Laboratory at 2:32 pm, Feb 06, 2018

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - MCP

ESS Laboratory Work Order: 1801551

SAMPLE RECEIPT

The following samples were received on January 30, 2018 for the analyses specified on the enclosed Chain of Custody Record.

To achieve CAM compliance for MCP data, ESS Laboratory has reviewed all QA/QC Requirements and Performance Standards listed in each method. Holding times and preservation have also been reviewed. All CAM requirements have been performed and achieved unless noted in the project narrative.

Each method has been set-up in the laboratory to reach required MCP standards. The methods for aqueous VOA and Soil Methanol VOA have known limitations for certain analytes. The regulatory standards may not be achieved due to these limitations. In addition, for all methods, matrix interferences, dilutions, and %Solids may elevate method reporting limits above regulatory standards. ESS Laboratory can provide, upon request, a Limit Checker (regulatory standard comparison spreadsheet) electronic deliverable which will highlight these exceedances.

Question I: All samples for EPH were analyzed for a subset of the required MCP list per the client's request.

Lab Number	Sample Name	Matrix	Analysis
1801551-01	Pond	Soil	8100M
1801551-02	Stream Up	Soil	8100M
1801551-03	Stream Down	Soil	8100M

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - MCP

ESS Laboratory Work Order: 1801551

PROJECT NARRATIVE

No unusual observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - MCP

Analytical Methods

ESS Laboratory Work Order: 1801551

CURRENT SW-846 METHODOLOGY VERSIONS

Prep Methods

1010A - Flashpoint 6010C - ICP 6020A - ICP MS 7010 - Graphite Furnace 7196A - Hexavalent Chromium 7470A - Aqueous Mercury 7471B - Solid Mercury 8011 - EDB/DBCP/TCP 8015C - GRO/DRO 8081B - Pesticides 8082A - PCB 8100M - TPH 8151A - Herbicides 8260B - VOA 8270D - SVOA 8270D SIM - SVOA Low Level 9014 - Cyanide 9038 - Sulfate 9040C - Aqueous pH 9045D - Solid pH (Corrosivity) 9050A - Specific Conductance 9056A - Anions (IC) 9060A - TOC 9095B - Paint Filter MADEP 04-1.1 - EPH / VPH

3005A - Aqueous ICP Digestion
3020A - Aqueous Graphite Furnace / ICP MS Digestion
3050B - Solid ICP / Graphite Furnace / ICP MS Digestion
3060A - Solid Hexavalent Chromium Digestion
3510C - Separatory Funnel Extraction
3520C - Liquid / Liquid Extraction
3540C - Manual Soxhlet Extraction
3541 - Automated Soxhlet Extraction
3546 - Microwave Extraction
3580A - Waste Dilution
5030B - Aqueous Purge and Trap
5030C - Aqueous Purge and Trap
5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - MCP

ESS Laboratory Work Order: 1801551

MassDEP Analytical Protocol Certification Form

This form provides certification for the following data set: **1801551-01 through 1801551-03**

Matrices: () Grou	und Water/Surface Water	(X) Soil/Sediment	() Drinking Water	() Air () Other:_	
CAM Protocol (ch	neck all that apply below)):			
() 8260 VOC CAM II A	() 7470/7471 Hg CAM III B	() MassDEP VPH (GC/PID/FID) CAM IV A	() 8082 PCB CAM V A	() 9014 Total Cyanide/PAC CAM VI A	() 6860 Perchlorate CAM VIII B
() 8270 SVOC CAM II B	() 7010 Metals CAM III C	() MassDEP VPH (GC/MS) CAM IV B	() 8081 Pesticides CAM V C	() 7196 Hex Cr CAM VI B	() MassDEP APH CAM IX A
() 6010 Metals CAM III A	() 6020 Metals CAM III D	(X) MassDEP EPH CAM IV B	() 8151 Herbicides CAM V C	() Explosives CAM VIII A	() TO-15 VOC CAM IX B

Affirmative responses to questions A through F are required for "Presumptive Certainty" status

А	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	Yes (χ) No ()
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	Yes (X) No ()
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	Yes (X) No ()
D	Does the laboratory report comply with all the reporting requirements specified in the CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?	Yes (X) No ()
Е	VPH, EPH, APH and TO-15 only: a. Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	Yes (X) No $()$
	b. APH and TO-15 Methods only: Was the complete analyte list reported for each method?	Yes () No ()
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	Yes (χ) No $()$
	Responses to Questions G, H and I below are required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocols(s)?	Yes (X) No ()*
	Data User Note: Data that achieve "Presumptive Certainty" status may not necessarily meet the data usability and	
	representativeness requirements described in 310 CMR 40. 1056 (2)(k) and WSC-07-350.	
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	Yes (X) No ()*
Ι	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	Yes () No (X)*

<i>I</i> , the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible
for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief,

accurate and complete.

Laurel Stollar Signature:

*All negative responses must be addressed in an attached laboratory narrative.

Printed Name: Laurel Stoddard

Date: <u>February 06, 2018</u> Position: <u>Laboratory Director</u>

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - MCP Client Sample ID: Pond Date Sampled: 01/23/18 13:00 Percent Solids: 60 Initial Volume: 19 Final Volume: 1 Extraction Method: 3546

ESS Laboratory Work Order: 1801551 ESS Laboratory Sample ID: 1801551-01 Sample Matrix: Soil Units: mg/kg dry Analyst: SMR Prepared: 1/31/18 9:45

8100M Total Petroleum Hydrocarbons

<u>Analyte</u> Total Petroleum Hydrocarbons	<u>Results (MRL)</u> 93.7 (17.5)	<u>MDL</u>	<u>Method</u> 8100M	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 02/02/18 19:46	Sequence C8B0040	<u>Batch</u> CA83007
	%	Recovery	Qualifier	Limits				
Surrogate: O-Terphenyl		97 %		40-140				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - MCP Client Sample ID: Stream Up Date Sampled: 01/23/18 13:30 Percent Solids: 66 Initial Volume: 20.6 Final Volume: 1 Extraction Method: 3546

ESS Laboratory Work Order: 1801551 ESS Laboratory Sample ID: 1801551-02 Sample Matrix: Soil Units: mg/kg dry Analyst: SMR Prepared: 1/31/18 9:45

8100M Total Petroleum Hydrocarbons

<u>Analyte</u> Total Petroleum Hydrocarbons	Results (MRL) MDI 24.1 (14.7)	<u>Method</u> 8100M	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 02/02/18 20:24	Sequence C8B0040	<u>Batch</u> CA83007
	%Recovery	Qualifier	Limits				
Surrogate: O-Terphenyl	104 %		40-140				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - MCP Client Sample ID: Stream Down Date Sampled: 01/23/18 14:00 Percent Solids: 76 Initial Volume: 19.2 Final Volume: 1 Extraction Method: 3546

ESS Laboratory Work Order: 1801551 ESS Laboratory Sample ID: 1801551-03 Sample Matrix: Soil Units: mg/kg dry Analyst: SMR Prepared: 1/31/18 9:45

8100M Total Petroleum Hydrocarbons

<u>Analyte</u> Total Petroleum Hydrocarbons	Results (MRL) MI 222 (13.7) 1	<u>Method</u> 8100M	<u>Limit</u>	<u>DF</u> 1	Analyzed 02/02/18 21:03	Sequence C8B0040	<u>Batch</u> CA83007
	%Recovery	Qualifier	Limits				
Surrogate: O-Terphenyl	105 %		40-140				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - MCP

ESS Laboratory Work Order: 1801551

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
		8100M Tot	al Petroleum	Hydroca	irbons					
Batch CA83007 - 3546										
Blank										
Decane (C10)	ND	0.2	mg/kg wet							
Docosane (C22)	ND	0.2	mg/kg wet							
Dodecane (C12)	ND	0.2	mg/kg wet							
icosane (C20)	ND	0.2	mg/kg wet							
lexacosane (C26)	ND	0.2	mg/kg wet							
lexadecane (C16)	ND	0.2	mg/kg wet							
lexatriacontane (C36)	ND	0.2	mg/kg wet							
Ionadecane (C19)	ND	0.2	mg/kg wet							
Ionane (C9)	ND	0.2	mg/kg wet							
Octacosane (C28)	ND	0.2	mg/kg wet							
Octadecane (C18)	ND	0.2	mg/kg wet							
etracosane (C24)	ND	0.2	mg/kg wet							
etradecane (C14)	ND	0.2	mg/kg wet							
otal Petroleum Hydrocarbons	ND	10.0	mg/kg wet							
riacontane (C30)	ND	0.2	mg/kg wet							
Surrogate: O-Terphenyl	5.82		mg/kg wet	5.000		116	40-140			
.cs										
Decane (C10)	2.4	0.2	mg/kg wet	2.500		95	40-140			
Docosane (C22)	2.6	0.2	mg/kg wet	2.500		105	40-140			
Oodecane (C12)	2.6	0.2	mg/kg wet	2.500		104	40-140			
icosane (C20)	2.6	0.2	mg/kg wet	2.500		104	40-140			
lexacosane (C26)	2.6	0.2	mg/kg wet	2.500		104	40-140			
lexadecane (C16)	2.6	0.2	mg/kg wet	2.500		103	40-140			
lexatriacontane (C36)	2.6	0.2	mg/kg wet	2.500		106	40-140			
Ionadecane (C19)	2.6	0.2	mg/kg wet	2.500		104	40-140			
Ionane (C9)	2.0	0.2	mg/kg wet	2.500		80	30-140			
Octacosane (C28)	2.6	0.2	mg/kg wet	2.500		104	40-140			
Octadecane (C18)	2.5	0.2	mg/kg wet	2.500		102	40-140			
etracosane (C24)	2.6	0.2	mg/kg wet	2.500		105	40-140			
etradecane (C14)	2.6	0.2	mg/kg wet	2.500		103	40-140			
otal Petroleum Hydrocarbons	36.3	10.0	mg/kg wet	35.00		104	40-140			
riacontane (C30)	2.6	0.2	mg/kg wet	2.500		104	40-140			
Surrogate: O-Terphenyl	6.10		mg/kg wet	5.000		122	40-140			_
.CS Dup										
Decane (C10)	2.4	0.2	mg/kg wet	2.500		96	40-140	0.7	25	
Docosane (C22)	2.6	0.2	mg/kg wet	2.500		104	40-140	1	25	
Dodecane (C12)	2.6	0.2	mg/kg wet	2.500		103	40-140	0.8	25	
icosane (C20)	2.6	0.2	mg/kg wet	2.500		103	40-140	1	25	
lexacosane (C26)	2.6	0.2	mg/kg wet	2.500		103	40-140	1	25	
lexadecane (C16)	2.5	0.2	mg/kg wet	2.500		102	40-140	1	25	
	2.7	0.2	mg/kg wet	2.500		102	40-140	2	25	
lexatriacontane (C36)								-		

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - MCP

ESS Laboratory Work Order: 1801551

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		8100M Tot	al Petroleum	Hydroca	rbons					
Batch CA83007 - 3546										
Nonane (C9)	2.0	0.2	mg/kg wet	2.500		82	30-140	1	25	
Octacosane (C28)	2.6	0.2	mg/kg wet	2.500		103	40-140	0.7	25	
Octadecane (C18)	2.5	0.2	mg/kg wet	2.500		100	40-140	1	25	
Tetracosane (C24)	2.6	0.2	mg/kg wet	2.500		104	40-140	0.9	25	
Tetradecane (C14)	2.5	0.2	mg/kg wet	2.500		102	40-140	1	25	
Total Petroleum Hydrocarbons	35.6	10.0	mg/kg wet	35.00		102	40-140	2	25	
Triacontane (C30)	2.6	0.2	mg/kg wet	2.500		103	40-140	0.7	25	
Surrogate: O-Terphenyl	5.90		mg/kg wet	5.000		118	40-140			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - MCP

ESS Laboratory Work Order: 1801551

Notes and Definitions

U	Analyte included in the analysis, but not detected
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD	Limit of Detection
LOQ	Limit of Quantitation
DL	Detection Limit
I/V	Initial Volume
F/V	Final Volume
§	Subcontracted analysis; see attached report
1	Range result excludes concentrations of surrogates and/or internal standards eluting in that range.
2	Range result excludes concentrations of target analytes eluting in that range.
3	Range result excludes the concentration of the C9-C10 aromatic range.
Avg	Results reported as a mathematical average.
NR	No Recovery
[CALC]	Calculated Analyte
SUB	Subcontracted analysis; see attached report
RL	Reporting Limit
EDL	Estimated Detection Limit
2	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tighe & Bond Client Project ID: Sawmill Brook - MCP

ESS Laboratory Work Order: 1801551

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories/pdf/OutofStateCommercialLaboratories.pdf

> Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

> > Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

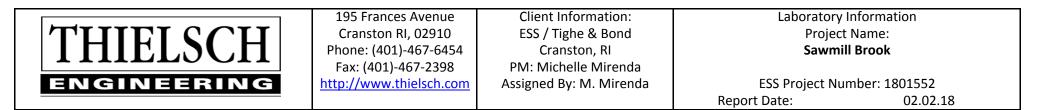
Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

ESS Laboratory Sample and Cooler Receipt Checklist

Client:Tighe & Bond - KPB/TB/MM	ESS Project ID: 1801551	<u></u>
Shipped/Delivered Via: ESS Courier	Date Received: 1/30/2018 Project Due Date: 2/6/2018 Days for Project: 5 Day	_
1. Air bill manifest present? No Air No.: NA	6. Does COC match bottles?	Yes
2. Were custody seals present? No	7. Is COC complete and correct?	Yes
3. Is radiation count <100 CPM? Yes	8. Were samples received intact?	Yes
4. Is a Cooler Present? Yes Temp: 1.9 Iced with: Ice	9. Were labs informed about <u>short holds & rushes</u> ?	Yes / No NA
5. Was COC signed and dated by client? Yes	10. Were any analyses received outside of hold time?	Yes No
11. Any Subcontracting needed? Yes / No ESS Sample IDs: Analysis: TAT:	12. Were VOAs received?a. Air bubbles in aqueous VOAs?b. Does methanol cover soil completely?	Yes / No Yes / No Yes / No / NA
13. Are the samples properly preserved? Yes / No a. If metals preserved upon receipt: Date: b. Low Level VOA vials frozen: Date: Sample Receiving Notes: Date:	Time: By: Time: By:	
14. Was there a need to contact Project Manager? a. Was there a need to contact the client? Who was contacted?	Yes / No Yes / No Time: By:	
Sample Container Proper Air Sufficient Number ID Container Present Volume	Container Type Preservative Record pH (Cyan Pesticide	
01 198995 Yes NA Yes 02 198994 Yes NA Yes 03 198993 Yes NA Yes	8 oz. Jar - Unpres NP 8 oz. Jar - Unpres NP 8 oz. Jar - Unpres NP	
2nd Review Are barcode labels on correct containers?	Ves No	
Completed By:	Date & Time: 13018 1542	
Reviewed AWA A	Date & Time: 1/30/18 160-3	-
By:	- 1/30/18 1603	-
		_

ESS L	aborator	y		C	HAIN OF	CUSTO	YC		ESS La	b #		18	01	55	•1								
Division of	Thielsch Eng	ineering, Inc.		Turn Time	5	Days	-,		Reporti	ng			<u> </u>			404							
		anston RI 029		Regulatory State					Limits	5						401	444	ater (Juai	пу			
		x (401) 461-44	86		s project for an				Elector			ita Che							⊡Ex	cel			
www.essla	boratory.com			OCT RCP	MA MCI		KGP		Deliveral	bles	Dot		ease S	pecify	-+)							,	
	TI	mpany Name ghe & Bond		Project # 221476		Project Na Sawmill Bro				ater	el	Congeners				ĺ	1					[
		ntact Person			Add				sis l	<u>₹</u>	ev	ge						3				ļ	
┣───	Gity	ary Hedman		l tate	4 Barlows La		PO		Analysis	ğ	M	8			Ξl			Ĕ				1	
	Pocasset			MA	Zip C 025	59	P0	**	Å	Ъ.	Ť	≌			Е Б			tals	ভ			1	
T	elephone Nu 508-304-63	mber		Number		Email Addr edman@tighel				s and	v/ PAI	A Q A		t₿		Size	ŀ	14 Metals (hold)	s (hol				
ESS Lab ID	Collection Date	Collection Time	Sample Type	Sample Matrix		San	nple ID	•	•	*Metals and Percent Water	EPH w/ PAH Low Level	PCB NOAA	VOC LL	VOC High	TOC - LloydKahn	Grain Size	ΗdΤ	MCP	SVOCs (hold)				
01	1/23/18	1300	Composite	Soil		P	ond			\times	×	х	- f		X	*	x		×				
02	1/23/18	1330	Composite	Soil	ļ	Stre	am Up			×	х	\ge	*	$\overline{\mathbb{X}}$	x	Х	х	×	×				
03	1/23/18	1400	Composite	Soil		Strea	m Down			-*	×	×	х	x	\overline{X}	*	х	⊁	$\boldsymbol{\star}$				
																				2er		*	
	····	ļ												·						26 1	50/18		
							- <u></u> .	<u>-</u>															
										İ													
						<u> </u>														_			
							<u></u>													_			
				ass B-BOD Bottle			er P-Poly		ile V-Vial		_			V									
h			2-2.5 gal 3-250 ml				· · · ·		11-Other*	10	10		7		-	_	10						
Prese	vation Code:	1-Non Preserved	2-HCI 3-H2SO4	4-HNO3 5-NaOH 6-M	ethanol 7-Na2S2C	·				1	1	1	10	6	1	1	1						
					-	Numbe	7 of Contai	ners per	Sample:	1	1	1	2	1	1	1	1						
		Laborator	y Use Only		Sampled by	: Gary Hee																	
	Present:	<u> </u>	ODrop Off		Comments			lease spe	cify "Othe	r" pr	eser	vativ	e an	d cor	itai	ners	type	as in	this	space) .		
	s Intact: emperature:	1,9 ic			* Metals - As, C	d, Cr, Cu, Pb,	, Hg, Ni, Zn					· .	,										
Re	linquished by:	(Signature, Da	ate & Time)	Received By:	(Signature, Date	e & Time)	Relinqu	ished By:	(Signature	e, Dat	e & '	Time)			Ŗ	lecei	ved I	By: (8	Signa	ature, I	Date 8	k Tim	ie)
line	l'Inte	/ 1/3c = 13:	18	hush	1-30	13135	Arin	\mathcal{O}) It-	-30	- <u>1</u> :8	, 14	30	\mathcal{T}	(*	I	130	18	,	515		
Ře	linquished by:	(Signature, Da		Received By:	(Signature, Date				(Signature	, Dat	e & `	Time))		R	leceir	ved I	Byk (S	Bigna	ature, I	Date 8	Tim	ie)
		· · · - ·	0			t	1					•	·		•	- <u>'</u>							
L				1				<u> </u>		,			1										

.


۰.

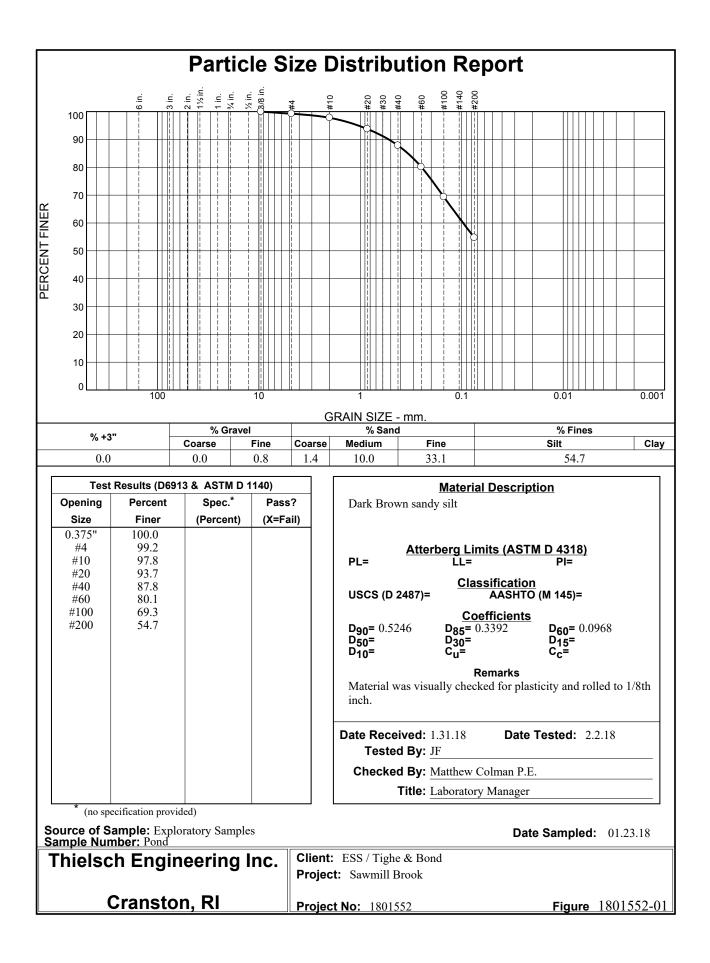
.

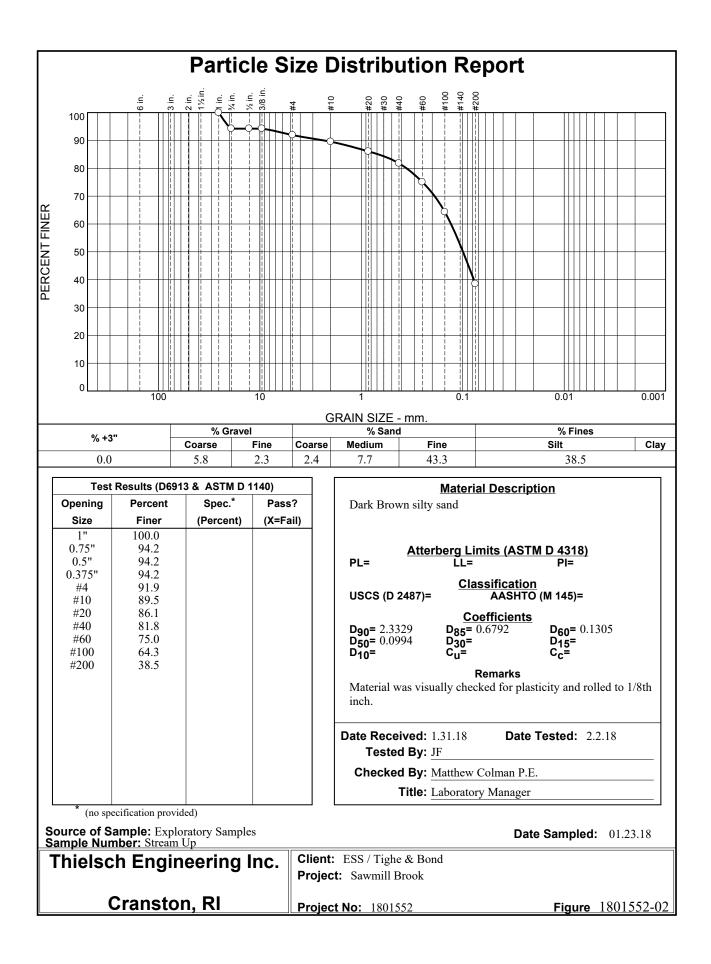
1

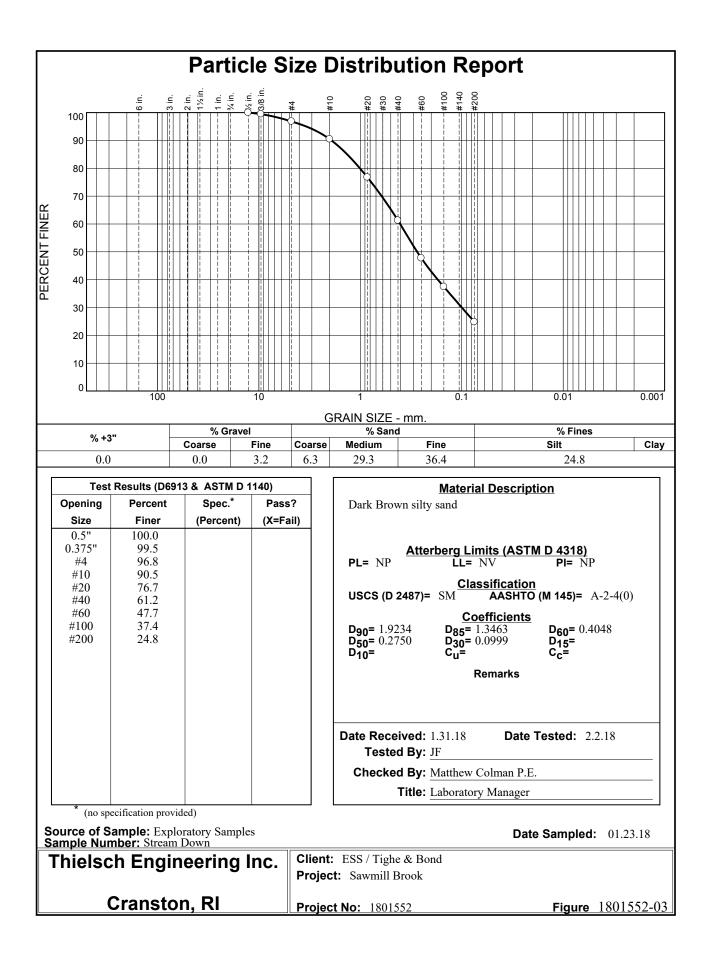
Tighe&Bond

APPENDIX C

LABORATORY TESTING DATA SHEET


]	Identi	fication	Tests			Der	nsity		Strength	Tests		
Material ID	ESS Sample No.	Sample Date	CTS Laboratory No.	Water Content %	LL %	PL %	Gravel %	Sand %	Fines %	Org. %	$\begin{array}{c} \gamma_{d} \\ \underline{MAX} \\ \underline{(pcf)} \\ W_{opt} (\%) \end{array}$	$\begin{array}{c} \gamma_{d} \\ \underline{MAX} \\ \underline{(pcf)} \\ W_{opt} (\%) \\ Corrected \end{array}$	CBR Setup as % of Proctor	CBR Dry unit wt. pcf	CBR Water Content %	CBR @ 0.1" @ 0.2"	Laboratory Log and Soil Description
Pond	1801552-01	01.23.18	18-S-098				0.8	44.5	54.7								Dark Brown sandy silt
Stream Up	1801552-02	01.23.18	18-S-099				8.1	53.4	38.5								Dark Brown sandy silt
Stream Down	1801552-03	01.23.18	18-S-100				3.2	72.0	24.8								Dark Brown silty sand


Reviewed By


Mitthe f. Kolm

Date Reviewed:

02.06.18

SOILS LABORATORY TESTING ASSIGNMENT SHEET

Client Company Tighe & Bond

195 Frances Ave., Cranston, RI 02910 401-467-6454

401-467-6			8	sol.	E.O.P.	D2435											
40			Date Required 2/6/2018	Consol	Stand ard	D2435											
		ed By	quired 2	gth	ciu	D4767					 				 _		
		Collected By	ate Re(Soil Strength	- N	D2850											
			â	Soi	Un- con- fined	D2166					 			1			
				noi	CBR	D698 D1883										-	
				Compaction	Std.												
		1			Clay Mod. Std. CBR	D1557											
				Permeability	Clay	D5084											
p				Perme	Sand	D2434											
& Bo					Tube Den- sity												
Tighe					ຶ້	D854			_								
pany	imail	ation	gned	ŝ	Hyd -2µ %	2											
Client Company Tighe & Bond	Client Email	Site Location	Date Assigned	Identification Tests	Sieve Hyd -200 -2µ %	D422		х	×	х							
Clien	0	Ś	Dat	tificatic	Bulk												
				Iden	Org. %	D2974											
					۲۲ ۳۲ ۳۲	D4318 D2974											
			λq)		Water Cont. %	D2216											
				F	.oN daJ		<u>u</u>										
ook		renda			ESS Sample ID			1801552-01	1801552-02	1801552-03							
Project Name Sawmill Brook	1801552	Project Manager Michelle Mirenda	Date Received 1/30/2018	Sample Information	Sample date			1/23/18	1/23/18	1/23/18							
sct Name	ESS Project No. 1801552	Manager	Received	Sample Ir	Sample or depth												
Proje	ESS Pro	Project	Date		Boring/ Test Pit No.			Pond	Stream Up	Stream Down							

** * **

#

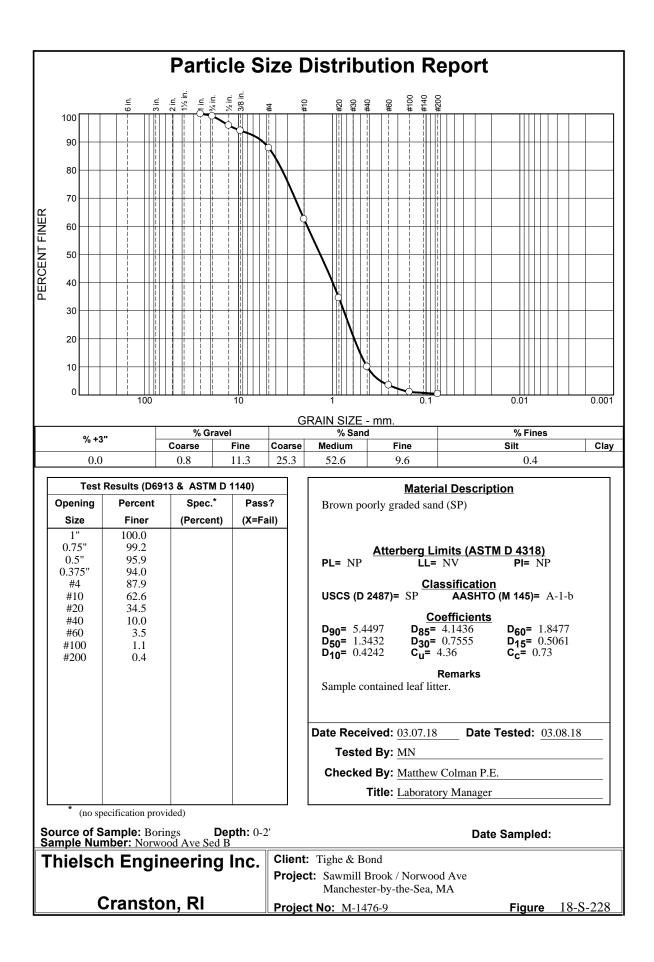
z o ↔ o ø

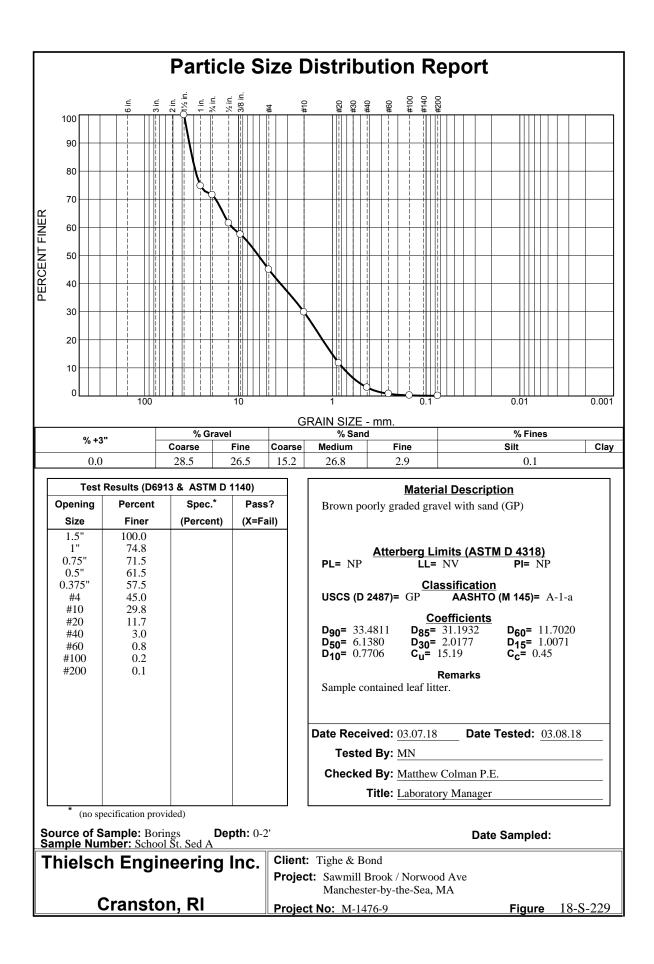
** = Sieve # 4,10,40,60,200

Notes:

ESS L	aborator	y		C	HAIN OF CUSTO	DY	ESS La	b #		is	51	5.5	7							
	f Thielsch Eng			Turn Time	5 Days		Report	ina		10	-	00								
185 Franc	es Avenue, Cr	anston RI 029	10	Regulatory State			Limit	-					4	401 W	/ater	Qualit	.y			
		x (401) 461-44	86		is project for any of the follo	•	Elector			ata Che						⊡Exc	el			
www.essla	aboratory.com			OCT RCP	e tattier a	RGP	Delivera	bles	Dot	ther (P	lease S	pecify	→)							
		npany Name ghe & Bond		Project # 221476	Project Na Sawmill Br			ater	-	Congeners										
	Co	ntact Person			Address	OOK	<u>.</u>	t W	eve	Iger					(pl					
		ary Hedman			4 Barlows Landing Road	50.4	Analysis	cen	N L	Cor			=		(ho					
	City Pocasset			tate //A	Zip Code 02559	PO #	Ana	Per	LC T	18		10			tals	(p				
1	elephone Nu			lumber	Email Add	ress	-	and Percent Water	PAH Low Level	AA		4		a	14 Metals (hold)	hole				
	508-304-63			r	Ghedman@tighe	bond.com		SE	N	2 Z	1	: : : : : : : : : : : : : : : : : : :	5 6	1 SIZE	14	Cs (
ESS Lab ID	Collection Date	Collection Time	Sample Type	Sample Matrix	Sar	nple ID		*Metals	EPH	PCB NOAA	VOC LL	VOC High		TPH	MCP	SVOCs (hold)				
01	1/23/18	1300	Composite	Soil	F	Pond		X	X	х	x	x :	<)	x k						
02	1/23/18	1330	Composite	Soil	Stre	eam Up		x	х	х	×	X I	<)	x k						
03	1/23/18	1400	Composite	Soil	Strea	am Down		ĸ	х	х	х	X	()	××						
04	1/23/18	1300	С	S	Pond - air dried			x						Pa	c ils	18				
05	1/23/18	1330	С	S	Stream Up - air dried			x												
06	1/23/18	1400	С	S	Stream Down - air dried			x												
			ette AG-Amber Gla		C-Cubitainer J-Jar O-Ot		terile V-Vial	AG			V	VA	G	D AG	6					
	iner Volume:		2-2.5 gal 3-250 mL				z 11-Other*	10	10	10	7	7	3 1	1 10						
Prese	vation Code:	1-Non Preserved	2-HCI 3-H2SO4	4-HNO3 5-NaOH 6-M	lethanol 7-Na2S2O3 8-ZnAce, Na		120 11-Other*	1	1	1	10	6	<u> </u>	1 1						
		/				er of Containers p	er Sample:	1	1	1	2	1		1 1						
		Laborator	y Use Only		Sampled by : Gary He	dman								_	_					
Coole	r Present:	\checkmark	ODrop Off		Comments:	Please s	pecify "Othe	r" pr	eser	vativ	e and	d con	aine	ers typ	es in	this s	pace			
Seal	s Intact:		OPickup		* Metals - As, Cd, Cr, Cu, Pb	Ha. Ni. Zn	addeo	d air d	dried	sam	oles f	or me	als.	mkm	2/5/18	3		0	1	AC
and the second se	emperature:	1,9 ic	og P				L	F	102	en	by	G.	H.	0	1000	0 4	25/1 ure, Da	8	u	u
Re	linquished by:	(Signature, Da		Received By:	(Signature, Date & Time)	Relinquished I	By: (Signature	e, Dat	e & '				Red	ceived	By: (Signat	ure, Da	ite & T	ime)	
anu	h little		35	Hunch	13135	11 ing to	Lunter-	-30	-18	14		R	5	t	13	18		15		
Re	elinquished by:	(Signature, Da	ate & Time)	Received By:	(Signature, Date & Time)	Relinquished I	3y: (Signature	, Dat	e & '	Time)		Ree	ceived	By: (Signat	ure, Da		ime)	
			U	/	L	1														

ESS L	aborator	V		C	CHAIN OF CUST	ODY	ESS La	b #		18	01	55	7							
	f Thielsch Eng	•		Turn Time	5 Days		Report	na		10	51	00								
		ranston RI 029	10	Regulatory State			Limit	-						401 V	Vater	r Qua	lity			
		ix (401) 461-44	86		is project for any of the f		Elector			ta Che						⊡E:	xcel			
www.essla	aboratory.com			OCT RCP		ORGP	Delivera	bles	Dot	her (P	ease S	pecify	→)						· · · ·	
		mpany Name ighe & Bond		Project # 221476		t Name Il Brook		ater	-	Congeners										
	Co	ntact Person			Address		<u>.</u>	t Wa	PAH Low Level	Jger					(pl	1				
	G	ary Hedman		tate	4 Barlows Landing Ro	ad PO #	Analysis	cen	J MC	Co					(ho	-				
	Pocasset			ΛA	Zip Code 02559	F0#	Ana	Per	HLO	18			INAI		etals	(p				
1	elephone Nu		FAX N	lumber		Address		and Percent Water	PA	AAO		-b	- Lioyakann	Size	14 Metals (hold)	(hold)				
ESS Lab	508-304-63 Collection	Collection		1	<u>Ghedman@ti</u>	ghebond.com		tals	/w	Z		Ī	-	S _	14	Cs				
ID	Date	Time	Sample Type	Sample Matrix		Sample ID		*Metals	EPH	PCB NOAA	VOC LL	VOC High		Grain TPH	MCP	SVOCs				
01	1/23/18	1300	Composite	Soil		Pond		X	х	x				xk				1	\square	
02	1/23/18	1330	Composite	Soil		Stream Up		X	Х	х	Х	X	×	x k					\square	
03	1/23/18	1400	Composite	Soil	S	tream Down		Х	Х	х	х	X	x	××						
														5	er ci	illent 3:418		1	\square	
															- 44	saira -		1	\square	
															1				\square	
_																+		1		
																		1		
Co	ntainer Type:	AC-Air Casse	tte AG-Amber Gla	ass B-BOD Bottle	C-Cubitainer J-Jar C	Other P-Poly S-S	Sterile V-Vial	AG	AG	AG	V	VA	G	O AC	3	+				
Conta	iner Volume:	1-100 mL 2	2-2.5 gal 3-250 mL	4-300 mL 5-500	0 mL 6-1L 7-VOA 8-	2 oz 9-4 oz 10-8 o	z 11-Other*	10	10	10	7	7	8	11 10)					
Prese	vation Code:	1-Non Preserved	2-HCI 3-H2SO4	4-HNO3 5-NaOH 6-M	lethanol 7-Na2S2O3 8-ZnAce		H2O 11-Other*	1	1	1		6	1	1 1						
					1	mber of Containers p	er Sample:	1	1	1	2	1	1	1 1						
		Laborator	y Use Only		Sampled by : Gary	Hedman														
	r Present:		ODrop Off		Comments:	Pleases	specify "Othe													
	s Intact:	1,9 ic	OPickup		* Metals - As, Cd, Cr, Cu,	Pb, Hg, Ni, Zn		C			1	6		0	100		Var	1.~	per	A.C.
	emperature:	(Signature, Da		Received Dur	(Signature, Date & Time)	Delineviehed	Du (Circut		02	en	by	9.	H.	(0)	100	0	105	18		iv-
		1/3c		A Received By.		Relinquished	$\int I$			14		d	Re	ceived	Ву	(Signa	ature, I	Jate &	Time)
Amer	linguished by	(Signature, Da		Received By	(Signature, Date & Time)	Relinquished	By: (Sichature	-30	-18			Å	D R	t		518 (Sign:	ature, I	ISIS	Time	
	quiched by.	, orginaturo, De		ricocy da by.	(eignatare, Date & fille)		by. (Orginature	, Dat	u u	inne,			ive	CEIVEL	Бу	USIGIN	ature, I	Jale d	Time	,


	195 Frances Avenue Cranston RI, 02910	Client Information: Tighe & Bond	Project Info Sawmill Brook / N	
THIELSCH	Phone: (401)-467-6454	Worcester, MA	Manchester-by-	the-Sea, MA
ENGINEERING	Fax: (401)-467-2398 http://www.thielsch.com	PM: Gary Hedman Assigned By: Gary Hedman	TEI Project Number: Summary Page:	74-18-0002.104 1 of 1
	Let's Build a Solid Foundation	Tighe & Bond Number: M-1476-0	Report Date:	03.08.18


LABORATORY TESTING DATA SHEET

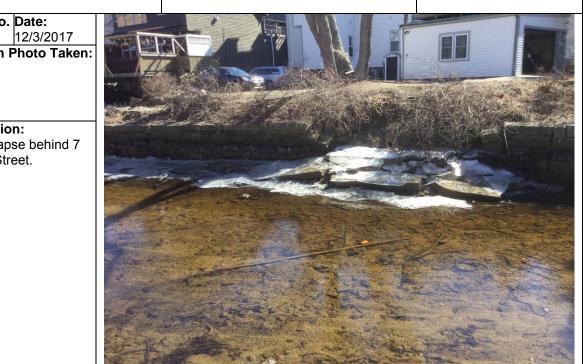
					Ide	ntifica	tion Tes	sts					Corros	sivity Tests				
Source	Material	Depth (ft)	Laboratory No.	Water Content %	LL %	PL %	Gravel %	Sand %	Fines %	рН	Sulfate (mg/kg)	Chloride (mg/kg)	Sulfide (mg/kg)	Redox Potential (mv)	Electrical Resist. As Received Ohm-cm	Electrial Resist. Saturated Ohm-cm	Other	Laboratory Log and Soil Description
Norwood Ave	Sed B	0-2	18-S-228				12.1	87.5	0.4									Brown poorly graded sand (SP)
School St	Sed A	0-2	18-S-229				55.0	44.9	0.1									Brown poorly graded gravel with sand (GP)

Reviewed By_____

Date Reviewed 03.09.2018

Tighe&Bond

APPENDIX D



Central Pond Wall Survey Photo Log Locations
LEGEND
LOCUS MAP
W X V e
0 50 100 Feet
1 inch equals 75 feet
NOTES
Sawmill Brook Area Manchester By the Sea,
Massachusetts
April 2018

Tighe&Bond		PHOTOGRAPHIC LOG
Client Name: Manchester-by-the-Sea, N	Site Location: IA Central Pond	Project No.: M-1476-009
Photo No. Date: 1 4/18/2018 Direction Photo Taken: South		
Description: Walls adjacent to the Central Street Bridge.		
Tighe&Bond		PHOTOGRAPHIC LOG
Tighe&Bond Client Name: Manchester-by-the-Sea, N	A Site Location: Central Pond	PHOTOGRAPHIC LOG Project No.: M-1476-009
Client Name:		Project No.:
Client Name: Manchester-by-the-Sea, N Photo No. Date: 2 3/28/2018 Direction Photo Taken:		Project No.:

I	
Site Location: Central Pond	Project No.: M-1476-009
	PHOTOGRAPHIC LOG
Site Location: Central Pond	Project No.: M-1476-009
	Central Pond Site Location:

Description: Wall collapse behind 7 Central Street.

Tighe	Bond			PHOTOGRAPHIC LOG
Client N	ame: ster-by-the-Sea		te Location: entral Pond	Project No.: M-1476-009
Photo No. 5	Date: 3/11/2017			
Direction Taken: Northeas				
	tion of wall behind 6			
Client N	8 Bond	Si	te Location:	PHOTOGRAPHIC LOG Project No.:
	ster-by-the-Sea		entral Pond	M-1476-009
Photo No. 6 Direction Taken: Northeas				
wall colla School S	es on top of apse at 6 Street. d curb stops			
in loregi			1917	

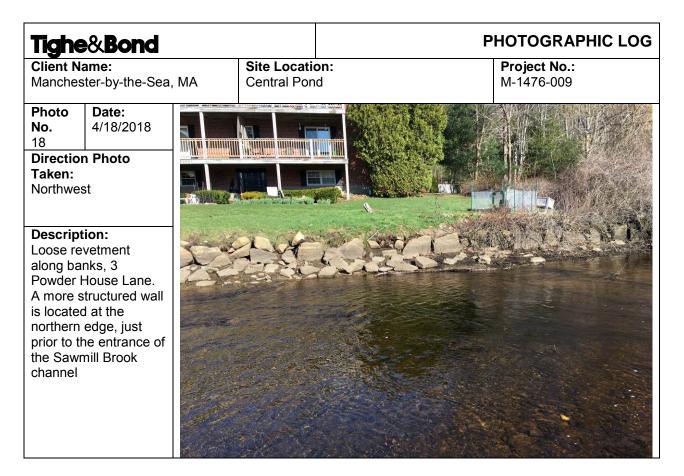
Tighe	&Bond		PHOTOGR	APHIC LOG	
Client Name: Manchester-by-the-Sea, MA		Site Location: Central Pond		Project No.: M-1476-009	
Photo No. 7 Directio	Date: 3/11/2017	A High			
Taken: Northwe					
behind F and 16 S	tion: Collapse ire Station school Street. e issues and sidence				

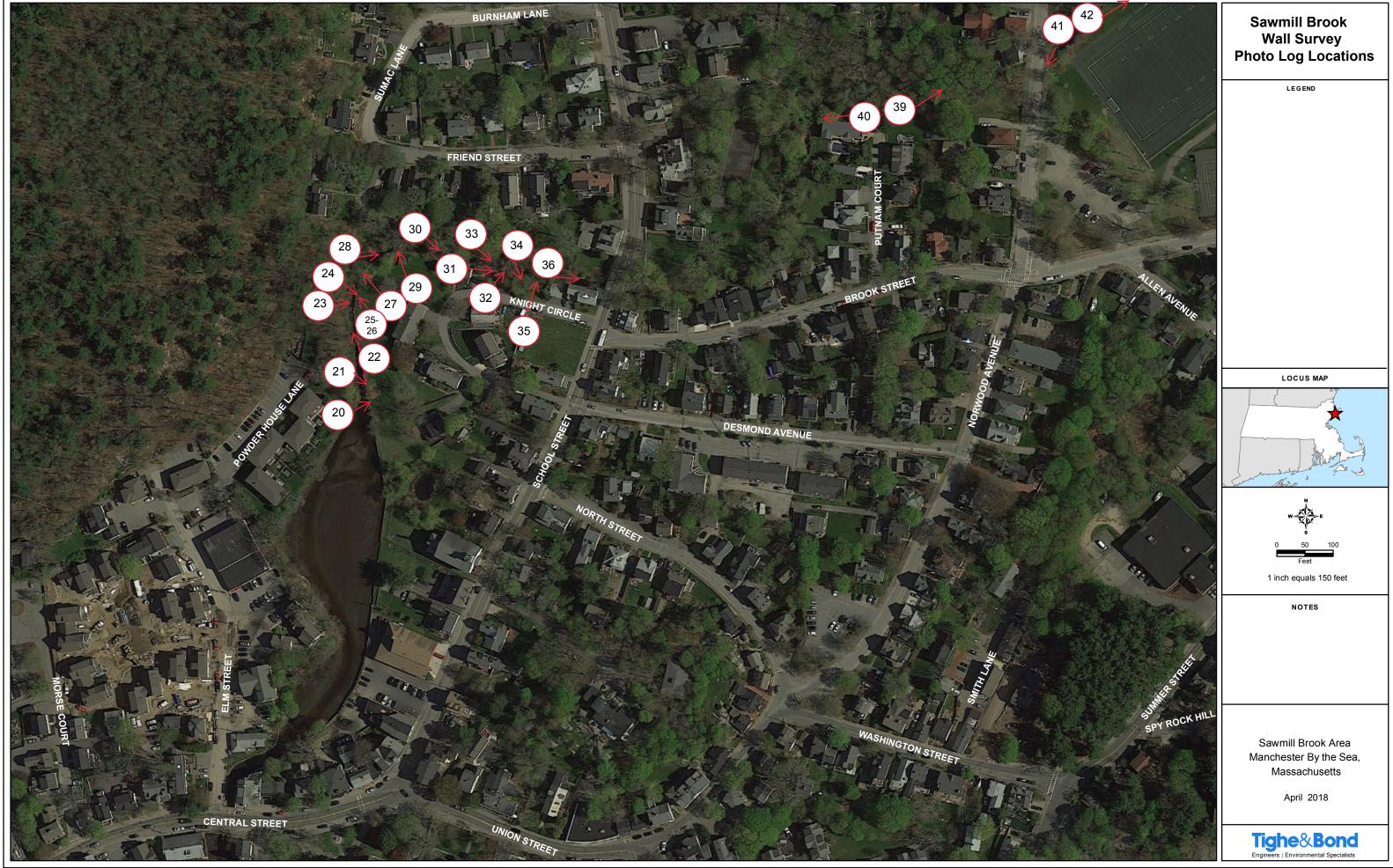
Tighe&Bond				PHOTOGRAPHIC LOG		
		ocation: al Pond	Project No.: M-1476-009			
Photo No. 8	Date: 4/18/2018					
Directio Taken: Southwe						
	tion: o collapse 6 School					

Tighe	&Bond		Р	HOTOGRAPHIC LO
Client N	ame: ster-by-the-Sea,	entral Pond		Project No.: M-1476-009
Photo No. 9	Date: 4/18/2018		*	
-	n Photo			
bank of (Wall. Over the wall conditior bank inc revetment flat behir	tion: on eastern Central Pond ver 300 feet of is in poor h. Western ludes rock nt and mud nd 5 Elm xposed at low			
Client N		te Location: entral Pond	Ρ	HOTOGRAPHIC LO Project No.: M-1476-009
Photo No. 10	ster-by-the-Sea, Date: 5/12/2015 n Photo			
Pond to	oss Central end of wall section at			
				A Chart

Tighe&Bond					Pl	HOTOGRA	PHIC LOG	
		Site Locati	on:			Project No.:		
Manches	ster-by-the-Sea	ı, MA	Central Por	nd			M-1476-009	
Photo No. 11	Date: 4/18/2018							
Directio	n Photo		- North Co	1. Maria	A start		1/ANT	A H
Taken:		Strates .		A Starte		No HAR	AVA DE	AN S.
Northeas	st							
Descrip	tion:		A TAP SA		The Parts		A CARACTER	
	nd rubble	Service of the			the first		Sent Pares	
western	bank in lower	Sand Sand Sand	AND AND			A ROWNER	C. Martine	The second second
Central F								
	e has a gentle	143		A GA	1 All	1 7 2 4		THE STATES
slope.						10		
		2.384	W/ Els/		Mar Carl			
		1-52 A	A COL STATE	Z		And I want to	The second se	
			SAME?		A CLARKER COM		At In Mark	
		Car Sheet	M. K	and the second				
		the second second				N. C. C.	Mar Carry	
		A AN			100 NO.			
		A.	and the second	ALC: MARCH	A COM	The second	The second	
		XAVE.	100000	CER SO	and the	J YA		- State Total

Tighe	&Bond			PHOTOGRAPHIC LOG
Client Na		Site Locati	on:	Project No.:
Manches	ter-by-the-Sea, MA	Central Por	d	M-1476-009
Photo	Date:	7 Car		
No. 12	4/18/2018			
Direction	n Photo		R. ANK	
Taken:			HAD.	
Southeas	st 🛛			A STATES
		and the state		
Descript			- Children	at the second second
Western				
Rock rev	entral Pond.			
	to stabilize			
	just before		A Carlo and	
the Town		1200	ALL AND	X X X X X X X
granite w	all.			
	ALC: NO	at the		and the second second
	1.134	and the second	and I are	
			Ser Marker	
		ACT		


Tighe	& Bond		PHOTOGRAPHIC LOG
Client Na		Site Locati Central Pon	Project No.: M-1476-009
Photo No. 13	Date: 4/18/2018		
Directior Taken: Northeas			
Gently slo shoreline revetmen channel s photos is	shore 3 ouse Lane. oping stabilized by		


Tighe	&Bond		PHOTOGRAPHIC LOG
Client Na		Site Locatio Central Ponc	Project No.: M-1476-009
Photo No. 14 Direction Taken: West	Date: 4/18/2018 h Photo		
behind 1 on the we mid-sect Pond. Th stabilized revetmen Sawmill I channel at low tid flat in the	ter outfall 7 Elm Street estern shore, ion of Central ne bank is 1 by		

Tighe	& Bond				Р	HOTOGRAPHIC LOG
Client Na		MA	Site Location Central Port			Project No.: M-1476-009
Photo No. 15	Date: 4/18/2018	X	X	MAK:	1	
Direction Taken: Southwe						
the top o Pond on bank at le is mainta western o bottom o Channel this locat Revetme	south from f Central the western ow tide. Flow ined in the channel. The f the is gravely in					

Tighe	& Bond		PHOTOGRAPHIC LOG		
Client Na	ame:	Site Location:	Project No.:		
Manches	ter-by-the-Sea, MA	Central Pond	M-1476-009		
Photo No.	Date: 4/18/2018				
16 Direction	n Photo				
Taken:					
West					
Descript	ion:				
	he western				
shore an		and the second se			
	at low tide. el substrate is	A A Marson			
	ver to the	Le cho			
	he bank. The				
	mudflat is				
shown to	ward the	A AN AN			
right.					
		A CARLER AND A CARLE			
			Charles and the second second		

Tighe	Bond				P	HOTOGRAPH	IIC LOG
Client N	ame:		Site Locati	on:		Project No.:	
Manches	ster-by-the-Sea,	, MA	Central Por	ld		M-1476-009	
Photo No. 17 Direction Taken: Northwest Descript Loose re along ba Powder	st t ion: vetment						

Tighe	Bond			PHOTOGRAPHIC LOG
Client Name: Site Location			Project No.:	
Manches	ster-by-the-Sea,	MA Central Por	ıd	M-1476-009
Photo No. 19	Date: 4/18/2018			
	n Photo			
Descrip Sections collapse Summer	of wall behind 20			A A A A A A A A A A A A A A A A A A A

Tighe	&Bond		PHOTOGRAPHIC LOG
Client N		Site Location: Central Pond	Project No.: M-1476-009
Photo No. 20 Direction Taken: East	Date: 4/18/2018 n Photo		
Descript Wall coll Knights (apse behind 8		

Tighe&Bond		PHOTOGRAPHIC LOG		
Client Name: Manchester-by-the-Sea,	MA Site Locat Central Po		Project No.: M-1476-009	
Photo No.Date: 4/18/201821Direction Photo Taken: SoutheastDescription: Wall collapse behind 8 Knights Circle.				
Tighe&Bond		P	HOTOGRAPHIC LOG	
Client Name: Manchester-by-the-Sea,	MA Site Locat Central Po	-	Project No.: M-1476-009	
Photo Date:	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			

Photo No. 22	Date: 4/18/2018			
Directior Taken: North				
Descript Wall colla Knights C	apse behind 8			

Tighe	&Bond			PHOTOGRAPHIC LC
Client N		, MA	Site Location	Project No.: M-1476-009
Photo No. 23 Direction Taken: Northeas				
Descript Beaver D				
Tighe	&Bond	Rance		PHOTOGRAPHIC LC
Client N		МА	Site Locatio	Project No.: M-1476-009

			Site Location:	Project No.:
Manches	ter-by-the-Sea,	, MA	Central Pond	M-1476-009
Photo	Date:	No Marker		
No.	4/18/2018			NI ACCORT
24	4/10/2010			A A A
Direction	Photo	- AHI-		
Taken:	I FIIOLO	al the		
East		a the		
Lasi		AN DUM		A REAL PROPERTY AND A REAL
Descript	ion:		MA	1
	sidence and			
	pse 8 Knights		Ah	
Circle.	p			
			THAT I	
		the a	1 Stiller AK	
		XXX	A Walton And And And And And And And And And An	
		- Yout		and the second
		XX	TANGER IE	
		A Part		and the state
		1 ANS		
		A	TRACKEL AND A STREET	
		R		The state

Tighe	Bond			P	HOTOGRAPHIC LOG
Client N	l ame: ster-by-the-Sea	, MA	Site Location: Central Pond		Project No.: M-1476-009
Photo No. 25	Date: 4/18/2018		教育教 。		
	n Photo				
collapse	tion: bsidence, wall and drainage nights Circle.				
Client N	Ster-by-the-Sea	, MA	Site Location: Central Pond	P	PHOTOGRAPHIC LOG Project No.: M-1476-009
Photo No. 26 Directio Taken: East	Date: 4/18/2018 n Photo				
collapse	tion: bsidence, wall and drainage nights Circle.				

Tighe	Bond			PHOTOGRAPHIC LOG
Client N	ame: ster-by-the-Sea	, MA	Site Location: Central Pond	Project No.: M-1476-009
Taken: North Descrip	Date: 4/18/2018 n Photo tion: vs are near			
he top o Knights (Northern	of bank behind			
lighe	Bond			PHOTOGRAPHIC LOC
Client N		, MA	Site Location: Central Pond	Project No.: M-1476-009
Photo No. 28 Directio Taken: Northeas	Date: 4/18/2018 n Photo			
ollapse bank Kn	bsidence, wall on south ights Circle. ink wall is built			

Tiche	& Bond			PHOTOGRAPHIC LOG
Client Na		MA	Site Location: Central Pond	Project No.: M-1476-009
Photo No. 29	Date: 4/18/2018			
Direction Taken:	n Photo			
	n rock riffle. nd vegetation			
Tiahe	& Bond			PHOTOGRAPHIC LOG
Client Na		MA	Site Location: Central Pond	Project No.: M-1476-009
Photo No. 30 Direction Taken:	Date: 4/18/2018 Photo			
Brook. V maintaine south ba jumble of	he Sawmill Vall is ed on the nk and a			

Tighe	&Bond			Р	HOTOGRAPHIC LOG
Client N	ame: ster-by-the-Sea	, MA	Site Location: Central Pond		Project No.: M-1476-009
Photo No. 31	Date: 4/18/2018				
Directio Taken: East	n Photo				
side. Evi	tion: nk on either dence of bank ing on the				
Tiahe	e & Bond			P	HOTOGRAPHIC LOG
Client N		, MA	Site Location: Central Pond		Project No.: M-1476-009
Photo No. 32	Date: 4/18/2018			S L B	
Directio Taken: Northeas					
Descript Loose ro invasive shore.	tion: ocky bank, and covering the				

Tiahe	Bond		PHOTOGRAPHIC LOG
Client N	ame: ster-by-the-Sea	Site Location: Central Pond	Project No.: M-1476-009
Photo No. 33	Date: 4/18/2018		
Directio Taken: South	n Photo		
	of native e wall behind		
Tighe	e&Bond		PHOTOGRAPHIC LOG
Client N		Site Location: Central Pond	Project No.: M-1476-009
Photo No. 34	Date: 4/18/2018	THE REAL	
Directio Taken: Southea	n Photo st		
	tion: eldstone wall Knights Circle.		
			and the second sec

Tighe	&Bond				PH	IOTOGRAPI	HIC LOG
Client Na	ame:		Site Locati Central Por			Project No.: M-1476-009	
manches	ster-by-the-Sea	a, IVIA	Central Por	iu		1470-009	
Photo No. 35 Direction Taken: West	Date: 4/18/2018 n Photo						
	tion: eldstone wall 0 Knights						

Tighe	e&Bond		PHOTOGRAPHIC LOG
Client N	ame: ster-by-the-Sea, MA	Site Location: Central Pond	Project No.: M-1476-009
Photo No. 36 Directio Taken: West	Date: 4/18/2018 n Photo		
	tion: eldstone walls 0 Knights		

Tighe & Bond		PHOTOGRAPHIC LOG
Client Name: Manchester-by-the-Sea, MA	Site Location: Central Pond	Project No.: M-1476-009
PhotoDate:No.4/18/201837Direction PhotoTaken:North		
Description: Collapsed granite wall section behind Friend Street.		

Tighe	&Bond		PHOTOGRAPHIC LOG
Client Na		Site Locati Central Pon	Project No.: M-1476-009
Photo No. 38 Direction Taken: Northeas			
Descript Granite v Friend St	valls behind 6		

Tighe	e&Bond		PHOTOGRAPHIC LOG
Client N		MA Central Pond	: Project No.: M-1476-009
Photo No. 39	Date: 4/18/2018		
Directio Taken: East	n Photo		
Norwood Brook w overtopp	tion: towards d Ave, the idens out bing wetland n the north.		
	Bond	Site Location	
Client N Manche		MA Site Location: Central Pond	PHOTOGRAPHIC LOG Project No.: M-1476-009
Client N Manche Photo No. 40	lame: ster-by-the-Sea Date: 4/18/2018		Project No.:
Client N Manche Photo No. 40	lame: ster-by-the-Sea		Project No.:
Client N Manche Photo No. 40 Directio Taken: West Descrip Poured	ame: ster-by-the-Sea Date: 4/18/2018 n Photo tion: concrete wall behind 6		Project No.:

Tiahe	&Bond			PHOTOGRAPHIC LO
Client Name: Manchester-by-the-Sea, MA		MA	Site Location: Central Pond	 Project No.: M-1476-009
Photo No. 41 Directio Taken: Southwe				
Fields Pa Norwood Bridge. fieldston the west	vards Coach ark and I Avenue Granite and e walls along ern bank. s of beaver			
Tighe	&Bond			PHOTOGRAPHIC LO
Client Name: Manchester-by-the-Sea, MA		Site Location: Central Pond	Project No.: M-1476-009	
Photo No. 42	Date: 4/18/2018			
Direction Taken: Northeas				
Descript	tion:			

Description: View towards Elementary School. Evidence of west bank overtopping. Beaver activity evident in the foreground.