

Tighe&Bond

FEMA Hazard Mitigation Plan Enhancement: Task 3 Vulnerability and Risk Assessment Manchester-by-the-Sea

Prepared For:

Town of Manchester-by-the-Sea Massachusetts

August 2016

Vulnerability and Risk Assessment

То:	Mary Reilly, Manchester-by-the-Sea, Grants Administrator
FROM:	Margaret Hernandez, Gabrielle Belfit, Tighe & Bond
Сору:	David A. Murphy, P.E.
DATE:	August 12, 2016

The Town of Manchester-by-the-Sea has received a Federal Emergency Management Agency (FEMA) Pre-Disaster Mitigation (PDM) Grant to enhance the Town's current Hazard Mitigation Plan (HMP). The tasks include evaluating potential climate change impacts to the Town and completing a Vulnerability and Risk Assessment (VRA) of the Town's critical sectors. This memo summarizes the results of the Vulnerability and Risk Assessment completed as part of Task 3 of the grant.

1 Summary of Task 2

The Task 3 Vulnerability and Risk Assessment builds directly off of the work completed in Task 2, which helped to predict where, when, and to what degree future climate impacts related to flooding may be experienced. A summary of Task 2 is as follows:

- 1. Identify Critical Sectors: The current Manchester-by-the-Sea HMP includes a listing of 35 identified critical infrastructure facilities and provides a summary of natural hazards impacting these critical facilities. As part of Task 2, the list of critical facilities was re-examined and updated to include additional community assets following the guidelines included in the 2012 FEMA Local Mitigation Handbook. The initial effort identified 70 community assets, which were evaluated for flooding impacts under climate change for 3 planning periods, 2025, 2050 and 2100.
- 2. Climate Change Model Selection: A comparative evaluation of climate change modeling was presented to the Community Resiliency Advisory Group (CRAG) in August 2015. The climate change models selected by the Town and the CRAG were the Inundation Risk Model (IRM) that includes modules for both sea level rise and storm surge and the Oyster River Culvert Evaluation Project (ORCEP) for the extreme precipitation model. A separate watershed assessment using the US Army Corps of Engineers HEC-RAS model was developed for the Sawmill Brook Watershed to capture the inland impacts of increased precipitation on riverine flooding. The watershed modeled future conditions output for 2025, 2050 and 2100 included the extreme precipitation values from the ORCEP, and both sea level rise and storm surge data to modify tail water conditions at the mouth of Sawmill Brook.
- 3. Analysis of Impacts: The model outputs from the coastal flooding and watershed models were utilized to complete an analysis of the flooding hazards due to climate change for all 70 community assets. The spatial location of each critical sector was evaluated in relation to the 5 different model outputs: sea level rise, shallow coastal flooding, storm surge, Category 1 hurricanes, and upland flooding. The model output contained 4 probabilities of flooding for each of the five coastal flooding sources:
 - \circ 1-10% = low risk, highly unlikely to unlikely
 - 33% = medium risk, as likely as not

- \circ 66% = medium-high risk, likely
- \circ 90-99% = high, very likely to certain

The modeling results were used to narrow down the list of sites for the VRA. Sites that were not impacted, or minimally impacted by coastal or upland flooding, will be kept in the HMP but excluded from the focused VRA. The CRAG and the Town discussed each of the locations with respect to anticipated mitigation value. Ultimately, the list of 70 community assets was reduced to 26 and these locations were further evaluated in the VRA described in this technical memo.

2 Methodology

Before beginning the Vulnerability and Risk Assessment, a methodology was developed to frame and guide the assessment and data collection process. This methodology was based on "Preparing for Climate Change, A Guidebook for Local, Regional, and State Governments," September 2007.

The VRA is broken down into 2 components: a risk assessment and a vulnerability assessment. Each is explained below.

2.1 Risk Assessment

Risk is defined as the function of the **likelihood** of flooding and the potential **consequence** of flooding. To determine likelihood and consequence, the following methodologies were used:

- Likelihood The modeling results generated under Task 2 were used to determine ratings for likelihood of flooding due to impacts of climate change for each asset. Each flooding source was weighted based on the anticipated frequency of occurrence. Each asset location was given a numeric value for each of the 3 planning periods, based on the weighted frequency of the specific flooding source, and probability of occurrence. That numeric value was generated based on the following procedure:
 - a. First, the different sources of inland and coastal flooding were weighted based on the **frequency of flooding**, as follows:
 - i. Sea Level Rise, anticipated to occur daily 4
 - ii. Upland Flooding, anticipated to occur 3 to 4 times per year 3
 - iii. Shallow Coastal Flooding, anticipated to occur twice per year 2
 - iv. Storm Surge, anticipated to be an annual occurrence 1
 - v. The Category 1 Hurricane scenario was not included because the model was only available for current risk; future probabilities are not available.
 - b. Second, the **probability of flooding** was assigned a value, as follows:
 - i. 90-99% = high, very likely to certain to occur 4
 - ii. 66% = medium-high risk, likely occurrence 3
 - iii. 33% = medium risk, as likely as not to occur 2
 - iv. 1-10% = low risk, highly unlikely to unlikely occurrence 1

- c. The weighted value for **frequency of flooding** (described in paragraph a, above) was multiplied by the value for **probability of flooding** (described in paragraph b, above) for each flooding source at each asset location.
- d. The results for each flooding source (sea level rise, storm surge, etc.) were then added for an **overall weighted score** for the different climate change planning periods: near-term (2025), mid-term (2050), and long-term (2100). When complete, each asset was assigned a numeric value ranging from 1 to 31 for near term, mid-term, and long-term likelihood of flooding.

Once the values for the different time periods were assigned, the assets were given an overall flood rating for each time period. Ratings were assigned based on the following:

- a. High (3): Total score of 18 or greater.
- b. Medium (2): Total score greater than or equal to 6, but less than 18.
- c. Low (1): Total score of 5 or less.

Example: The Fire Department was assigned a high flood rating in 2050 because it has a total weighted flooding score of 20 in 2050 from all flooding sources.

- 2. Consequence For this exercise, consequence is estimated based on how a flood may affect the functionality of the community asset and the consequences that may arise if the asset were to be damaged or out of service and not functioning under normal operating conditions. Consideration is given to economic, ecological, social, cultural, historical, public health, and public safety consequences. The scale of the impact (e.g., size of the population, land area, etc.) is also taken into consideration. Ratings for consequence were assigned based on the following:
 - a. High (3): Major disruption, normal operation of the facility or natural system cannot be restored without repair/corrective action or after a long period of time; numerous impacts to the community.
 - b. Medium (2): Some disruption, but can be restored after some time, may require minor repair/corrective action; some impacts to the community.
 - c. Low (1): Little or no disruption to normal operation of the facility or natural system and therefore no consequences to the community.

Example: The rating for consequence of flooding at the Fire Department is high due to the essential public safety function of the facility, and that there is no alternate location.

Once ratings are assigned for both likelihood and consequence, the 2 numbers are multiplied and the result is the **risk rating**.

Risk = likelihood x consequence

2.2 Vulnerability Assessment

Vulnerability is the function of **sensitivity** to flooding and the **capacity to adapt**. To determine likelihood and consequence, the following methodologies were used:

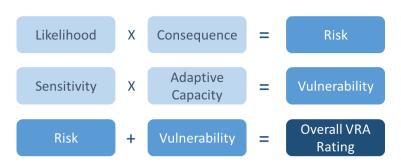
- 1. Sensitivity The sensitivity of a system is evaluated based on the existing exposures to flood waters and any history of flooding. When rating sensitivity, one must consider how much the asset and its contents are exposed. For instance, are the critical components or contents of the building exposed and vulnerable to flooding or have they already been protected? Has flooding occurred in the past and what were the impacts? Ratings for vulnerability were assigned based on the following:
 - a. High (3): Critical components of the facility/natural resource are vulnerable to flood waters; there is a history of flooding.
 - b. Medium (2): Some non-critical components of the facility may be impacted by flood waters; minor flooding in the past.
 - c. Low (1): Location is already protected from flood; flood waters cannot reach critical components of the building; no history of flooding.

Example: The rating for sensitivity of the Fire Department is medium due to past actions to protect of some critical components. The generator is still at risk.

- 2. Adaptive Capacity The adaptive capacity of a system is evaluated based on its existing abilities to accommodate flooding with minimum loss of function or loss of value (value can be either monetary or a non-monetary value to the community). If an asset does not already have the ability to adapt to flooding, then it is assumed it will require outside intervention. Outside intervention includes an upgrade or improvement to the asset to protect it from flooding. Ratings for adaptive capacity were assigned based on the existing ability to adapt and the scale of outside intervention/improvements required. Large scale improvements include major changes to the asset and may have high costs or lengthy time commitments. Smaller scale improvements are moderate changes to the asset and less costly or time consuming. A community asset with a low capacity to adapt (outside intervention is required) is given the highest score, while an asset with a high adaptive capacity is given the lowest score. Ratings were assigned as follows:
 - a. Low (3): Large scale improvements are required; the asset does not have any existing abilities to adapt (low adaptive capacity).
 - b. Medium (2): Smaller scale improvements are required; the asset may or may not have the ability to adapt.
 - c. High (1): Little or no outside intervention is required; the asset already has the ability to adapt (high adaptive capacity).

Example: The rating for the Fire Department's adaptive capacity is medium because only small scale improvements are required to mitigate flooding.

Once ratings are assigned for both sensitivity and adaptive capacity, the 2 numbers are multiplied and the result is the vulnerability rating.


Vulnerability = Sensitivity x Adaptive Capacity

2.3 Overall VRA Rating

Once a community asset is assigned 2 separate risk and vulnerability ratings, they must be combined into an overall rating. Therefore, at the end of our evaluation, each community asset is assigned 1 rating, summarizing its overall risk and vulnerability.

Having 1 rating assigned to each community asset allows for a side by side comparison.

The complete process is shown below.

3 Data Collection

Each of the selected community assets were evaluated and given rankings for likelihood, consequence, sensitivity, and adaptive capacity. In order to do so, Tighe & Bond underwent a large data collection effort. This effort included the following:

- 1. A more refined evaluation of the modeling results of Task 2.
- 2. A more refined evaluation of the mapping results of Task 2.
- 3. Site visits.
- 4. Phone calls and in-person interviews with those knowledgeable about the community assets including staff members, property owners, and Town employees. Interviews were conducted with the following Town personnel:
 - a. Sue Brown Town Planner
 - b. Carol Murray Department of Public Works Director
 - c. Bion Pike Harbormaster
 - d. Rick Gibson CRAG member
 - e. Captain Biggar Fire Department
 - f. Lt. Fitzgerald Police Department

All of the data collected was then gathered, compiled, and evaluated. This data collection process allowed for ratings to be assigned using the methodology described above.

After a first draft of the VRA was developed, it was distributed to the CRAG for review. This allowed for another level of information gathering and critical feedback to the ratings.

4 Findings

Once the data collection effort was complete and community assets were assigned ratings, the results were sorted and analyzed. The results of the data collection effort and assigned ratings are compiled in Table 1.The table lists the rating (1 through 3) and main discussion points that led to the rating for each category (Likelihood, Consequence, Sensitivity, and Adaptive Capacity). The "discussion" column in Table 1 is a summary of the information gathered about the community asset during the data collection effort that helped determine the rating.

Recall that Likelihood was given a score for 3 different time periods because the data was available from the modeling completed in Task 2. Note that because Likelihood was given a score for the 3 different time periods (2025, 2050, and 2100), it was also given 3 different ratings. Therefore, the "overall ratings" were also computed for the 3 different time periods for comparison purposes.

Table 1 is sorted by community asset category (Built Environment, Economy, Natural Resources, and Social Environment) and sorted from highest to lowest based on the midterm (2050) results. Basing the vulnerability risk assessment on anticipated mid-21st century flooding impacts was a decision based on the consensus of the Town and the CRAG. The premise is that 2050 is just far enough into the future to plan mitigation projects. The HMG plan will be updated every 5 years, so there will be ample opportunities to reevaluate asset exposure under revised flooding projections as climate science evolves.

VRA Reference Sheets

After the results were sorted, VRA Reference Sheets were developed, compiling the relevant data for the top 10 highest rated community assets. The Reference Sheets will be incorporated into Manchester's Hazard Mitigation Plan to provide content for the mitigation strategy. The Community Asset Reference Sheets are enclosed in Appendix A.

The Community Asset Reference Sheets provide a summary of the information gathered about the location and the explanation as to how and why the community asset was given a rating in each of the 4 categories. They also include the most pertinent mapping results as well as some informational photos. The Reference Sheets are intended to be updated at a later phase to include adaptation planning.

Table 1: Vulnerability and Risk Assessment Results - Sorted for 2050

Risk				Vulnerabil	ity		Overall	Overall	Overall						
Category	Community Asset			Likeliho				Consequence		Sensitivity		Adaptive Capacity	Rating	Rating	Rating
		2025	Rating 2050	2100		ghted Score 2050 2100	Rating	Discussion	Rating	Discussion	Rating	Discussion	2025	2050	2100
Built Environment	Central Street Dam	2	3	3	17	18 20	3	Dam failure may cause road failure, resulting in economic and public safety consequences	3	Overtops during extreme storm events; hydraulic restriction during large rainfall events	3	Major upgrade would be required, large investment	15	18	18
Built Environment	Manchester Wastewater Treatment	1	2	2	4	8 17	3	50% of Town is sewered, high risk to public health and ecological consequences if inoperable	3	Parking lot flooded in past, headworks and other process equipement below grade and exposed	3	Major upgrade would be required, large investment	12	15	15
Built Environment	Downtown Stormwater Drainage System	3	3	3		nity to Harbor awmill Brook (1)	2	May result in damage to infrastructure or nearby properties, degrade water quality and impact public safety and economics	3	System drains to Sawmill Brook and Manchester Harbor. Drainage has surcharged in the past, does not have enough capacity to handle large storms	3	Major upgrade would be required, large investment	15	15	15
Built Environment	Town Hall / Police Headquarters / Emergency Operation Center	3	3	3	20	23 27	3	EOC is essential location during a hazard event. Disruption to service would be a high public safety risk and have economic and social consequences	2	Emergency generator exposed, history of parking lot and basement elevator shaft flooding	2	Smaller scale improvements can be made to flood proof building and emergency equipment	13	13	13
Built Environment	Manchester Fire Department	2	3	3	13	20 28	3	Only Fire Station in Town, disruption to service would put community at public safety risk	2	Emergency generator exposed, history of flooding in parking area , building exposed via garage doors	2	Smaller scale improvements can be made	10	13	13
Built Environment	Route 127	3	3	3	31	31 31	2	Downtown evacuation route. Alternate routes are available, but would have economic impacts as it serves downtown	2	History of localized flooding	3	Major upgrade would be required, large investment	12	12	12
Built Environment	MBTA Tracks/Bridge	3	3	3	31	31 31	2	Alternative transportation cooridor. Social and economic consequences if out of service	1	No known history of flooding; bridge crosses Harbor and may be exposed	3	Major upgrade would be required, large investment	9	9	9
Built Environment	School Street and Bridge	1	1	2	3	3 6	2	Downtown evacuation route; damage to bridge would result in road closure and infrastructure damage	2	Minor localized flooding in the past; bridge is exposed	3	Major upgrade would be required, large investment	8	8	10
Built Environment	Lincoln Street Well & Pumping Station	1	1	2	3	3 6	3	Well is backup supply of water for Town. Flooding could impact equipment and degrade water quality. Loss of service impacts public health, economy and social well being.	2	History of flooding at control building that was relocted. Pumps, chemicals and control systems are exposed.	2	Smaller scale improvements can be made	7	7	10
Built Environment	Lincoln Street	1	1	2	3	3 6	2	Main access route for schools, alternate routes are available; may cause erosion at stream crossings	2	Flooding has occurred in the past near the Elementary School	1	The Town has already made improvements to the drainage on Lincoln Street	4	4	6
Economy	Downtown Businesses	3	3	3		nity to Harbor awmill Brook (1)		Provides essential goods and services, disruption of businesses would impact entire community	2	No known history of flooding, but businesses in lower elevations are exposed	2	Revisions to FEMA 100-year flood plain will remove flood insurance requirement for many locations	13	13	13
Economy	Manchester Marine	3	3	3	20	24 28	2	Provides essential marine rescue operations, public safety and economic consequences	2	Driveway has flooded in the past; entire property is exposed	2	Smaller scale improvements can be made if deemed necessary	10	10	10
Economy	Crocker's Boat Yard	3	3	3	20	24 28	2	Provides essential marine rescue operations, public safety and economic consequences	2	Building has flooded in the past, but no significant damage; entire property is exposed	2	Smaller scale improvements can be made if deemed necessary	10	10	10
Natural Resources	Sawmill Brook	3	3	3	31	31 31	2	Large impact because brook drains majority of Town, highest consequence in downtown area	2	Numerous flood events in the past throughout watershed	3	Major upgrade would be required, large investment	12	12	12
Natural Resources	Manchester Harbor	3	3	3	28	28 28	2	Ecological consquences as a result of increased sediment and debris	2	Already experiencing buildup of sediment discovered during dredging project	3	Major upgrades to reduce runoff entering Harbor and increase frequency of dredging	12	12	12
Natural Resources	Singing Beach	3	3	3	28	28 28	2	Generates revenue for Parks and Rec, stimulates local tourist economy, protects residential areas	2	History of storm events contributing to erosion and damage to roadways, infrastructure, and revetment	3	Major upgrade would be required, large investment	12	12	12
Natural Resources	Bennet's Brook and Marsh	3	3	3	28	28 28	2	Ecological consquences due to erosion and change in salinity; flooding may impact nearby homes	2	History of flooding in the area, some of which has been addressed	2	May have the ability to adapt naturally, Town may need to protect nearby infrastructure	10	10	10

Table 1: Vulnerability and Risk Assessment Results - Sorted for 2050

								Risk			Vulnerabil	ity		Overall	Overall	Overall
Category	Community Asset			Likeliho					Consequence		Sensitivity		Adaptive Capacity	Rating	Rating	Rating
		2025	Rating 2050	2100		ighted So 2050		Rating	Discussion	Rating	Discussion	Rating	Discussion	2025	2050	2100
Natural Resources	Millet's Swamp and Brook	1	1	1	3	3	3	2	Ecological consquences due to erosion; flooding may impact nearby homes	2	Provides flood storage, unable to handle large storms; areas of watershed within 100-yr floodplain	2	May have the ability to adapt naturally, Town may need to protect nearby infrastructure	6	6	6
Social Environment	First Baptist Church	3	3	3	19	23	31	1	Cultural and social consequences, but churches in nearby communities could be used	1	No known history of flooding; backside of building is at low elevation and close proximity to brook	2	Smaller scale improvements can be made if deemed necessary	5	5	5
Social Environment	First Parish Church and Magic Years Nursery School	2	2	2	6	6	13	1	Cultural and social consequences, but churches in nearby communities could be used	1	No known history of flooding	2	Smaller scale improvements can be made	4	4	4
Social Environment	The Plains Seniors Housing	1	1	1	3	3	3	1	Residents may need relocation if damage occurred; elderly residents are vulnerable population	1	No known history of flooding	2	Smaller scale improvements can be made if deemed necessary	3	3	3
Social Environment	Landmark School	1	2	2	4	10	17	1	Entry to school may be flooded	1	Buildings are located on higher elevations of property; alternative access is available, no history of flooding	1	No improvements necessary	2	3	3
Social Environment	Summer Street Apartments	1	1	2	1	1	10	1	Residents may need relocation if damage occurred; minor economic consequence because mixed use	1	No known history of flooding	2	Smaller scale improvements can be made if deemed necessary	3	3	4

Notes:

(1) - Modeling results are not available for these community assets as they are not specific to one location. Therefore, Likelihood ratings were assigned based on knowledge of the community asset as opposed to the calculated score for Likelihood.

5 Summary

The overall ratings are summarized in Table 2 below. Rankings do not change dramatically over the course of the 3 time periods. The top 10 rated assets in all 3 time periods include: Central Street Dam, the Wastewater Treatment Plant, the Downtown Stormwater Drainage System, Town Hall/Police/Emergency Operations, the Fire Department, Route 127, the Downtown Businesses, Sawmill Brook, Manchester Harbor, and Singing Beach.

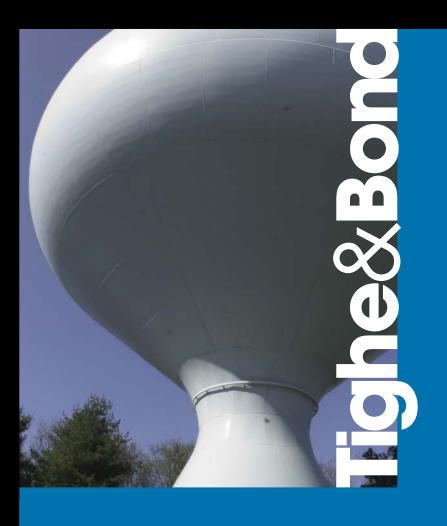

Category	Community Asset	Overall Rating 2025	Overall Rating 2050	Overall Rating 2100
Built Environment	Central Street Dam	15	18	18
Built Environment	Manchester Wastewater Treatment	12	15	15
Built Environment	Downtown Stormwater Drainage System	15	15	15
Built Environment	Town Hall / Police Headquarters / Emergency Operations Center	13	13	13
Built Environment	Manchester Fire Department	10	13	13
Built Environment	Route 127	12	12	12
Built Environment	MBTA Tracks/Bridge	9	9	9
Built Environment	School Street and Bridge	8	8	10
Built Environment	Lincoln Street Well & Pumping Station	7	7	10
Built Environment	Lincoln Street	4	4	6
Economy	Downtown Businesses	13	13	13
Economy	Manchester Marine	10	10	10
Economy	Crocker's Boat Yard	10	10	10
Natural Resources	Sawmill Brook	12	12	12
Natural Resources	Manchester Harbor	12	12	12
Natural Resources	Singing Beach	12	12	12
Natural Resources	Bennet's Brook and Marsh	10	10	10
Natural Resources	Millet's Swamp and Brook	6	6	6
Social Environment	First Baptist Church	5	5	5
Social Environment	First Parish Church and Magic Years School	4	4	4
Social Environment	The Plains Seniors Housing	3	3	3
Social Environment	Landmark School	2	3	3
Social Environment	Summer Street Apartments	3	3	4

Table 2: Summary of Vulnerability and Risk Assessment Results

Manchester-by-the-Sea was recently awarded a second PDM Grant to complete a 5-year update to the Town's Hazard Mitigation Plan. The Reference Sheets will be a useful resource when updating the Plan and will be used for the focused adaptation strategy. Additionally, the results of the VRA can guide the Town's planning efforts regarding mitigation actions and adaptation strategies. The community assets with the highest VRA ratings should be considered for adaptation projects.

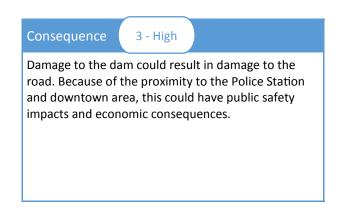
J:\M\M1476 Manchester MA Hydro Study\FEMA Grant Materials\Task 3- VRA\VRA Technical Memo.doc

Summary

The Sawmill Brook culvert under Central Street consists of a seawall, tide gate structure, culvert and stream bed/weirs. Based on a review of documents available from the Town, it appears the tide gate was originally installed in the early 1900's for the purpose of creating a skating pond in the downtown area. This structure provides control for flooding caused by tides and maintains the elevation in Central Pond. The structure currently overtops during extreme storm events. Additionally, the tide gate design obstructs fish passage to upstream segments of Sawmill Brook that are known spawning habitat for Rainbow Smelt.

The Town has recognized that the Central Street tide gate, dam and related structures are in need of modification to provide better functionality with respect to drainage and fish passage. This location has been identified for many years as a source of flooding upstream due to this hydraulic restriction, particularly during large rainfall events. The elevated water behind the tide gate is also putting pressure on the seawall at Central Street, causing seepage though the rock voids in the wall.

The overall VRA evaluation for this location is based on the following criteria:


Modeling results indicate that there is a high probability of Upland Flooding in 2050. There is a medium risk of flooding due to Storm Surge, Shallow Coastal Flooding, and Sea Level Rise in 2050.

The overall weighted score increases from 17 in 2025 to 18 in 2050 to 20 by 2100. The score of 18 in 2050 gives the Central Street Dam a high rating for likelihood of flooding.

Sensitivitv

3 - High

The structure overtops during extreme storm events and has been proven to be a hydraulic restriction during large rainfall events.

Adaptive Capacity

3 - Low

Major upgrade and large investment would be required. Grant funding may be available for the removal of the tide gate structure and rehabilitation of the dam.

Category	Component	2050 Rating	2050 Category Total	2050 Overall	
Diek	Likelihood	High = 3	9	18	
Risk	Consequence	High = 3	9		
Vulnerability	Sensitivity	High = 3	q		
Vulnerability	Adaptive Capacity	Low = 3	9		

View from the south.

Existing tide gate.

View from the north.

Seepage at the seawall.

Planning Period	Coastal Flood Hazard Sea Level Rise	Coastal Flood Hazard Storm Surge
2025		LEGEND Parcels Critical Sector Parcels Critical Sector Parcels 100 Year Base Flood Elevation Probability (%) 1 1 1 1 1 1 1 90 99
2050		
2100		

These figures depict the extent of currently defined flood hazard area, including the 100-year base flood elevation shown in purple and the future flooding hazards for storm surge and sea level rise. Exposure vulnerability for near, mid and long term climate change planning periods is represented based on probability of occurrence from 1% (very unlikely) to 99%, (extremely likely). The figures show that there is a 66% probability that the dam will be impacted by sea level rise and 90% probability that it will be impacted by storm surge across the 3 time periods. This location is also subject to inland flooding from extreme precipitation events.

Reserve for Adaptive Capacity Discussion

Vulnerability and Risk Assessment Wastewater Treatment Facility

Summary

The Manchester-by-the-Sea Wastewater Treatment Plant (WWTP) serves approximately half of the Town. It is located in very close proximity to Manchester Harbor and is entirely within the FEMA 100-year flood zone. Revised TR-16 "Guidelines for the Design of Wastewater Treatment Works" recommends that critical equipment be protected against damage to 3 feet above the 100-year flood elevation.

The headworks building contains pumps and equipment located below grade that are critical to operation. If this building were to flood, the WWTP would become inoperable. In June 2015, the Environmental Protection Agency assisted the Town in completing a Climate Resilience Evaluation and Awareness Tool (CREAT) report. Findings indicate that in order to protect the WWTP, the Town must either build a flood wall surrounding the WWTP or relocate it to a different area of town.

Flood events may also increase the amount of infiltration entering the collection system. High flows impact the treatment efficiency of the WWTP.

The overall VRA evaluation was based on the following criteria and 2050 likelihood for this location:

Likelihood 2 - Medium

Modeling results indicate that there is a medium probability of flooding due to Storm Surge in 2050, but only a low probability of flooding due to Sea Level Rise and Shallow Coastal Flooding.

The overall weighted score in increases from 4 in 2025 to 8 in 2050 to 17 in 2100. Therefore, the WWTP was assigned a medium rating for likelihood of flooding in 2050.

Consequence 3 - High

Approximately 50% of the Town is sewered. Chemicals are stored at the WWTP. If the WWTP becomes inoperable, there is a high risk to public health and environmental consequences. Heavy flows from additional infiltration could stress the plant and in extreme cases may cause flows to exceed treatment capacity, resulting in environmental consequences.

Sensitivity

3 - High

In the past, the adjacent parking lot has flooded, damaging the meters and electrical conduit located in manholes. The headworks pumps and other process equipment critical to the function of the WWTP are exposed, as they are located below grade. The backup generator and other electrical equipment are also located in the yard and are susceptible to flooding.

Adaptive Capacity

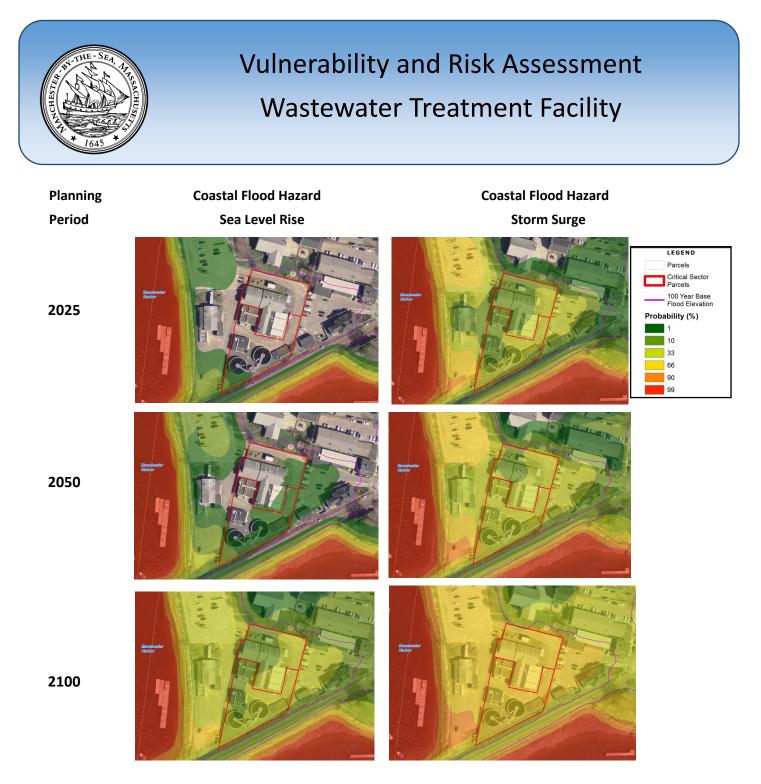
3 - Low

Solutions identified in the CREAT report indicate that the WWTP must either be relocated or a seawall should be installed surrounding the property. Both options would be considered a major adaptation upgrade and require a large investment.

Category	Component	2050 Rating	2050 Category Total	2050 Overall Rating	
Risk	Likelihood	Medium = 2	6	15	
RISK	Consequence	High = 3	O		
V. Jacom bility	Sensitivity	High = 3	0		
Vulnerability	Adaptive Capacity	Low = 3	9		

Vulnerability and Risk Assessment Wastewater Treatment Facility

Manchester-by-the-Sea Wastewater Treatment Plant



Emergency generator and other outdoor electrical equipment

View of Manchester Harbor from the walkway above process equipment

The figures above depict the extent of flood hazard areas, including the current 100-year base flood elevation shown in purple and the future flooding hazards for storm surge and sea level rise. Exposure vulnerability for near, mid and long term climate change planning periods is represented based on probability of occurrence from 1% (very unlikely) to 99%, (extremely likely). The figures show that sea level rise will not significantly impact the site until 2100. In the near term, there is a 10-33% probability for storm surge impacts, and by 2100, there is a 66% probability that the entire site will be impacted by coastal flooding. The risk of flooding is concentrated in the southeast corner of the site. This graphic does not account for the location of underground utilities that may be impacted by coastal flooding. For example, the wet well is located 2 feet below mean sea level.

Vulnerability and Risk Assessment Wastewater Treatment Facility

Reserve for adaptive capacity discussion

Summary

The downtown stormwater system drains the areas of Bridge Street, Central Street, Church Street, Elm Street, and School Street. This is the main economic center of Town with many businesses, shops, and restaurants located in the area. The downtown area is prone to flooding due to its proximity to Sawmill Brook, Central Pond, and Manchester Harbor. The system has proven to be undersized and has surcharged during recent storm events. Because the catch basin invert elevations at many locations are close to sea level, the system can become surcharged from the ocean outfalls from extraordinary events.

The overall VRA evaluation for this location is based on the following criteria:

Likelihood

3 - High

Modeling results indicate that there is a high probability of Upland Flooding in 2050. Modeling results were not defined for the other categories of flooding due to the variability of results since the system is spread out over a large area.

The likelihood rating could not be assigned based on the overall weighted score since modeling results are not available. Instead, the stormwater system was assigned a high rating for likelihood of flooding based on the knowledge of the system and proximity to Sawmill Brook and Manchester Harbor.

Sensitivity

The system has surcharged in the past and does not have enough capacity to handle large storms.

3 - High

Consequence

2 - Medium

If the streets in the downtown area were to flood and become unpassable, there would be negative impacts on the community because the downtown area is the major economic center.

Additionally, if the stormwater system is surcharging, it may result in property damage to nearby property owners.

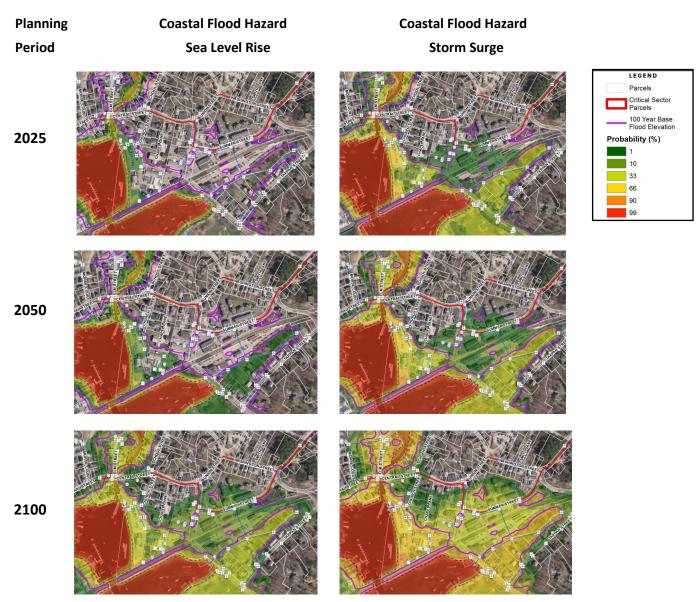
Adaptive Capacity

3 - Low

The Town can make improvements to the system, but they would be costly and disruptive to the community. Opportunities for Green Stormwater Infrastructure may reduce localized flooding and improve water quality.

	Category	Component	2050 Rating	2050 Category Total	2050 Overall Rating	
	Diek	Likelihood	High = 3	G		
	Risk	Consequence	Medium = 2	6	15	
	Vulnerability	Sensitivity	High = 3	0		
		Adaptive Capacity	Low = 3	9		

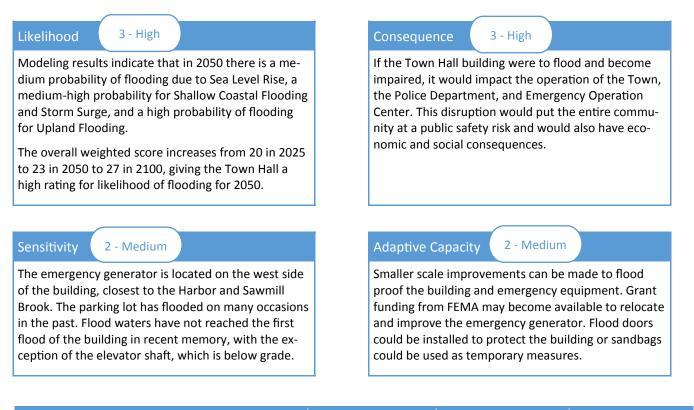
а


Storm Drainage system on School Street with direct discharge to Sawmill Brook

Storm drainage from Central Street with direct discharge to Sawmill Brook

This figure depicts locations of stormwater catchbasins and outfalls and the extent of flood exposure due to storm surge for existing conditions, shown in purple and the future flooding hazards for storm surge and sea level rise. Exposure vulnerability for near, mid and long term climate change planning periods is represented based on probability of occurrence from 1% (very unlikely) to 99%, (extremely likely). Although not shown, it is important to note that the stormwater system is also subject to flooding from Upland Flooding sources. As shown, there is a chance of storm surge impacting the stormwater system as early as 2025. Sea level rise is less likely to impact the system until 2100. However, the low-lying catch basins can become surcharged from the ocean outfalls from extraordinary events.

Reserve for Adaptive Capacity Discussion



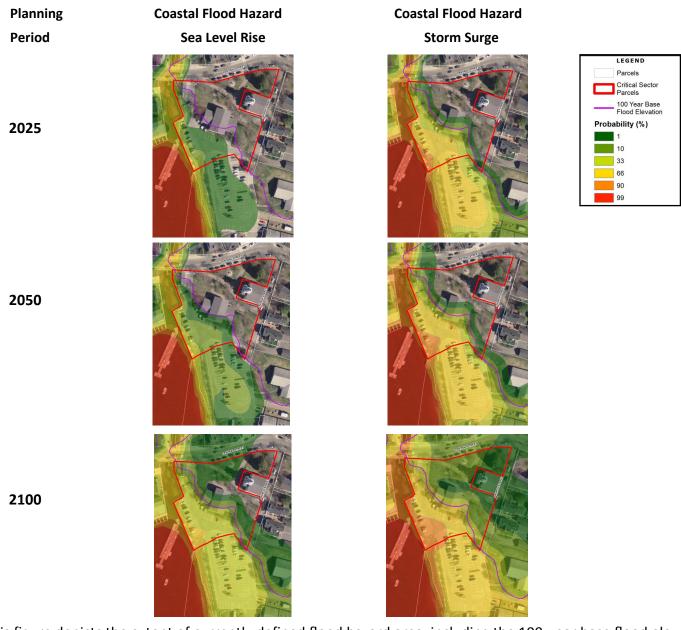
Summary

The Town Hall is home to the Police Headquarters, the Town's Emergency Operations Center, and multiple Town offices. At its closest point, the building sits approximately 20 yards from where Sawmill Brook meets Manchester Harbor. The emergency generator is located on the west side of the building, closest to the Harbor. There is a boat ramp within the parking lot behind the building and adjacent to the Harbor. Flood waters often enter the parking lot via the boat ramp. The backside of the building is at an approximate elevation of 4 to 5 feet. The basement (or ground floor) contains vehicles, offices, and storage. The Emergency Operations as well as mechanical and electrical systems for the entire building are located on the first floor.

The overall VRA evaluation for this location is based on the following criteria 2050 likelihood :

Category	Component	2050 Rating	2050 Category Total	2050 Overall Rating	
Risk	Likelihood	High = 3	0	12	
RISK	Consequence	High = 3	9		
Vede over bility e	Sensitivity	Medium = 2		13	
Vulnerability	Adaptive Capacity	Medium = 2	4		

Town Hall and Police Station. View of front entrance on left, and back entrance on right.


Town Hall and Police Station. Views of emergency generator located behind Town Hall adjacent to the Harbor.

Views shows the change in elevation from the front to rear of the building (left) and proximity to harbor (right)

This figure depicts the extent of currently defined flood hazard area, including the 100-year base flood elevation shown in purple and the future flooding hazards for storm surge and sea level rise. Exposure vulnerability for near, mid and long term climate change planning periods is represented based on probability of occurrence from 1% (very unlikely) to 99%, (extremely likely). The figures show that sea level rise will not significantly impact the site until 2100, but there is a much stronger possibility that the building will be impacted by storm surge in the near and mid-term.

Reserve for adaptive capacity discussion

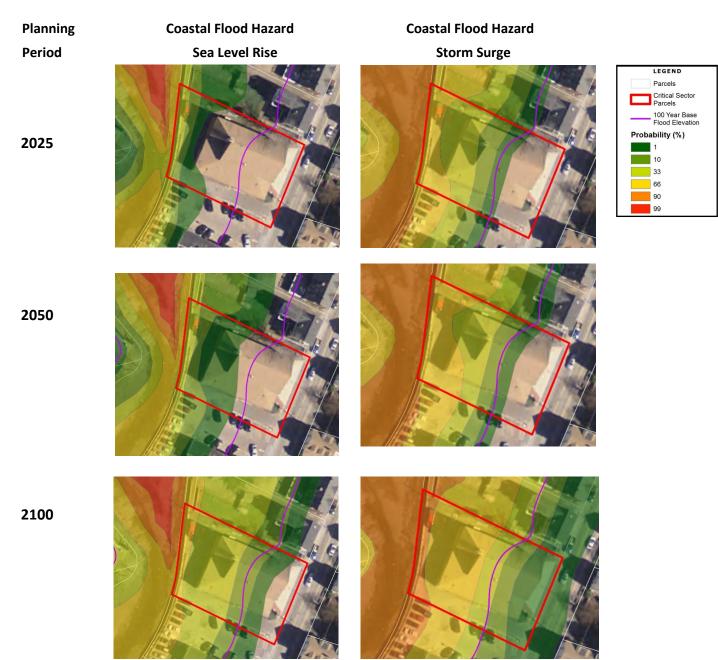
Summary

The Fire Station is located directly adjacent to Central Pond. During large storms water from Central Pond breaches the retaining wall behind the Fire Station and floods the parking lot. On a few occasions, the water has reached the basement; however, the curb in the garage has prevented water from entering the mechanical room located on this level. The dispatch and emergency response systems have already been relocated to the second floor. The emergency generator is undersized and located outside the building and could potentially be impacted by flood waters.

The overall VRA evaluation for this location is based on the following criteria:

Likelihood 3 - High	Consequence 3 - High
Modeling results indicate that there is a medium probabil- ity of flooding due to Sea Level Rise, Shallow Coastal Flooding, and Storm Surge in 2050. There is a high proba- bility of flooding at the Fire Station from Upland Flooding. The overall weighted score increases from 13 to 20 to 28 across the 3 time periods. The Fire Station was assigned a high rating for likelihood of flooding based on a weighted score of 20 in 2050.	This is the only Fire Station in Town. Any disruption service puts the community at a public safety risk.
Sensitivity 2 - Medium	Adaptive Capacity 2 - Medium
The emergency generator is vulnerable to flooding. Flood waters have breached the retaining wall and	Adaptive Capacity 2 - Medium Smaller scale improvements can be made to protect flooding. Grant funding from FEMA may become ava to relocate and improve the emergency generator.
The emergency generator is vulnerable to flooding.	Smaller scale improvements can be made to protect flooding. Grant funding from FEMA may become available.

Category	Component	2050 Rating	2050 Category Total	2050 Overall	
Risk	Likelihood	Medium = 2	6		
NISK	Consequence	High = 3	0	10	
Vulporability	Sensitivity	Medium = 2	4		
Vulnerability	Adaptive Capacity	Medium = 2	4		


Left: View of the Fire Station from the east on School Street. Central Pond is behind the building. Right: View of the parking lot that has flooded in the past and the garage door opening vulnerable to flooding.

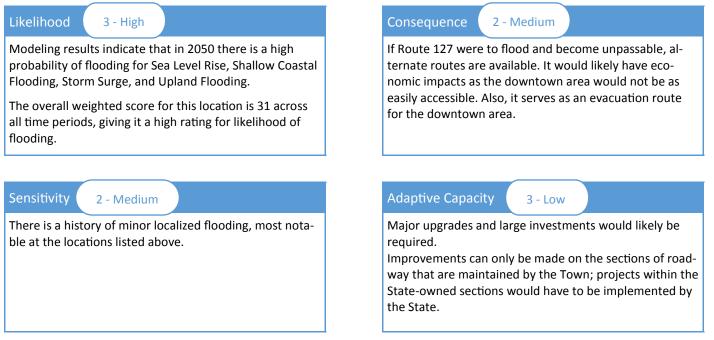
Left: Extreme rain event on 2/11/16, coupled with high tide, elevated Sawmill Brook to within inches from the curb behind the Fire Station.

Right: The north side of the building where the emergency generator is located.

The figures above depict the extent of flood hazard areas, including the current 100-year base flood elevation shown in purple and the future flooding hazards for storm surge and sea level rise. Exposure vulnerability for near, mid and long term climate change planning periods is represented based on probability of occurrence from 1% (very unlikely) to 99%, (extremely likely). As shown, there is a significant risk of flooding due to Storm Surge by 2050. Sea Level Rise will likely not impact the building until later in the century.

Reserve for adaptive capacity discussion

Summary


Route 127 runs east-west across Manchester-by-the-Sea, almost paralleling Route 128 to the north. Although a named state route, there are parts that are owned and maintained by the Town. Also known as Bridge Street, Central Street, Union Street, and Summer Street, Route 127 is an important transportation corridor as it serves the downtown area and across the entire Town. Traveling northeast on Route 127 will bring you to Gloucester and to the southwest is Beverly.

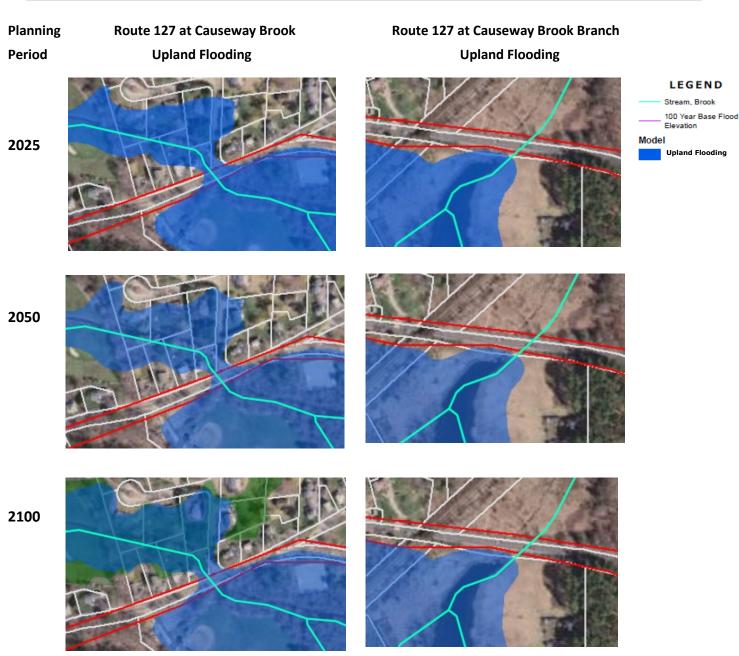
The following areas have been identified as having a history of localized flooding.

- 1. Route 127 at Chubbs Creek
- 2. Route 127 at Bennett Brook
- 3. Route 127 at Causeway Brook
- 4. Route 127 at Causeway Brook Branch
- 5. Route 127 at Raymond

Figures showing the impacts of storm surge at these locations are shown on the following pages. Note that figures are not available for Route 127 at Raymond as this location is outside of the modeled area.

The overall VRA evaluation Route 127 is based on the following criteria:

Category	Component	2050 Rating	2050 Category Total	2050 Overall Rating	
Risk	Likelihood	High = 3	c.		
RISK	Consequence	Medium = 2	6	42	
) (Sensitivity	Medium = 2		12	
Vulnerability	Adaptive Capacity	Low = 3	6		



The figures above depict the extent of flood hazard areas, including the current 100-year base flood elevation shown in purple and the future flooding hazards for storm surge. Exposure vulnerability for near, mid and long term climate change planning periods is represented based on probability of occurrence from 1% (very unlikely) to 99% (extremely likely). Storm surge is likely to impact Route 127 at both the Chubb Creek and Bennett Brook crossings in 2025. The area of impact at the Chubb Creek location will expand as time progresses.

The figures above depict the extent of Upland Flooding impacts at the Causeway Brook and Causeway Brook Branch crossings on Route 127. As shown, the areas of impact change only slightly over the course of time. Both locations have a history of minor localized flooding.

Reserve for adaptive capacity discussion

Vulnerability and Risk Assessment Downtown Businesses

Summary

The downtown area is the main economic center of Manchester-by-the-Sea. Business are located primarily along Beach Street and Central Street, with additional shops along Union Street. The majority of the shops are just outside of the 100-year flood base flood elevation of 10 feet above mean sea level, according to the recently revised FEMA FIRM maps. The map revisions are supported by the lack of repetitive loss flood insurance claims from FEMA. Climate change modeling is not based on the historic flood elevations, but rather on anticipated impacts from increasing intensity and duration of storms and sea level rise. The elevation of businesses is the most important factor in forecasting future risk, but it is impossible to assign an overall rating criteria for Downtown Businesses due to the variable results. To assist in an evaluation of vulnerability, an analysis of commercial property value at elevations 10-14 were summarized. Results from the IRM indicate there is a moderate risk of coastal flooding for businesses below elevation 12. Inland flooding impacts business along School and Central Street.

The overall VRA evaluation for this location is based on the following criteria:

Likelihood 3 - High

Modeling results are not available since the businesses are spread out over a large area.

The likelihood rating could not be assigned based on the overall weighted score since modeling results are not available. Instead, the it was assigned a high rating for likelihood of flooding based on the proximity to Sawmill Brook and Manchester Harbor.

Sensitivity

2 - Medium

In the short term, only the properties at the lowest elevations may be impacted by localized flooding including flooding of basements and low spots on the property. Buried utilities may be at risk.

Consequence 3 - High

The downtown businesses provide essential goods and services and disruption of economic activity would negatively impact the entire community. There are \$19 million dollars of commercial assets located in the 0-10 foot elevation, and nearly \$25 million from 0-16 feet.

Adaptive Capacity

2 - Medium

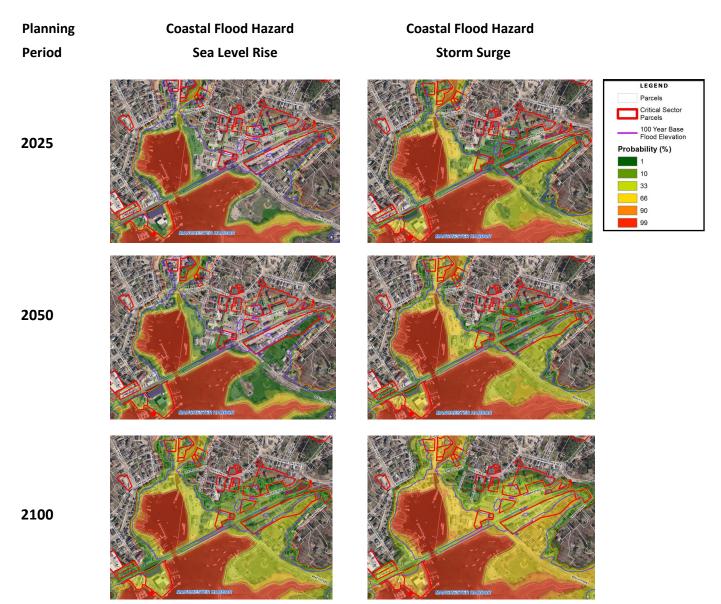
Privately owned business are responsible for maintaining flood insurance. Recent revisions to the FEMA 100-year flood plain have removed the flood insurance requirement for many locations. Drainage improvements including LID may be implemented as part of the Downtown Improvement projects with grant funds.

	Category	Component	2050 Rating	2050 Category Total	2050 Overall Rating
	Risk	Likelihood	High = 3	9	13
		Consequence	High = 3		
	Vulnerability	Sensitivity	Medium = 2	4	
		Adaptive Capacity	Medium = 2		

Vulnerability and Risk Assessment Downtown Businesses

Downtown - Beach Street commercial area, south view at Union Street/Beach Street intersection

Downtown - Beach Street commercial area adjacent to Manchester Harbor


Downtown - Beach Street commercial plaza

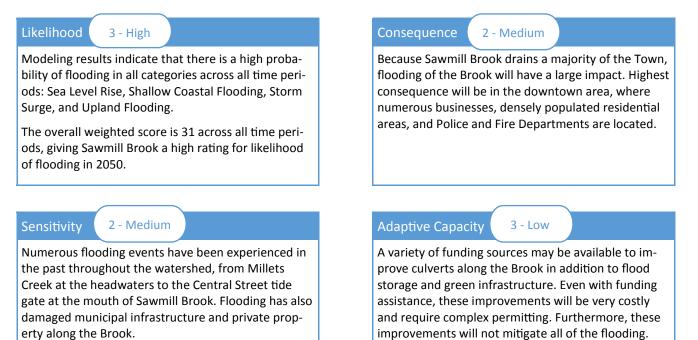
Downtown - Central Street commercial area

Vulnerability and Risk Assessment Downtown Businesses

The figures above depict the extent of flood hazard areas, including the current 100-year base flood elevation shown in purple and the future flooding hazards for storm surge and sea level rise. Exposure vulnerability for near, mid and long term climate change planning periods is represented based on probability of occurrence from 1% (very unlikely) to 99%, (extremely likely). The figures show that many of the businesses will likely not be impacted by sea level rise until 2100. However, many sites are at risk of flooding due to storm surge; probabilities greatly increase by 2100.

Vulnerability and Risk Assessment Downtown Businesses

Reserve for Adaptive Capacity Discussion

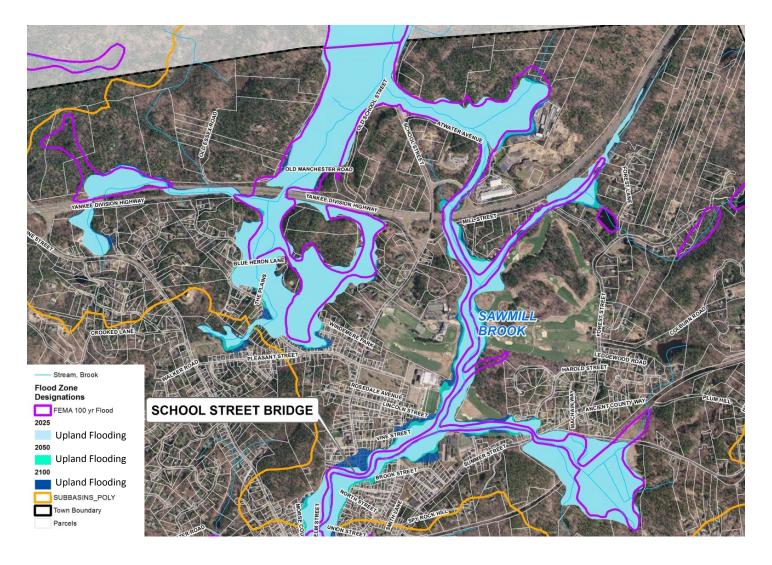


Vulnerability and Risk Assessment Sawmill Brook

Summary

Sawmill Brook is the longest watercourse that flows through Manchester-by-the-Sea and drains the majority of the Town. The main stem of Sawmill Brook drains a circuitous route. It begins just south of Route 128 and discharges through Central Pond near the downtown area to Manchester Harbor at the Central Street tide gate. Flooding has been documented along multiple sections of the Brook including areas with extensive wetlands, at the confluence of tributaries and locations where channelized stream bed and undersized culverts create hydraulic restrictions.

The overall VRA evaluation for this location is based on the following criteria:


	Category	2050 Component	2050 Rating	2050 Category Total	2050 Overall Rating
	Risk	Likelihood	High = 3	6	12
		Consequence	Medium = 2		
	Vulnerability	Sensitivity	Medium = 2	6	
		Adaptive Capacity	Low = 3		

Vulnerability and Risk Assessment Sawmill Brook

Sawmill Brook Upland Flooding Impacts 2025, 2050, 2100

This figure above depicts the extent of flood hazard areas, including the current 100-year FEMA flood elevation shown in purple and the future flooding hazards area for Upland Flooding based on the Sawmill Brook Watershed Model. The modeled area of inundation due to upland flooding is based on precipitation amounts generated under a balanced fossil fuel energy emission scenario and tail water conditions created with sea level rise at the Harbor. The modeled area of flooding is subject to change as culvert restrictions are addressed throughout the watershed.

Vulnerability and Risk Assessment Sawmill Brook

Reserve for adaptive capacity discussion

Vulnerability and Risk Assessment Manchester Harbor

Summary

Manchester Harbor is one of the Town's greatest features. The Harbor is an important recreational, economic, scenic, environmental, and cultural asset of the Town. The main economic center of the Town surrounds the Harbor and the Harbor itself provides for economic activity through commercial fishing and tourism. There are numerous recreational activities available such as boating, kayaking, public and private piers, parks, and a sailing school. The Harbor is also home to many species of shorebirds, shellfish, finfish, and submerged and emergent vegetation including an abundance of eel grass. Both Sawmill Brook and Bennett's Brook flow directly to the Harbor. Other freshwater sources include stormwater outfalls. Flooding can have different impacts on the Harbor and its surroundings. For instance, flood waters entering the Harbor from land often carry extra sediment, silt, and debris. Flooding can also cause seawater to overtop the perimeter of the Harbor, which is surrounded by a variety of sea walls and natural landscape. Wave action associated with storm surge may have a deleterious impact on the eel grass beds, causing the grass to break or uproot emerging plants.

The overall VRA evaluation for this location is based on the following criteria:

Modeling results indicate that there is a high probability of flooding due to Sea Level Rise, Shallow Coastal Flooding, and Storm Surge across all time periods.

The overall weighted score is 28 in 2025, 2050, and 2100, giving the Harbor a high rating for likelihood of flooding.

Sensitivity

2 - Medium

Flood events in the past have caused a buildup of extra sediment on the Harbor floor. Flash flooding events have polluted the Harbor with debris and silt.

The Harbor overtops roadways and seawalls during extreme events.

Consequence

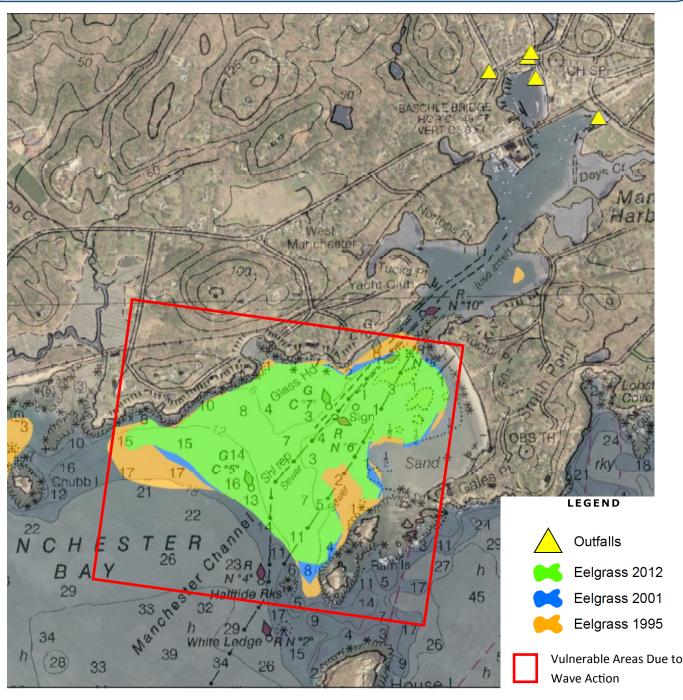
2 - Medium

Likely ecological consequences due to negative impact of stormwater discharge on shellfish beds and wave action from storm surge on eel grass beds, which are vital to the Harbor.

Changes in the water level can also impact the grasses and natural shoreline surrounding the Harbor.

Adaptive Capacity

3 - Low


Major upgrades and investments would be required to reduce runoff entering the Harbor and to increase the frequency of dredging if it is required.

	Category	Component	2050 Rating	2050 Category Total	2050 Overall Rating
	Diale	Likelihood	High = 3	6	12
	Risk	Consequence	Medium = 2		
	Vulnerability	Sensitivity	Medium = 2	6	
		Adaptive Capacity	Low = 3		

Tighe&Bond

Vulnerability and Risk Assessment Manchester Harbor

The image above shows an NOAA nautical chart of Manchester Harbor and the extent of eel grass beds which have gotten smaller over time. Beds are vulnerable to wave action associated with storm surge that may increase with climate change. Areas most vulnerable are west of Rams Island where beds are more exposed to wave refraction. The stormwater outfalls in Manchester Inner Harbor are also located on the map.

Vulnerability and Risk Assessment Manchester Harbor

Reserve for adaptive capacity discussion

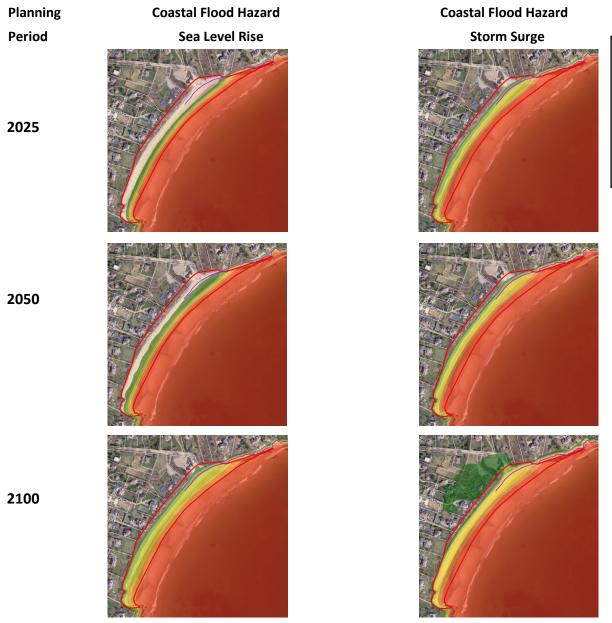
Summary

Singing Beach is located at the end of Beach Street close to the down town area. The beach is a strong attraction for area residents and visiting tourists. Properties along the coast adjacent to the beach are protected by a 2,000 ft armored bank of stone revetment. The beach has been flooded and badly damaged during multiple storm events as recently as the winter of 2013. Photos of this damage are shown on the following page.

The overall VRA evaluation was based on the following criteria and 2050 likelihood for this location:

Consequence 2 - Medium
The Beach generates the majority of the revenue for the Parks and Recreation Department with beach users generating approximately \$250,000 annually. Beach goers generate additional income for local merchants estimated at a million dollars-worth of
economic impact. Furthermore, the beach protects high value residential properties behind it, assessed at over \$215 million dollars, or 10% of the towns total assessed value.
Adaptive Capacity 3 - Low
Beach re-nourishment and hardening is expensive and requires extensive permitting. This would re- quire a major upgrade and investment.

Category	Component	2050 Rating	2050 Category Total	2050 Overall Rating
Risk	Likelihood	High = 3	6	12
KISK	Consequence	Medium = 2		
Vulnorahili	Sensitivity	Medium = 2	6	12
Vulnerabili	Adaptive Capacity	Low = 3		


Singing Beach, Manchester-by-the-Sea. The beach area, bath house and parking area shown have been fully submerged during a 100-year flood event.

Singing Beach, Manchester-by-the-Sea. The roadway, structures and revetment have been damaged a number of times and repaired by the Town at significant cost. The damages shown above were from the winter of 2013.

This figures above depict the extent of flood hazard areas, including the current 100-year base flood elevation shown in purple and the future flooding hazards for storm surge and sea level rise. Exposure vulnerability for near, mid and long term climate change planning periods is represented based on probability of occurrence from 1% (very unlikely) to 99%, (extremely likely). The figures show that sea level rise will not significantly impact the site until 2100. Storm surge is likely to impact the site and may even breach the Singing Beach, impacting the homes behind it.

LEGEND Parcels

Critical Sector Parcels 100 Year Base Flood Elevation Probability (%)

Reserve for adaptive capacity discussion

